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When collections of functional data are too large to be exhaustively observed, survey sampling techniques
provide an effective way to estimate global quantities such as the population mean function. Assuming
functional data are collected from a finite population according to a probabilistic sampling scheme, with
the measurements being discrete in time and noisy, we propose to first smooth the sampled trajectories
with local polynomials and then estimate the mean function with a Horvitz–Thompson estimator. Under
mild conditions on the population size, observation times, regularity of the trajectories, sampling scheme,
and smoothing bandwidth, we prove a Central Limit theorem in the space of continuous functions. We
also establish the uniform consistency of a covariance function estimator and apply the former results to
build confidence bands for the mean function. The bands attain nominal coverage and are obtained through
Gaussian process simulations conditional on the estimated covariance function. To select the bandwidth, we
propose a cross-validation method that accounts for the sampling weights. A simulation study assesses the
performance of our approach and highlights the influence of the sampling scheme and bandwidth choice.

Keywords: CLT; functional data; local polynomial smoothing; maximal inequalities; space of continuous
functions; suprema of Gaussian processes; survey sampling; weighted cross-validation

1. Introduction

The recent development of automated sensors has given access to very large collections of sig-
nals sampled at fine time scales. However, exhaustive transmission, storage, and analysis of such
massive functional data may incur very large investments. In this context, when the goal is to as-
sess a global indicator like the mean temporal signal, survey sampling techniques are appealing
solutions as they offer a good trade-off between statistical accuracy and global cost of the anal-
ysis. In particular, they are competitive with signal compression techniques (Chiky and Hébrail
[9]). The previous facts provide some explanation why, although survey sampling and functional
data analysis have been long-established statistical fields, motivation for studying them jointly
only recently emerged in the literature. In this regard, Cardot et al. [5] examine the theoretical
properties of functional principal components analysis (FPCA) in the survey sampling frame-
work. Cardot et al. [6] harness FPCA for model-assisted estimation by relating the unobserved
principal component scores to available auxiliary information. Focusing on sampling schemes,
Cardot and Josserand [7] estimate the mean electricity consumption curve in a population of
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about 19,000 customers whose electricity meters were read every 30 minutes during one week.
Assuming exact measurements, they first perform a linear interpolation of the discretized signals
and then consider a functional version of the Horvitz–Thompson estimator. For a fixed sample
size, they show that estimation can be greatly improved by utilizing stratified sampling over sim-
ple random sampling and they extend the Neyman optimal allocation rule (see, e.g., Särndal et
al. [32]) to the functional setup. Note however that the finite-sample and asymptotic properties of
their estimator rely heavily on the assumption of error-free measurements, which is not always
realistic in practice. The first contribution of the present work is to generalize the framework
of Cardot and Josserand [7] to noisy functional data. Assuming curve data are observed with
errors that may be correlated over time, we replace the interpolation step in their procedure by
a smoothing step based on local polynomials. As opposed to interpolation, smoothing can ef-
fectively reduce the noise level in the data, which improves estimation accuracy. We establish a
functional CLT for the mean function estimator based on the smoothed data and prove the uni-
form consistency of a related covariance estimator. These results have important applications to
the simultaneous inference of the mean function.

In relation to mean function estimation, a key statistical task is to build confidence regions.
There exists a vast and still active literature on confidence bands in nonparametric regression.
See, for example, Sun and Loader [33], Eubank and Speckman [15], Claeskens and van Keilegom
[10], Krivobokova et al. [26], and the references therein. When data are functional the literature
is much less abundant. One possible approach is to obtain confidence balls for the mean function
in a L2-space. Mas [28] exploits this idea in a goodness-of-fit test based on the functional sample
mean and regularized inverse covariance operator. Using adaptive projection estimators, Bunea
et al. [4] build conservative confidence regions for the mean of a Gaussian process. Another
approach consists in deriving results in a space C of continuous functions equipped with the
supremum norm. This allows for the construction of confidence bands that can easily be visual-
ized and interpreted, as opposed to L2-confidence balls. This approach is adopted, for example,
by Faraway [17] to build bootstrap bands in a varying-coefficients model, by Cuevas et al. [11]
to derive bootstrap bands for functional location parameters, by Degras [12,13] to obtain normal
and bootstrap bands using noisy functional data, and by Cardot and Josserand [7] in the context
of a finite population. In the latter work, the strategy was to first establish a CLT in the space C

and then derive confidence bands based on a simple but rough approximation to the supremum
of a Gaussian process (Landau and Shepp [27]). Unfortunately, the associated bands depend on
the data-generating process only through its variance structure and not its correlation structure,
which may cause the empirical coverage to differ from the nominal level. The second innova-
tion of our paper is to propose confidence bands that are easy to implement and attain nominal
coverage in the survey sampling/finite population setting. To do so, we use Gaussian process
simulations as in Cuevas et al. [11] or Degras [13]. This procedure can be thought as a paramet-
ric bootstrap, where the parameter to be estimated, the covariance function, is lying in an infinite
dimensional functional space. Our contribution is to provide the theoretical underpinning of the
construction method, thereby guaranteeing that nominal coverage is attained asymptotically. The
theory we derive involves maximal inequalities, random entropy numbers, and large covariance
matrix theory.

Finally, the implementation of the mean function estimator developed in this paper requires the
selection of a bandwidth in the data smoothing step. Objective, data-driven bandwidth selection
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methods are desirable for this purpose. As explained by Opsomer and Miller [29], bandwidth
selection in the survey estimation context poses specific problems (in particular, the necessity to
take the sampling design into account) that make usual cross-validation or mean square error op-
timization methods inadequate. In view of the model-assisted survey estimation of a population
total, these authors propose a cross-validation method that aims at minimizing the variance of the
estimator, the bias component being negligible in their setting. In our functional and design-based
framework, the bias is however no longer negligible. We therefore devise a novel cross-validation
criterion based on weighted least squares, with weights proportional to the sampling weights. For
the particular case of simple random sampling without replacement, this criterion reduces to the
cross validation technique of Rice and Silverman [30], whose asymptotic properties has been
studied by Hart and Wehrly [24].

The paper is organized as follows. We fix notations and define our estimators in Section 2.
In Section 3, we introduce our asymptotic framework based on superpopulation models (see
Isaki and Fuller [25]), establish a CLT for the mean function estimator in the space of continuous
functions, and show the uniform consistency of a covariance estimator. Based on these results, we
propose a simple and effective method for building simultaneous confidence bands. In Section 4,
a weighted cross-validation procedure is proposed for selecting the bandwidth and simulations
are performed to compare different sampling schemes and bandwidth choices. Our estimation
methodology is seen to compare favorably with other methods and to achieve nearly optimal
performances. The paper ends with a short discussion on topics for future research. Proofs are
gathered in an Appendix.

2. Notations and estimators

Consider a finite population UN = {1, . . . ,N} of size N and suppose that to each unit k ∈ UN cor-
responds a real function Xk on [0, T ], with T < ∞. We assume that each trajectory Xk belongs to
the space of continuous functions C([0, T ]). Our target is the mean trajectory μN(t), t ∈ [0, T ],
defined as follows:

μN(t) = 1

N

∑
k∈U

Xk(t). (1)

We consider a random sample s drawn from UN without replacement according to a fixed-size
sampling design pN(s), where pN(s) is the probability of drawing the sample s. The size nN of
s is nonrandom and we suppose that the first and second order inclusion probabilities satisfy

• πk := P(k ∈ s) > 0 for all k ∈ UN

• πkl := P(k&l ∈ s) > 0 for all k, l ∈ UN

so that each unit and each pair of units can be drawn with a non null probability from the popula-
tion. Note that for simplicity of notation the subscript N has been omitted. Also, by convention,
we write πkk = πk for all k ∈ UN .

Assume that noisy measurements of the sampled curves are available at d = dN fixed dis-
cretization points 0 = t1 < t2 < · · · < td = T . For all units k ∈ s, we observe

Yjk = Xk(tj ) + εjk, (2)
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where the measurement errors εjk are centered random variables that are independent across the
index k (units) but not necessarily across j (possible temporal dependence). It is also assumed
that the random sample s is independent of the noise εjk and the trajectories Xk(t), t ∈ [0, T ] are
deterministic.

Our goal is to estimate μN as accurately as possible and to build asymptotic confidence bands,
as in Degras [13] and Cardot and Josserand [7]. For this, we must have a uniformly consistent
estimator of its covariance function.

2.1. Linear smoothers and the Horvitz–Thompson estimator

For each (potentially observed) unit k ∈ UN , we aim at recovering the curve Xk by smoothing the
corresponding discretized trajectory (Y1k, . . . , Ydk) with a linear smoother (e.g., spline, kernel,
or local polynomial):

X̂k(t) =
d∑

j=1

Wj(t)Yjk. (3)

Note that the reconstruction can only be performed for the observed units k ∈ s.
Here we use local linear smoothers (see, e.g., Fan and Gijbels [16]) because of their wide pop-

ularity, good statistical properties, and mathematical convenience. The weight functions Wj(t)

can be expressed as

Wj(t) = (1/(dh)){s2(t) − (tj − t)s1(t)}K((tj − t)/h)

s2(t)s0(t) − s2
1(t)

, j = 1, . . . , d, (4)

where K is a kernel function, h > 0 is a bandwidth, and

sl(x) = 1

dh

d∑
j=1

(tj − t)lK

(
tj − t

h

)
, l = 0,1,2. (5)

We suppose that the kernel K is nonnegative, has compact support, satisfies K(0) > 0 and
|K(s) − K(t)| ≤ C|s − t | for some finite constant C and for all s, t ∈ [0, T ].

