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Consider on a manifold the solution X of a stochastic differential equation driven by a Lévy process without
Brownian part. Sufficient conditions for the smoothness of the law of Xt are given, with particular emphasis
on noncompact manifolds. The result is deduced from the case of affine spaces by means of a localisation
technique. The particular cases of Lie groups and homogeneous spaces are discussed.
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1. Introduction

Consider a R
m-valued Lévy process �t without Brownian part, a d-dimensional manifold M ,

and the M-valued solution Xt of an equation

Xt+dt = a(Xt ,d�t) + b(Xt )dt, X0 = x0 (1)

for coefficients a and b such that a(x,0) = x. The precise meaning of this equation will be given
later, as well as conditions implying the existence and uniqueness of a solution. The aim of this
article is to give sufficient conditions ensuring the smoothness of the law of Xt at any time t > 0.
We also study more precisely the case of Lévy processes on Lie groups, and of some classes of
processes on homogeneous spaces.

Proving the smoothness of the law of a random variable has motivated, in the case of contin-
uous diffusions, the introduction of Malliavin’s calculus. When M = R

d , Bismut’s approach to
this calculus has proved to be useful for processes with jumps which are solutions of equations
of type (1), and this topic has been intensively studied since [5] and [4]. Different techniques,
each of them having its own domain of applicability, have been introduced afterwards. These
techniques can be roughly divided into two classes.

The first class relies, as in [5], on some infinitesimal perturbations (in space or in time) on the
jumps of the Lévy process �. A differential calculus can be based on these perturbations, and
the associated integration by parts formula enables to study the smoothness of