The classical Horvitz–Thompson estimator of the mean curve is

μ̂N (t) = 1

N

∑
k∈s

X̂k(t)

πk

(6)

= 1

N

∑
k∈U

X̂k(t)

πk

Ik,

where Ik is the sample membership indicator (Ik = 1 if k ∈ s and Ik = 0 otherwise). It holds that
E(Ik) = πk and E(IkIl) = πkl .
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2.2. Covariance estimation

The covariance function of μ̂N can be written as

Cov
(
μ̂N (s), μ̂N (t)

) = 1

N
γN(s, t) (7)

for all s, t ∈ [0, T ], where

γN(s, t) = 1

N

∑
k,l∈U

�kl

X̃k(s)

πk

X̃l(t)

πl

+ 1

N

∑
k∈U

1

πk

E
(
ε̃k(s)ε̃k(t)

)
(8)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X̃k(t) =
d∑

j=1

Wj(t)Xk(tj ),

ε̃k(t) =
d∑

j=1

Wj(t)εkj ,

�kl = Cov(Ik, Il) = πkl − πkπl.

(9)

A natural estimator of γN(s, t) is given by

γ̂N (s, t) = 1

N

∑
k,l∈U

�kl

πkl

(
Ik

πk

Il

πl

)
X̂k(s)X̂l(t). (10)

It is unbiased and its uniform mean square consistency is established in Section 3.2.

3. Asymptotic theory

We consider the superpopulation framework introduced by Isaki and Fuller [25] and discussed
in detail by Fuller [19]. Specifically, we study the behaviour of the estimators μ̂N and γ̂N as
population UN = {1, . . . ,N} increases to infinity with N . Recall that the sample size n, inclusion
probabilities πk and πkl , and grid size d all depend on N . In what follows, we use the notations
c and C for finite, positive constants whose value may vary from place to place. The following
assumptions are needed for our asymptotic study.

(A1) (Sampling design) n
N

≥ c,πk ≥ c,πkl ≥ c, and n|πkl − πkπl | ≤ C for all k, l ∈ UN

(k �= l) and N ≥ 1.
(A2) (Trajectories) |Xk(s) − Xk(t)| ≤ C|s − t |β and |Xk(0)| ≤ C for all k ∈ UN,N ≥ 1, and

s, t ∈ [0, T ], where β > 1
2 is a finite constant.

(A3) (Growth rates) c ≤ d(tj+1 − tj ) ≤ C for all 1 ≤ j ≤ d,N ≥ 1, and d(log logN)
N

→ 0 as
N → ∞.

(A4) (Measurement errors) The random vectors (εk1, . . . , εkd)′, k ∈ UN, are i.i.d. and follow
the multivariate normal distribution with mean zero and covariance matrix VN . The
largest eigenvalue of the covariance matrix satisfies ‖VN‖ ≤ C for all N ≥ 1.
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Assumption (A1) deals with the properties of the sampling design. It states that the sample size
must be at least a positive fraction of the population size, that the one- and two-fold inclusion
probabilities must be larger than a positive number, and that the two-fold inclusion probabilities
should not be too far from independence. The latter is fulfilled, for example, for stratified sam-
pling with sampling without replacement within each stratum (Robinson and Särndal [31]) and is
discussed in details in Hàjek [23] for rejective sampling and other unequal probability sampling
designs. Assumption (A2) imposes Hölder continuity on the trajectories, a mild regularity con-
dition. Assumption (A3) states that the design points have a quasi-uniform repartition (this holds
in particular for equidistant designs and designs generated by a regular density function) and that
the grid size is essentially negligible compared to the population size (e.g., if dN ∝ Nα for some
α ∈ (0,1)). In fact, the results of this paper also hold if dN/N stays bounded away from zero
and infinity as N → ∞ (see Section 5). Finally, (A4) imposes joint normality, short range tem-
poral dependence, and bounded variance for the measurement errors εkj ,1 ≤ j ≤ d . It is trivially
satisfied if the εkj ∼ N(0, σ 2

j ) are independent with variances Var(εkj ) ≤ C. It is also verified if
the εkj arise from a discrete time Gaussian process with short term temporal correlation such as
ARMA or stationary mixing processes. Note that the Gaussian assumption is not central to our
derivations: it can be weakened and replaced by moment conditions on the error distributions at
the expense of much more complicated proofs.

3.1. Limit distribution of the Horvitz–Thompson estimator

We now derive the asymptotic distribution of our estimator μ̂N in order to build asymptotic con-
fidence bands. Obtaining the asymptotic normality of estimators in survey sampling is a technical
and difficult issue even for simple quantities such as means or totals of real numbers. Although
confidence intervals are commonly used in the survey sampling community, the Central Limit
Theorem (CLT) has only been checked rigorously, as far as we know, for a few sampling de-
signs. Erdös and Rényi [14] and Hàjek [21] proved that the Horvitz–Thompson estimator is
asymptotically Gaussian for simple random sampling without replacement. The CLT for rejec-
tive sampling is shown by Hàjek [22] whereas the CLT for other proportional to size sampling
designs is studied by Berger [2]. Recently, these results were extended for some particular cases
of two-phase sampling designs (Chen and Rao [8]). Let us assume that the Horvitz–Thompson
estimator satisfies a CLT for real-valued quantities.

(A5) (Univariate CLT) For any fixed t ∈ [0, T ], it holds that

μ̂N (t) − μN(t)√
Var(μ̂N (t))

� N(0,1)

as N → ∞, where � stands for convergence in distribution.

We recall here the definition of the weak convergence in C([0, T ]) equipped with the supre-
mum norm ‖ · ‖∞ (e.g., van der Vaart and Wellner [35]). A sequence (ξN) of random elements
of C([0, T ]) is said to converge weakly to a limit ξ in C([0, T ]) if E(φ(ξN)) → E(φ(ξ)) as
N → ∞ for all bounded, uniformly continuous functionals φ on (C([0, T ]),‖ · ‖∞).
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To establish the limit distribution of μ̂N in C([0, T ]), we need to assume the existence of a
limit covariance function

γ (s, t) = lim
N→∞

1

N

∑
k,l∈UN

�kl

Xk(s)

πk

Xl(t)

πl

.

In the following theorem, we state the asymptotic normality of the estimator μ̂N in the space
C([0, T ]) equipped with the sup norm.

Theorem 1. Assume (A1)–(A5) and that
√

Nhβ → 0 and dh/ logd → ∞ as N → ∞. Then
√

N(μ̂N − μN) � G

in C([0, T ]), where G is a Gaussian process with mean zero and covariance function γ .

Theorem 1 provides a convenient way to infer the local features of μN . It is applied in Sec-
tion 3.3 to the construction of simultaneous confidence bands, but it can also be used for a variety
of statistical tests based on supremum norms (see Degras [13]).

Observe that the conditions on the bandwidth h and design size d are not very constraining.
Suppose, for example, that d ∝ Nη and h ∝ N−ν for some η, ν > 0. Then d and h satisfy the
conditions of Theorem 1 as soon as (2β)−1 < ν < η < 1. Thus, for more regular trajectories, that
is, larger β, the bandwidth h can be chosen with more flexibility.

The proof of Theorem 1 is similar in spirit to that of Theorem 1 in Degras [13] and Propo-
sition 3 in Cardot and Josserand [7]. Essentially, it breaks down into: (i) controlling uniformly
on [0, T ] the bias of μ̂N , (ii) establishing the functional asymptotic normality of the local linear
smoother applied to the sampled curves Xk and (iii) controlling uniformly on [0, T ] (in proba-
bility) the local linear smoother applied to the errors εjk . Part (i) is easily handled with standard
results on approximation properties of local polynomial estimators (see, e.g., Tsybakov [34]).
Part (ii) mainly consists in proving an asymptotic tightness property, which entails the compu-
tation of entropy numbers and the use of maximal inequalities (van der Vaart and Wellner [35]).
Part (iii) requires first to show the finite-dimensional convergence of the smoothed error process
to zero and then to establish its tightness with similar arguments as in part (ii).

3.2. Uniform consistency of the covariance estimator

We first note that under (A1)–(A4), by the approximation properties of local linear smoothers,
γN converges uniformly to γ on [0, T ]2 as h → 0 and N → ∞. Hence, the consistency of γ̂N can
be stated with respect to γ instead of γN . In alignment with the related Proposition 2 in Cardot
and Josserand [7] and Theorem 3 in Breidt and Opsomer [3], we need to make some assumption
on the two-fold inclusion probabilities of the sampling design pN :

(A6)

lim
N→∞ max

(k1,k2,k3,k4)∈D4,N

∣∣E{
(Ik1Ik2 − πk1k2)(Ik3Ik4 − πk3k4)

}∣∣ = 0,

where D4,N is the set of all quadruples (k1, k2, k3, k4) in UN with distinct elements.
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This assumption is discussed in detail in Breidt and Opsomer [3] and is fulfilled, for example,
for stratified sampling.

Theorem 2. Assume (A1)–(A4), (A6), and that h → 0 and dh1+α → ∞ for some α > 0 as
N → ∞. Then

lim
N→∞ E

(
sup

s,t∈[0,T ]2

∣∣γ̂N (s, t) − γ (s, t)
∣∣2

)
= 0,

where the expectation is jointly with respect to the design and the multivariate normal model.

Note the additional condition on the bandwidth h in Theorem 2. If we suppose, as in the
remark in Section 3.1, that d ∝ Nη and h ∝ N−ν for some (2β)−1 < ν < η < 1, then condition
dh1+α → ∞ as N → ∞ is fulfilled with, for example, α = 1 − η/2ν.

3.3. Confidence bands

In this section, we build confidence bands for μN of the form{[
μ̂N (t) ± c

σ̂N (t)

N1/2

]
, t ∈ [0, T ]

}
, (11)

where c is a suitable number and σ̂N (t) = γ̂N (t, t)1/2. More precisely, given a confidence level
1 − α ∈ (0,1), we seek c = cα that approximately satisfies

P
(∣∣G(t)

∣∣ ≤ cσ (t),∀t ∈ [0, T ]) = 1 − α, (12)

where G is a Gaussian process with mean zero and covariance function γ , and where σ(t) =
γ (t, t)1/2. Exact bounds for the supremum of Gaussian processes have been derived for only
a few particular cases (Adler and Taylor [1], Chapter 4). Computing accurate and as explicit
as possible bounds in a general setting is a difficult issue and would require additional strong
conditions such as stationarity which have no reason to be fulfilled in our setting.

In view of Theorems 1–2 and Slutski’s theorem, the bands defined in (11) with c chosen as
in (12) will have approximate coverage level 1 − α. The following result provides a simulation-
based method to compute c.

Theorem 3. Assume (A1)–(A6) and dh1+α → ∞ for some α > 0 as N → ∞. Let G be a Gaus-
sian process with mean zero and covariance function γ . Let (ĜN) be a sequence of processes
such that for each N , conditionally on γ̂N , ĜN is Gaussian with mean zero and covariance γ̂N

defined in (10). Then for all c > 0, as N → ∞, the following convergence holds in probability:

P
(∣∣ĜN(t)

∣∣ ≤ cσ̂N(t),∀t ∈ [0, T ]|γ̂N

) → P
(∣∣G(t)

∣∣ ≤ cσ (t),∀t ∈ [0, T ]).
Theorem 3 is derived by showing the weak convergence of (ĜN ) to G in C([0, T ]), which

stems from Theorem 2 and the Gaussian nature of the processes ĜN . As in the first two theorems,
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maximal inequalities are used to obtain the above weak convergence. The practical importance
of Theorem 3 is that it allows to estimate the number c in (12) via simulation (with the previous
notations): conditionally on γ̂N , one can simulate a large number of sample paths of the Gaussian
process (ĜN/σ̂N) and compute their supremum norms. One then obtains a precise approximation
to the distribution of ‖ĜN/σ̂N‖∞, and it suffices to set c as the quantile of order (1 − α) of this
distribution:

P
(∣∣ĜN(t)

∣∣ ≤ cσ̂N (t),∀t ∈ [0, T ]|γ̂N

) = 1 − α. (13)

Corollary 1. Assume (A1)–(A6). Under the conditions of Theorems 1–3, the bands defined in
(11) with the real c = c(γ̂N ) chosen as in (13) have asymptotic coverage level 1 − α, that is,

lim
N→∞ P

(
μN(t) ∈

[
μ̂N (t) ± c

σ̂N(t)

N1/2

]
,∀t ∈ [0, T ]

)
= 1 − α.

4. A simulation study

In this section, we evaluate the performances of the mean curve estimator as well as the coverage
and the width of the confidence bands for different bandwidth selection criteria and different
levels of noise. The simulations are conducted in the R environment.

4.1. Simulated data and sampling designs

We have generated a population of N = 20,000 curves discretized at d = 200 and d = 400
equidistant instants of time in [0,1]. The curves of the population are generated so that they
have approximately the same distribution as the electricity consumption curves analyzed in Car-
dot and Josserand [7] and each individual curve Xk, for k ∈ U, is simulated as follows

Xk(t) = μ(t) +
3∑


=1

Z
v
(t), t ∈ [0,1], (14)

where the mean function μ is drawn in Figure 2 below and the random variables Z
 are inde-
pendent realizations of a centered Gaussian random variable with variance σ 2


 . The three basis
function v1, v2 and v3 are orthonormal functions which represent the main mode of variation
of the signals, they are represented in Figure 1. Thus, the covariance function of the population
γ (s, t) is simply

γ (s, t) =
3∑


=1

σ 2

 v
(s)v
(t). (15)

To select the samples, we have considered two probabilistic selection procedures, with fixed
sample size, n = 1000,

• Simple random sampling without replacement (SRSWOR).
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Figure 1. Basis functions v1 (solid line), v2 (dashed line) and v3 (dotted line).

• Stratified sampling with SRSWOR in all strata. The population U is divided into a fixed
number of H = 5 strata built by considering the quantiles q0.5, q0.7, q0.85 and q0.95 of the
total consumption

∫ 1
0 Xk(t)dt for all units k ∈ U . For example, the first strata contains all

the units k such that
∫ 1

0 Xk(t)dt ≤ q0.5, and thus its size is half of the population size N.

The sample size ng in stratum g is determined by a Neyman-like allocation, as suggested
in Cardot and Josserand [7], in order to get a Horvitz–Thompson estimator of the mean
trajectory whose variance is as small as possible. The sizes of the different strata, which are
optimal according to this mean variance criterion, are reported in Table 1.

Table 1. Strata sizes and optimal allocations

Stratum number

1 2 3 4 5

Stratum size 10,000 4000 3000 2000 1000
Allocation 655 132 98 68 47
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We suppose we observe, for each unit k in the sample s, the discretized trajectories, at d

equispaced points, 0 = t1 < · · · < td = 1,

Yjk = Xk(tj ) + δεjk. (16)

The parameter δ controls the noise level compared to the true signal. We consider two different
situations for the noise components εjk :

• Heteroscedasticity. The εjk ∼ N(0, γ (tj , tj )) are independent random variables whose vari-
ances are proportional to the population variances at time tj .

• Temporal dependence. The εjk are stationary AR(3) processes with Gaussian innovations
generated as follows

εjk = 0.89εj−1,k + 0.3εj−2,k − 0.4εj−3,k + ηjk.

The ηjk ∼ N(0, σ 2
η ) are i.i.d. and σ 2

η is such that E(ε2
jk) = d−1 ∑d

j=1 γ (tj , tj ).

As an illustrative example, a sample of n = 10 noisy discretized curves are plotted in Figure 2
with heteroscedastic noise components and in Figure 3 for correlated noise. It should be noted
that the observed trajectories corrupted by the correlated noise are much smoother than the trajec-

Figure 2. A sample of 10 curves for δ = 0.05 in the heteroscedastic case. True trajectories are plotted with
black lines whereas noisy observations are plotted in gray. The mean profile is plotted in bold line.
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Figure 3. A sample of 10 curves for δ = 0.05 in the autoregressive case. True trajectories are plotted with
black lines whereas noisy observations are plotted in gray. The mean profile is plotted in bold line.

tories corrupted by the heteroscedastic noise. The empirical standard deviation in the population,
for these two different type of noise are drawn in Figure 4.

4.2. Weighted cross-validation for bandwidth selection

Assuming we can access the exact trajectories Xk, k ∈ s (which is the case in simulations), we
consider the oracle-type estimator

μ̂s =
∑
k∈s

Xk

πk

, (17)

which will be a benchmark in our numerical study. We compare different interpolation and
smoothing strategies for estimating the Xk, k ∈ s:

• Linear interpolation of the Yjk as in Cardot and Josserand [7].
• Local linear smoothing of the Yjk with bandwidth h as in (3).

The crucial parameter here is h. To evaluate the interest of smoothing and the performances of
data-driven bandwidth selection criteria, we consider an error measure that compares the oracle
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Figure 4. Empirical standard deviation of the noise in the population for p = 400 discretization points.
Standard deviation for heteroscedastic case is drawn in solid line and dashed line for correlated noise.

μ̂s to any estimator μ̂ based on the noisy data Yjk, k ∈ s, j = 1, . . . , d :

L(μ̂) =
∫ T

0

(
μ̂(t) − μ̂s(t)

)2 dt. (18)

Considering the estimator defined in (6), we denote by horacle the bandwidth h that minimizes
(18). The mean estimator built with bandwidth horacle is called smooth oracle estimator.

When
∑

k∈s π−1
k = N , as in SRSWOR and stratified sampling, it can be easily checked that

μ̂s is the minimum argument of the weighted least squares functional

∑
k∈s

wk

∫ T

0

(
Xk(t) − μ(t)

)2 dt (19)

with respect to μ ∈ L2([0, T ]), where the weights are wk = (Nπk)
−1. Then, a simple and natural

way to select bandwidth h is to consider the following design-based cross validation

WCV(h) =
∑
k∈s

wk

d∑
j=1

(
Yjk − μ̂−k

N (tj )
)2

, (20)
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where

μ̂−k
N (t) =

∑

∈s,
 �=k

w̃
kX̂
(t),

with new weights w̃
k. A heuristic justification for this approach is that, given s, we have
E[εjk(Xk(tj ) − μ̂−k

N (tj ))|s] = 0 for j = 1, . . . , d and k ∈ s. Thus,

E
[
WCV(h)|s] =

∑
k∈s

wk

d∑
j=1

{
E

[(
Xk(tj ) − μ̂−k

N (tj )
)2|s]

+ 2E
[
εjk

(
Xk(tj ) − μ̂−k

N (tj )
)|s] + E

[
ε2
jk

]}
=

∑
k∈s

wk

d∑
j=1

E
[(

Xk(tj ) − μ̂−k
N (tj )

)2|s] + tr(VN)

and, up to tr(VN) which does not depend on h, the minimum value of the expected cross valida-
tion criterion should be attained for estimators which are not too far from μ̂s .

This weighted cross validation criterion is simpler than the cross validation criteria based
on the estimated variance proposed in Opsomer and Miller [29]. Indeed, in our case, the bias
may be non-negligible and focusing only on the variance part of the error leads to too large
selected values for the bandwidth. Furthermore, Opsomer and Miller [29] suggested to consider
weights defined as follows w̃
k = w
/(1 − wk). For SRSWOR, since wk = n−1 one has w̃
k =
(n − 1)−1, so that the weighted cross validation criterion defined in (20) is exactly the cross
validation criterion introduced by Rice and Silverman [30] in the independent case. We denote
in the following by hcv the bandwidth value minimizing this criterion.

For stratified sampling, a better approximation which keeps the design-based properties of the
estimator μ̂−k

N can be obtained by taking into account the sampling rates in the different strata.
Assume the population U is partitioned in strata Uν of respective sizes Nν, ν = 1, . . . ,H, and we
sample nν observations in each Uν by SRSWOR. If k ∈ Uν, we have wk = Nν(Nnν)

−1. Thus,
we take w̃
k = (Nν − 1){(N − 1)(nν − 1)}−1 for all the units 
 �= k in stratum Uν and scale the
weights for all the units 
′ of the sample that do not belong to stratum g, w̃
′k = N(N −1)−1w
′ .
We denote by hwcv the bandwidth value minimizing (20).

4.3. Estimation errors and confidence bands

We draw 1000 samples in the population of curves and compare the different estimators of Sec-
tion 4.2 with the L2 loss criterion

R(μ̂) =
∫ T

0

(
μ̂(t) − μ(t)

)2 dt (21)

for different values of δ and d in (16). For comparison, the quadratic approximation error for
function μ by its average value, μ = T −1

∫ T

0 μ(t)dt, is R(μ) = 3100.
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Table 2. (Heteroscedastic noise). Estimation errors according to R(μ̂) for different noise levels and band-
width choices, with d = 200 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 17.65 3.08 8.73 23.50 4.22 1.44 2.79 5.59
hcv 17.65 3.07 8.71 23.51 6.49 3.61 5.36 8.03
hwcv 17.65 3.07 8.71 23.51 4.22 1.45 2.78 5.56
horacle 17.65 3.07 8.72 23.50 4.22 1.45 2.78 5.57
μ̂s 17.60 3.01 8.70 23.36 4.17 1.38 2.76 5.55

25% lin 17.69 3.94 8.99 21.52 5.26 2.63 4.15 6.54
hcv 17.53 3.83 8.76 21.53 6.98 4.29 5.83 8.47
hwcv 17.53 3.83 8.76 21.53 5.02 2.39 3.89 6.33
horacle 17.52 3.81 8.78 21.52 5.01 2.37 3.88 6.27
μ̂s 16.58 2.85 7.87 20.01 4.07 1.46 2.94 5.28

The empirical mean as well as the first, second and third quartiles of the estimation error R(μ̂)

are given, when d = 200, in Table 2 for the heteroscedastic noise case. Results for d = 400 are
presented for the heteroscedastic case in Table 3 and in Table 4 for the correlated case.

We first note that in all simulations, stratified sampling largely improves the estimation of the
mean curve in comparison to SRSWOR. Also, linear interpolation performs nearly as well as the
smooth oracle estimator for large samples, especially when the noise level is low (δ = 5%). As
far as bandwidth selection is concerned, the usual cross validation criterion hcv is not adapted
to unequal probability sampling and tends to select too large bandwidth values. In particular,

Table 3. (Heteroscedastic noise). Estimation errors according to R(μ̂) for different noise levels and band-
width choices, with d = 400 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 18.03 3.39 9.24 23.27 4.05 1.45 2.86 5.35
hcv 18.02 3.38 9.26 23.34 6.09 3.24 4.87 7.56
hwcv 18.02 3.38 9.26 23.34 4.05 1.45 2.82 5.40
horacle 18.02 3.38 9.27 23.32 4.04 1.43 2.83 5.39
μ̂s 17.98 3.35 9.20 23.17 4.00 1.39 2.81 5.29

25% lin 18.16 3.89 9.43 22.86 5.25 2.85 4.24 6.57
hcv 17.55 3.30 8.89 22.09 6.45 3.77 5.37 8.11
hwcv 17.55 3.30 8.89 22.09 4.57 2.12 3.49 5.81
horacle 17.55 3.28 8.89 22.09 4.56 2.11 3.48 5.81
μ̂s 17.04 2.75 8.38 21.87 4.04 1.60 3.02 5.31
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Table 4. (Correlated noise). Estimation errors according to R(μ̂) for different noise levels and bandwidth
choices, with d = 400 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 16.23 3.05 8.67 20.86 4.08 1.40 2.88 5.44
hcv 16.24 3.07 8.66 20.88 5.90 2.99 4.70 7.33
hwcv 16.24 3.07 8.66 20.88 4.10 1.38 2.90 5.47
horacle 16.24 3.06 8.65 20.88 4.10 1.38 2.90 5.46
μ̂s 16.19 3.01 8.69 20.86 4.04 1.34 2.82 5.36

25% lin 17.18 3.88 9.38 22.04 5.22 2.65 4.07 6.47
hcv 17.13 3.84 9.28 22.02 6.76 3.98 5.76 8.32
hwcv 17.13 3.84 9.28 22.02 5.16 2.59 4.02 6.37
horacle 17.12 3.81 9.25 22.02 5.15 2.59 4.01 6.37
μ̂s 16.12 2.87 8.17 21.00 4.04 1.49 2.94 5.27

it does not perform as well as linear interpolation for stratified sampling. On the other hand,
our weighted cross-validation method seems effective for selecting the bandwidth. It produces
estimators that are very close to the oracle and that dominate the other estimators when the noise
level is moderate or high (δ = 25%).

This is clearer when we look at criterion L(μ̂), defined in (18), which only focuses on the part
of the estimation error which is due to the noise. Results are presented in Table 5 for d = 200 in
the heteroscedastic case. For d = 400, errors are given in Table 6 in the heteroscedastic case and
in Table 7 for correlated noise. When the noise level is high, we observe a significant impact of
the number of discretization points on the accuracy of the smoothed estimators. Our individual
trajectories, which have roughly the same shape as load curves, are actually not very smooth

Table 5. (Heteroscedastic noise). Estimation errors according to L(μ̂) for different noise levels and band-
width choices, with d = 200 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 0.044 0.041 0.044 0.047 0.049 0.046 0.049 0.053
hcv 0.044 0.041 0.044 0.048 2.520 2.083 2.852 3.032
hwcv 0.044 0.041 0.044 0.048 0.058 0.054 0.058 0.062
horacle 0.044 0.041 0.044 0.047 0.049 0.045 0.049 0.052

25% lin 1.087 1.011 1.080 1.156 1.214 1.134 1.210 1.287
hcv 0.905 0.837 0.901 0.970 3.155 2.638 3.260 3.602
hwcv 0.905 0.837 0.901 0.970 1.009 0.936 1.004 1.076
horacle 0.898 0.830 0.894 0.962 0.990 0.919 0.988 1.055
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Table 6. (Heteroscedastic noise). Estimation errors according to L(μ̂) for different noise levels and band-
width choices, with d = 400 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 0.044 0.042 0.044 0.047 0.049 0.047 0.049 0.051
hcv 0.040 0.038 0.040 0.042 2.231 1.612 1.917 2.806
hwcv 0.040 0.038 0.040 0.042 0.052 0.049 0.052 0.055
horacle 0.040 0.038 0.040 0.042 0.044 0.041 0.044 0.046

25% lin 1.089 1.030 1.087 1.142 1.219 1.155 1.212 1.280
hcv 0.498 0.462 0.495 0.535 2.591 1.932 2.344 3.254
hwcv 0.498 0.462 0.495 0.535 0.552 0.509 0.549 0.594
horacle 0.497 0.460 0.494 0.533 0.547 0.505 0.545 0.586

so that smoothing approaches are only really interesting, compared to linear interpolation, when
the number of discretization points d is large enough. Finally, it also becomes clearer that a key
parameter is the bandwidth value which has to be chosen with appropriate criteria that must take
the sampling weights into account. When the noise level is low (δ = 5%), the error according to
criterion L(μ̂) is multiplied by at least 15 in stratified sampling.

We now examine in Table 8, Table 9 and Table 10 the empirical coverage and the width of the
confidence bands, which are built as described in Section 3.3. For each sample, we estimate the
covariance function γ̂N and draw 10,000 realizations of a centered Gaussian process with vari-
ance function γ̂N in order to obtain a suitable coefficient c with a confidence level of 1 − α = 0.95
as explained in equation (13). The area of the confidence band is then

∫ T

0 2c
√

γ̂ (t, t)dt . The re-
sults highlight now the interest of considering smoothing strategies combined with the weighted
cross validation bandwidth selection criterion (20). For stratified sampling, the use of the un-

Table 7. (Correlated noise). Estimation errors according to L(μ̂) for different noise levels and bandwidth
choices, with d = 400 observation times. Units are selected by SRSWOR or stratified sampling

SRSWOR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 0.17 0.15 0.16 0.18 0.05 0.04 0.04 0.05
hcv 0.17 0.15 0.16 0.18 1.94 1.53 1.59 2.90
hwcv 0.17 0.15 0.16 0.18 0.07 0.07 0.07 0.08
horacle 0.17 0.15 0.16 0.18 0.07 0.07 0.07 0.08

25% lin 1.09 1.03 1.09 1.14 1.20 1.08 1.19 1.32
hcv 0.50 0.46 0.50 0.53 2.83 2.19 2.57 3.67
hwcv 0.50 0.46 0.50 0.53 1.15 1.02 1.13 1.26
horacle 0.49 0.46 0.49 0.53 1.13 1.01 1.12 1.25
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Table 8. (Heteroscedastic noise). Empirical coverage levels 1 − α̂ and confidence band areas for different
noise levels and bandwidth choices, with d = 200 observation times. Units are selected by SRSWOR or
stratified sampling

SRSWOR Stratified sampling

δ h 1 − α̂ Mean 1Q Median 3Q 1 − α̂ Mean 1Q Median 3Q

5% lin 97.2 10.91 10.74 10.90 11.07 98.1 5.95 5.87 5.95 6.02
hcv 97.3 10.89 10.73 10.89 11.06 47.5 5.68 5.60 5.68 5.76
hwcv 97.3 10.89 10.73 10.89 11.06 97.5 5.92 5.84 5.91 6.00
horacle 97.2 10.90 10.72 10.90 11.07 98.0 5.94 5.86 5.94 6.02
μ̂s 97.3 10.54 10.36 10.54 10.70 98.2 5.59 5.51 5.60 5.67

25% lin 97.7 13.23 13.06 13.22 13.41 98.3 8.27 8.19 8.27 8.36
hcv 97.2 12.66 12.49 12.65 12.83 64.7 6.70 6.60 6.69 6.79
hwcv 97.2 12.66 12.49 12.65 12.83 97.3 7.56 7.48 7.56 7.65
horacle 97.3 12.70 12.50 12.70 12.87 97.5 7.68 7.58 7.68 7.79
μ̂s 97.0 10.53 10.37 10.52 10.70 97.7 5.59 5.51 5.59 5.66

weighted cross validation criterion leads to empirical coverage levels that are significantly below
the nominal one. It also appears that linear interpolation, which does not intend to get rid of
the noise, always gives larger confidence bands than the smoothed estimators based on hwcv. As
before, smoothing approaches become more interesting as the number of discretization points
and the noise level increase. The empirical coverage of the smoothed estimator is lower than the
linear interpolation estimator but remains slightly higher than the nominal one.

Table 9. (Heteroscedastic noise). Empirical coverage levels 1 − α̂ and confidence band areas for different
noise levels and bandwidth choices, with d = 400 observation times. Units are selected by SRSWOR or
stratified sampling

SRSWOR Stratified sampling

δ h 1 − α̂ Mean 1Q Median 3Q 1 − α̂ Mean 1Q Median 3Q

5% lin 97.7 10.79 10.63 10.79 10.95 97.9 6.03 5.95 6.02 6.11
hcv 97.6 10.76 10.59 10.77 10.92 48.4 5.64 5.57 5.63 5.72
hwcv 97.6 10.76 10.59 10.77 10.92 97.6 5.89 5.82 5.89 5.97
horacle 97.6 10.76 10.59 10.77 10.92 97.6 5.96 5.88 5.96 6.04
μ̂s 97.7 10.50 10.33 10.50 10.65 97.8 5.60 5.52 5.59 5.68

25% lin 97.6 12.69 12.52 12.70 12.86 98.3 8.59 8.49 8.59 8.68
hcv 97.5 12.47 12.31 12.48 12.64 58.1 6.34 6.24 6.34 6.44
hwcv 97.5 12.47 12.31 12.48 12.64 97.6 7.09 7.00 7.08 7.17
horacle 97.6 12.47 12.31 12.48 12.64 97.8 7.10 7.01 7.10 7.19
μ̂s 97.9 10.50 10.33 10.50 10.66 97.6 5.59 5.51 5.59 5.67
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Table 10. (Correlated noise). Empirical coverage levels 1− α̂ and confidence band areas for different noise
levels and bandwidth choices, with d = 400 observation times. Units are selected by SRSWOR or stratified
sampling

SRSWOR Stratified sampling

δ h 1 − α̂ Mean 1Q Median 3Q 1 − α̂ Mean 1Q Median 3Q

5% lin 97.4 21.33 21.02 21.32 21.68 96.9 5.83 5.75 5.83 5.90
hcv 97.4 21.29 20.94 21.30 21.60 58.1 5.69 5.61 5.69 5.77
hwcv 97.4 21.29 20.94 21.30 21.60 96.8 5.79 5.71 5.79 5.87
horacle 97.4 21.29 20.94 21.29 21.61 96.6 5.79 5.71 5.79 5.87
μ̂s 97.4 20.77 20.42 20.76 21.10 97.6 5.52 5.44 5.52 5.60

25% lin 98.0 13.51 13.33 13.52 13.68 95.7 7.79 7.71 7.78 7.86
hcv 97.5 12.06 11.88 12.05 12.23 72.6 7.16 7.05 7.14 7.24
hwcv 97.5 12.06 11.88 12.05 12.23 95.0 7.53 7.46 7.53 7.60
horacle 97.6 12.06 11.88 12.05 12.22 95.6 7.58 7.50 7.57 7.66
μ̂s 97.2 10.49 10.31 10.48 10.66 97.4 5.52 5.44 5.51 5.60

As a conclusion of this simulation study, it appears that smoothing is not a crucial aspect when
the only target is the estimation of the mean, and that bandwidth values should be chosen by a
cross validation criterion that takes the sampling weights into account. When the goal is also to
build confidence bands, smoothing with weighted cross validation criteria lead to narrower bands
compared to interpolation techniques, without deteriorating the empirical coverage. Smoothing
strategies which do not take account of unequal probability sampling weights lead to empirical
coverage levels that can be far below the expected ones.

5. Concluding remarks

In this paper, we have used survey sampling methods to estimate a population mean temporal
signal. This type of approach is extremely effective when data transmission or storage costs are
important, in particular for large networks of distributed sensors. Considering noisy functional
data, we have built the Horvitz–Thompson estimator of the population mean function based on
a smooth version of the sampled curves. It has been shown that this estimator satisfies a CLT in
the space of continuous functions and that its covariance can be estimated uniformly and consis-
tently. Although our theoretical results were presented in this paper with a Horvitz–Thompson
covariance estimator, they are very likely to hold for other popular estimators such as the Sen–
Yates–Grundy estimator. We have applied our results to the construction of confidence bands
with asymptotically correct coverage. The bands are simply obtained by simulating Gaussian
processes conditional on the estimated covariance. The problem of bandwidth selection, which
is particularly difficult in the survey sampling context, has been addressed. We have devised a
weighted cross-validation method that aims at mimicking an oracle estimator. This method has
displayed very good performances in our numerical study; however, a rigorous study of its theo-
retical properties remains to be done. Our numerical study has also revealed that in comparison
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to SRSWOR, unequal probability sampling (e.g., stratified sampling) yields far superior perfor-
mances and that when the noise level in the data is moderate to high, incorporating a smoothing
step in the estimation procedure enhances the accuracy in comparison to linear interpolation.
Furthermore, we have seen that even when the noise level is low, smoothing can be beneficial
for building confidence bands. Indeed, smoothing the data leads to estimators that have higher
temporal correlation, which in turn makes the confidence bands narrower and more stable. Our
method for confidence bands is simple and quick to implement. It gives satisfactory coverage
(a little conservative) when the bandwidth is chosen correctly, for example, with our weighted
cross-validation method. Such confidence bands can find a variety of applications in statistical
testing. They can be used to compare mean functions in different sub-populations, or to test for
a parametric shape or for periodicity, among others. Examples of applications can be found in
Degras [13].

This work also raises some questions which deserve further investigation. A straightforward
extension could be to relax the normality assumption made on the measurement errors. It is
possible to consider more general error distributions under additional assumptions on the mo-
ments and much longer proofs. In another direction, it would be worthwhile to see whether our
methodology can be extended to build confidence bands for other functional parameters such
as population quantile or covariance functions. Also, as mentioned earlier, the weighted cross-
validation proposed in this work seems a promising candidate for automatic bandwidth selection.
However, it is for now only based on heuristic arguments and its theoretical underpinning should
be investigated.

Finally, it is well known that taking account of auxiliary information, which can be made
available for all the units of the population at a low cost, can lead to substantial improvements
with model assisted estimators (Särndal et al. [32]). In a functional context, an interesting strat-
egy consists in first reducing the dimension through a functional principal components analysis
shaped for the sampling framework (Cardot et al. [5]) and then considering semi-parametric
models relating the principal components scores to the auxiliary variables (Cardot et al. [6]). It
is still possible to get consistent estimators of the covariance function of the limit process but
further investigations are needed to prove the functional asymptotic normality and deduce that
Gaussian simulation-based approaches still lead to accurate confidence bands.

Appendix

Throughout the proofs, we use the letter C to denote a generic constant whose value may vary
from place to place. This constant does not depend on N nor on the arguments s, t ∈ [0, T ].
Note also that the expectation E is jointly with respect to the design and the multivariate normal
model.

Proof of Theorem 1. We first decompose the difference between the estimator μ̂N (t) and its
target μN(t) as the sum of two stochastic components, one pertaining to the sampling variability
and the other to the measurement errors, and of a deterministic bias component:

μ̂N (t) − μN(t) = 1

N

∑
k∈U

(
Ik

πk

− 1

)
X̃k(t) + 1

N

∑
k∈U

Ik

πk

ε̃k(t) + 1

N

∑
k

(
X̃k(t) − Xk(t)

)
, (22)
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where X̃k(t) and ε̃k(t) are defined in (9).
Bias term. To study the bias term N−1 ∑

k(X̃k(t) − Xk(t)) = E(μ̂N (t)) − μN(t) in (22), it
suffices to use classical results on local linear smoothing (e.g., Tsybakov [34], Proposition 1.13)
together with the Hölder continuity (A2) of the Xk to see that

sup
t∈[0,T ]

∣∣∣∣ 1

N

∑
k

(
X̃k(t) − Xk(t)

)∣∣∣∣ ≤ 1

N

∑
k

sup
t∈[0,T ]

∣∣X̃k(t) − Xk(t)
∣∣ ≤ Chβ. (23)

Hence, for the bias to be negligible in the normalized estimator, it is necessary that the bandwidth
satisfy

√
Nhβ → 0 as N → ∞.

Error term. We now turn to the measurement error term in (22), which can be seen as a se-
quence of random functions. We first show that this sequence goes pointwise to zero in mean
square (a fortiori in probability) at a rate (Ndh)−1. We then establish its tightness in C([0, T ]),
when premultiplied by

√
N , to prove the uniformity of the convergence over [0, T ].

Writing the vector of local linear weights at point t as

W(t) = (
W1(t), . . . ,Wd(t)

)′

and using the i.i.d. assumption (A4) on the (εk1, . . . , εkd)′, k ∈ UN, we first obtain that

E

(
1

N

∑
k∈U

Ik

πk

ε̃k(t)

)2

= 1

N2

∑
k∈U

1

πk

E
(
ε̃k(t)

)2

= 1

N2

∑
k∈U

1

πk

W(t)′VNW(t).

Then, considering the facts that mink πk > c by (A1), ‖VN‖ is uniformly bounded in N by (A4),
and exploiting a classical bound on the weights of the local linear smoother (e.g., Tsybakov [34],
Lemma 1.3), we deduce that

E

(
1

N

∑
k∈U

Ik

πk

ε̃k(t)

)2

≤ N

(minπk)N2

∥∥W(t)‖2
∥∥VN‖

(24)

≤ C

Ndh
.

We can now prove the tightness of the sequence of processes (N−1/2 ∑
k(Ik/πk)ε̃k). Let us

define the associated pseudo-metric

d2
ε (s, t) = E

(
1√
N

∑
k∈U

Ik

πk

(
ε̃k(s) − ε̃k(t)

))2

.

We use the following maximal inequality holding for sub-Gaussian processes (van der Vaart and
Wellner [35], Corollary 2.2.8):

E

(
sup

t∈[0,T ]

∣∣∣∣ 1√
N

∑
k∈U

Ik

πk

ε̃k(t)

∣∣∣∣
)

≤ E

(∣∣∣∣ 1√
N

∑
k∈U

Ik

πk

ε̃k(t0)

∣∣∣∣
)

+ K

∫ ∞

0

√
logN(x,dε)dx, (25)
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where t0 is an arbitrary point in [0, T ] and the covering number N(x,dε) is the minimal number
of dε-balls of radius x > 0 needed to cover [0, T ]. Note the equivalence of working with packing
or covering numbers in maximal inequalities, see ibid page 98. Also note that the sub-Gaussian
nature of the smoothed error process N−1/2 ∑

k∈U(Ik/πk)ε̃k stems from the i.i.d. multivariate
normality of the random vectors (εk1, . . . , εkd)′ and the boundedness of the Ik for k ∈ UN .

By the arguments used in (24) and an elementary bound on the increments of the weight
function vector W (see, e.g., Lemma 1 in Degras [13]), one obtains that

d2
ε (s, t) = 1

N

∑
k∈U

1

πk

E
(
ε̃k(s) − ε̃k(t)

)2

≤ 1

minπk

∥∥W(s) − W(t)
∥∥2‖VN‖ (26)

≤ C

dh

( |s − t |2
h2

∧ 1

)
.

It follows that the covering numbers satisfy⎧⎪⎪⎨
⎪⎪⎩

N(x,dε) = 1, if
C

dh
≤ x2,

N(x,dε) ≤
√

C

h
√

dhx
, if

C

dh
> x2.

Plugging this bound and the pointwise convergence (24) in the maximal inequality (25), we
get after a simple integral calculation (see equation (17) in Degras [13] for details) that

E

(
sup

t∈[0,T ]

∣∣∣∣ 1√
N

∑
k∈U

Ik

πk

ε̃k(t)

∣∣∣∣
)

≤ C

dh
+ C

√ | log(h)|
dh

. (27)

Thanks to Markov’s inequality, the previous bound guarantees the uniform convergence in prob-
ability of N−1/2 ∑

k∈U(Ik/πk)ε̃k to zero, provided that | log(h)|/(dh) → 0 as N → ∞. The last
condition is equivalent to log(d)/(dh) → 0 by the fact that dh → ∞ and by the properties of the
logarithm.

Main term: sampling variability. Finally, we look at the process N−1 ∑
k∈U(Ik/πk − 1)X̃k in

(22), which is asymptotically normal in C([0, T ]) as we shall see. We first establish the finite-
dimensional asymptotic normality of this process normalized by

√
N , after which we will prove

its tightness thanks to a maximal inequality.
Let us start by verifying that the limit covariance function of the process is indeed the function

γ defined in Section 3.1. The finite-sample covariance function is expressed

E

{(
1√
N

∑
k∈U

(
Ik

πk

− 1

)
X̃k(s)

)(
1√
N

∑
l∈U

(
Il

πl

− 1

)
X̃l(t)

)}

= 1

N

∑
k,l∈U

�kl

πkπl

X̃k(s)X̃l(t) (28)
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= 1

N

∑
k,l∈U

�kl

πkπl

Xk(s)Xl(t) + O
(
hβ

)
= γ (s, t) + o(1) + O

(
hβ

)
.

To derive the previous relation, we have used the facts that

max
k,l∈U

sup
s,t∈[0,T ]

∣∣X̃k(s)X̃l(t) − Xk(s)Xl(t)
∣∣ ≤ Chβ

by (23) and the uniform boundedness of the Xk arising from (A2) and that, by (A1),

1

N

∑
k,l∈U

|�kl |
πkπl

= 1

N

∑
k �=l

|�kl |
πkπl

+ 1

N

∑
k

�kk

π2
k

(29)

≤ 1

N

N(N − 1)

2

maxk,l(n|�kl |)
n

+ 1

N

∑
k

1 − πk

πk

≤ C.

We now check the finite-dimensional convergence of N−1/2 ∑
k∈U(Ik/πk −1)X̃k to a centered

Gaussian process with covariance γ . In light of the Cramer–Wold theorem, this convergence is
easily shown with characteristic functions and appears as a straightforward consequence of (A5).
It suffices for us to check that the uniform boundedness of the trajectories Xk derived from (A2)
is preserved by local linear smoothing, so that the X̃k are uniformly bounded as well.

It remains to establish the tightness of the previous sequence of processes so as to obtain its
asymptotic normality in C([0, T ]). To that intent we use the maximal inequality of the Corol-
lary 2.2.5 in van der Vaart and Wellner [35]. With the notations of this result, we consider
the pseudo-metric d2

X̃
(s, t) = E{N−1/2 ∑

k∈U(Ik/πk − 1)(X̃k(s) − X̃k(t))}2 and the function

ψ(t) = t2 for the Orlicz norm. We get the following bound for the second moment of the maximal
increment:

E

{
sup

d
X̃

(s,t)≤δ

∣∣∣∣ 1√
N

∑
k∈U

(
Ik

πk

− 1

)(
X̃k(s) − X̃k(t)

)∣∣∣∣
}2

(30)

≤ C

(∫ η

0
ψ−1(N(x,d

X̃
)
)

dx + δψ−1(N2(η, d
X̃
)
))2

for any arbitrary constants η, δ > 0. Observe that the maximal inequality (30) is weaker than (25)
where an additional assumption of sub-Gaussianity is made (no log factor in the integral above).
Employing again the arguments of (28), we see that

d2
X̃
(s, t) = 1

N

∑
k,l

�kl

πkπl

(
X̃k(s) − X̃k(t)

)(
X̃l(s) − X̃l(t)

)

≤ C

N

N(N − 1)

2n
|s − t |2β + C

N
N |s − t |2β (31)

≤ C|s − t |2β.
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It follows that the covering number satisfies N(x,d
X̃
) ≤ Cx−1/β and that the integral in (30) is

smaller than C
∫ η

0 x−0.5/β dx = Cη1−0.5/β , which can be made arbitrarily small since β > 0.5.
Once η is fixed, δ can be adjusted to make the other term in the right-hand side of (30) arbitrarily
small as well. With Markov’s inequality, we deduce that the sequence (N−1/2 ∑

k∈U(Ik/πk −
1)X̃k)N≥1 is asymptotically d

X̃
-equicontinuous in probability (with the terminology of van der

Vaart and Wellner [35]), which guarantees its tightness in C([0, T ]). �

Proof of Theorem 2. To establish the uniform convergence of the covariance estimator, we
first show its mean square convergence in the pointwise sense. Then, we extend the pointwise
convergence to uniform convergence through an asymptotic tightness argument (i.e., by showing
that for N large enough, the covariance estimator lies in a compact K of C([0, T ]2) equipped
with the sup-norm with probability close to 1). We make use of maximal inequalities to prove
the asymptotic tightness result.

Mean square convergence. We first decompose the distance between γ̂N (s, t) and its target
γN(s, t) as follows:

γ̂N (s, t) − γN(s, t) = 1

N

∑
k,l∈U

�kl

πkπl

(
IkIl

πkl

− 1

)
X̃k(s)X̃l(t)

+ 1

N

∑
k,l∈U

�kl

πkπl

IkIl

πkl

(
X̃k(s)ε̃l(t) + X̃l(t)ε̃k(s)

)

+ 1

N

∑
k,l∈U

�kl

πkπl

IkIl

πkl

ε̃k(s)ε̃l(t) (32)

− 1

N

∑
k∈U

1

πk

E
(
ε̃k(s)ε̃k(t)

)
:= A1,N + A2,N + A3,N − A4,N .

To establish the mean square convergence of (γ̂N (s, t) − γN(s, t)) to zero as N → ∞, it is
enough to show that E(A2

i,N ) → 0 for i = 1, . . . ,4, by the Cauchy–Schwarz inequality.
Let us start with

E
(
A2

1,N

) = 1

N2

∑
k,l

∑
k′,l′

�kl�k′l′

πkπlπk′πl′
E{(IkIl − πkl)(Ik′Il′ − πk′l′)}

πklπk′l′

(33)
× X̃k(s)X̃l(t)X̃k′(s)X̃l′(t).

It can be shown that this sum converges to zero by strictly following the proof of the Theorem 3
in Breidt and Opsomer [3]. The idea of the proof is to partition the set of indexes in (33) into
(i) k = l and k′ = l′, (ii) k = l and k′ �= l′ or vice-versa, (iii) k �= l and k′ �= l′, and study the
related subsums. The convergence to zero is then handled with assumption (A1) (mostly) in
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case (i), with (A1)–(A6) in case (iii), and thanks to the previous results and Cauchy–Schwarz
inequality in case (ii). More precisely, it holds that

E
(
A2

1,N

) ≤ C maxk �=l n|�kl |
(minπk)4n

+ C

(minπk)3N

+
(

C(maxk �=l n|�kl |)N
(minπk)2(mink �=l πkl)n

)2

(34)

× max
(k,l,k′,l′)∈D4,N

∣∣E{
(IkIl − πkl)(Ik′Il′ − πk′l′)

}∣∣.
For the (slightly simpler) study of E(A2

2,N ), we provide an explicit decomposition:

E
(
A2

2,N

) = 4

N2

∑
k,l

∑
k′

�kl�k′l
πkπk′π2

l

X̃k(s)X̃k′(t)E(IkIk′Il)E
(
ε̃l(s)ε̃l(t)

)

= 4

N2

∑
k∈U

�2
kk

π5
k

X̃k(s)X̃k(t)E
(
ε̃k(s)ε̃k(t)

)
(35)

+ 8

N2

∑
k �=k′

�kk�kk′

π4
k πk′πkk′

X̃k(s)X̃k′(t)E
(
ε̃k(s)ε̃k(t)

)

+ 4

N2

∑
k,k′

∑
l /∈{k,k′}

�kl�k′l
πkπk′π2

l πklπk′l
X̃k(s)X̃k′(t)E(IkIk′Il)E

(
ε̃l(s)ε̃l(t)

)
.

Note that the expression of E(A2
2,N ) as a quadruple sum over k, l, k′, l′ ∈ UN reduces to a triple

sum since E(ε̃l(s)ε̃l′(t)) = 0 if l �= l′ by (A4). Also note that |E(IkIk′Il)| ≤ 1 for all k, k′, l ∈ U .
With (A1), (A2), and the bound |E(ε̃k(s)ε̃k(t))| = |W(s)′VNW(t)| ≤ ‖W(s)‖‖VN‖‖W(t)‖ ≤
C/(dh), it follows that

E
(
A2

2,N

) ≤ CN

N2

‖VN‖
dh

+ CN2

N2

maxk �=k′ n|�kk′ |
n

‖VN‖
dh

(36)

+ CN3

N2

(maxk �=l n|�kl |)2

n2

‖VN‖
dh

= C

Ndh
.

We turn to the evaluation of

E
(
A2

3,N

) = 1

N2

∑
k,l,k′,l′

�kl�k′l′

πkπlπk′πl′
E(IkIlIk′Il′)

πklπk′l′
E

(
ε̃k(s)ε̃l(t)ε̃k′(s)ε̃l′(t)

)
.

We use the independence (A4) of the errors across population units to partition the above quadru-
ple sum E(A2

3,N ) according to the cases (i) k = l, k′ = l′, k �= k′, (ii) k = l′, k′ = l, and k �= k′,
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(iii) k = k′, l = l′, and k �= l and (iv) k = l = k′ = l′. Therefore,

E
(
A2

3,N

) = 1

N2

∑
k �=k′

πkk′

π2
k π2

k′

(
�kk�k′k′

πkπk′
+ �2

kk′

π2
kk′

)
E

(
ε̃k(s)ε̃k(t)

)
E

(
ε̃k′(s)ε̃k′(t)

)
(37)

+ 1

N2

∑
k �=l

�2
kl

π2
k π2

l πkl

E
(
ε̃2
k(s)

)
E

(
ε̃2
l (t)

) + 1

N2

∑
k

�2
kk

π5
k

E
(
ε̃2
k(s)ε̃

2
k (t)

)
.

Forgoing the calculations already done before, we focus on the main task which for this term
is to bound the quantity E(ε̃2

k(s)ε̃
2
k (t)) (recall that E(ε̃k(s)ε̃k(t)) ≤ C/(dh) as seen before). We

first note that E(ε̃2
k(s)ε̃

2
k (t)) ≤ {E(ε̃4

k(s))}1/2{E(ε̃4
k(t))}1/2. Writing ε ∼ N(0,VN), it holds that

E(ε̃4
k(t)) = E((W(t)′ε)4) = 3(W(t)′VNW(t))2 by the moment properties of the normal distribu-

tion. Plugging this expression in (37), we find that

E
(
A2

3,N

) ≤ C

(dh)2
+ C

N(dh)2
. (38)

Finally, like E(ε̃k(s)ε̃k(t)), the deterministic term A4,N is of order 1/(dh).
Tightness. To prove the tightness of the sequence (γ̂N − γN)N≥1 in C([0, T ]2), we study

separately each term in the decomposition (32) and we call again to the maximal inequalities of
van der Vaart and Wellner [35].

For the first term A1,N = A1,N (s, t), we consider the pseudo-metric d defined as the L4-
norm of the increments: d4

1 ((s, t), (s′, t ′)) = E|A1,N (s, t) − A1,N (s′, t ′)|4. (The need to use here
the L4-norm and not the usual L2-norm is justified hereafter by a dimension argument.) With
(A1)–(A2) and the approximation properties of local linear smoothers, one sees that∣∣∣∣ 1

N

∑
k,l∈U

�kl

πkπl

(
IkIl

πkl

− 1

)(
X̃k(s)X̃l(t) − X̃k

(
s′)X̃l

(
t ′
))∣∣∣∣ ≤ C

(∣∣s − s′∣∣β + ∣∣t − t ′
∣∣β)

.

Hence d1(s, t) ≤ C(|s − s′|β + |t − t ′|β) and for all x > 0, the covering number N(x,d1) is no
larger than the size of a two-dimensional square grid of mesh x1/β , that is, N(x,d1) ≤ Cx−2/β .
(Compare to the proof of Theorem 1 where, for the main term N−1/2 ∑

k(Ik/πk)X̃k , we have
N(x,d

X̃
) ≤ Cx−1/β because the index set [0, T ] is of dimension 1.) Using Theorem 2.2.4 of van

der Vaart and Wellner [35] with ψ(t) = t4, it follows that for all η, δ > 0,

E

{
sup

d1((s,t),(s
′,t ′))≤δ

∣∣A1,N (s, t) − A1,N

(
s′, t ′

)∣∣4
}

≤ C

(∫ η

0
ψ−1(N(x,d1)

)
dx + δψ−1(N2(η, d1)

))4

≤ C
(
η1−0.5/β + δη−1/β

)4
.

The upper bound above can be made arbitrarily small by varying η first and δ next since β > 0.5.
Hence, with Markov’s inequality, we deduce that the processes A1,N are tight in C([0, T ]2).
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The bivariate processes (A2,N )N≥1 are sub-Gaussian for the same reasons as the univariate
processes N−1/2 ∑

k∈U(Ik/πk)ε̃k are in the proof of Theorem 1, namely the independence and
multivariate normality of the error vectors (εk1, . . . , εkd)′ and the boundedness of the sample
membership indicators Ik for k ∈ UN . Therefore, although the covering number N(x,d2) grows
to O(x−2/β) in dimension 2, with d2 being the L2-norm on [0, T ]2, this does not affect signif-
icantly the integral upper bound

∫ ∞
0

√
log(N(x, d2))dx in a maximal inequality like (25). As a

consequence, one obtains the tightness of (A2,N ) in C([0, T ]2).
To study the term A3,N (s, t) in (32), we start with the following bound:

∣∣A3,N (s, t)
∣∣ ≤ 1

N

∑
k,l

|�kl |
πkπl

IkIl

πkl

ε̃2
k(s) + ε̃2

l (t)

2

= 1

N

∑
k

(∑
l

|�kl |
2πl

Il

πkl

)
Ik

πk

ε̃2
k(s) + 1

N

∑
l

(∑
k

|�kl |
2πk

Ik

πkl

)
Il

πl

ε̃2
l (t)

≤ C

N

∑
k

ε̃2
k(s) + C

N

∑
l

ε̃2
l (t).

The two-dimensional study is thus reduced to an easier one-dimensional problem.
To apply the Corollary 2.2.5 of van der Vaart and Wellner [35], we consider the function

ψ(t) = tm and the pseudo-metric dm
3 (s, t) = E|N−1 ∑

k(ε̃
2
k(s) − ε̃2

k(t))|m, where m ≥ 1 is an
arbitrary integer. We have that

E

{
sup

s,t∈[0,T ]

∣∣∣∣ 1

N

∑
k

(
ε̃2
k(s) − ε̃2

k(t)
)∣∣∣∣m

}
≤ C

(∫ DT

0

(
N(x,d3)

)1/m dx

)m

, (39)

where DT = sups,t∈[0,T ] d3(s, t) is the diameter of [0, T ] for d3. Using the classical inequality,
|∑n

k=1 ak|m ≤ nm−1 ∑n
k=1 |ak|m, for m > 1 and arbitrary real numbers a1, . . . , an, we get, with

the Cauchy–Schwarz inequality and the moment properties of Gaussian random vectors, that

dm
3 (s, t) ≤ 1

N

∑
k

E
∣∣ε̃2

k(s) − ε̃2
k(t)

∣∣m

≤ 1

N

∑
k

{
E

∣∣ε̃k(s) − ε̃k(t)
∣∣2m}1/2{

E
∣∣ε̃k(s) + ε̃k(t)

∣∣2m}1/2 (40)

≤ Cm

N

∑
k

∥∥W(s) − W(t)
∥∥m

VN

∥∥W(s) + W(t)
∥∥m

VN
≤ C′

m

(dh)m

( |s − t |
h

∧ 1

)m

,

where ‖x‖VN
= (x′VNx)1/2 and Cm and C′

m are constants that only depend on m.

We deduce from (40) that the diameter DT is at most of order 1/(dh) and that for all 0 <

x ≤ 1/(dh), the covering number N(x,d3) is of order 1/(xdh2). Hence, the integral bound in
(39) is of order

∫ 1/(dh)

0 (dh2x)−1/m dx ≤ C(dh2)−1/m(dh)(1−1/m) = C/(dh)1+1/m. Therefore,
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if dh1+α → ∞ for some α > 0, the sequence (N−1 ∑
k(ε̃

2
k))N≥1 tends uniformly to zero in

probability which concludes the study of the term (A3,N )N≥1 and the proof. �

Proof of Theorem 3. We show here the weak convergence of (ĜN) to G in C([0, T ]) condi-
tionally on γ̂N . This convergence, together with the uniform convergence of γ̂N to γ presented
in Theorem 2, is stronger than the result of Theorem 3 required to build simultaneous confidence
bands.

First, the finite-dimensional convergence of (ĜN) to G conditionally on γ̂N is a trivial conse-
quence of Theorem 2.

Second, we show the tightness of (ĜN ) in C([0, T ]) (conditionally on γ̂N ) similarly to the
study of (A3,N ) in the proof of Theorem 2. We start by considering the random pseudo-metric
d̂m
γ (s, t) = E[(ĜN (s)− ĜN(t))m|γ̂N ], where m ≥ 1 is an arbitrary integer. By the moment prop-

erties of Gaussian random variables and by (A1), it holds that

d̂m
γ (s, t) = Cm

[
1

N

∑
k,l∈U

�kl

πkl

IkIl

πkπl

(
X̂k(s) − X̂k(t)

)(
X̂l(s) − X̂l(t)

)]m/2

≤ Cm

[
1

N

∑
k,l∈U

|�kl |
πkl

IkIl

πkπl

(
X̂k(s) − X̂k(t)

)2
]m/2

≤ Cm

[
2

N

∑
k,l∈U

|�kl |
πkl

IkIl

πkπl

(
X̃k(s) − X̃k(t)

)2 (41)

+ 2

N

∑
k,l∈U

|�kl |
πkl

IkIl

πkπl

(
ε̃k(s) − ε̃k(t)

)2
]m/2

≤ Cm

[
1

N

∑
k

(
X̃k(s) − X̃k(t)

)2
]m/2

+ Cm

[
1

N

∑
k

(
ε̃k(s) − ε̃k(t)

)2
]m/2

.

Note that the the value of the constant Cm varies across the previous bounds. Clearly, the first
sum in the right-hand side of (41) is dominated by |s − t |mβ thanks to (A2) and the approxima-
tion properties of local linear smoothers. The second sum can be viewed as a random quadratic
form. Denoting a square root of VN by V1/2

N , we can write εk as V1/2
N Zk for k = 1, . . . ,N (the

equality holds in distribution), where the Zk are i.i.d. centered d-dimensional Gaussian vectors
with identity covariance matrix. Thus,

1

N

∑
k

(
ε̃k(s) − ε̃k(t)

)2 = (
W(s) − W(t)

)′
(

1

N

∑
k

εkε
′
k

)(
W(s) − W(t)

)

≤ ∥∥W(s) − W(t)
∥∥2

∥∥∥∥ 1

N

∑
k

εkε
′
k

∥∥∥∥ (42)

≤ ∥∥W(s) − W(t)
∥∥2‖VN‖

∥∥∥∥ 1

N

∑
k

ZkZ′
k

∥∥∥∥.
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Now, the vector norm ‖W(s)−W(t)‖2 has already been studied in (26) and the sequence (‖VN‖)
is bounded by (A4). The remaining matrix norm in (42) is smaller than the largest eigenvalue, up
to a factor N−1, of a d-variate Wishart matrix with N degrees of freedom. By (A3) it holds that
d = o(N/ log logN) and one can apply Theorem 3.1 in Fey et al. [18], which states that for any
fixed α ≥ 1,

lim
N→∞− 1

N
logP

(∥∥∥∥ 1

N

∑
k

ZkZ′
k

∥∥∥∥ ≥ α

)
= 1

2
(α − 1 − logα). (43)

An immediate consequence of (43) is that ‖ 1
N

∑
k ZkZ′

k‖ remains almost surely bounded as
N → ∞. Note that the same result holds if instead of (A3), (d/N) remains bounded away from
zero and infinity, thanks to the pioneer work of Geman [20] on the norm of random matrices.
Thus, there exists a deterministic constant C ∈ (0,∞) such that

d̂m
γ (s, t) ≤ C|s − t |mβ + C

(dh)m/2

( |s − t |
h

∧ 1

)m

(44)

for all s, t ∈ [0, T ], with probability tending to 1 as N → ∞. Similarly to the previous en-
tropy calculations, one can show that there exists a constant C ∈ (0,∞) such that N(x, d̂γ ) ≤
C(x−1/β + (dh3)−1/2x−1) for all x ≤ (dh)−1 with probability tending to 1 as N → ∞. Ap-
plying the maximal inequality of van der Vaart and Wellner [35] (Theorem 2.2.4) to the con-
ditional increments of ĜN , with φ(t) = tm (usual Lm-norm), one finds a covering integral∫ 1/(ph)

0 (N(x, d̂γ ))1/2 dx of the order of (dh)1/(mβ)−1 + (dh3)−1/(2m)(dh)1/m−1. Hence, the cov-
ering integral tends to zero in probability, provided that h → 0 and dh(1+1/(2m))/(1−1/(2m)) → ∞
as N → ∞. Obvisouly, the latter condition on h holds for some integer m ≥ 1 if dh1+α → ∞
for some real α > 0. Under this condition, the sequence (ĜN) is tight in C([0, T ]) and therefore
converges to G. �
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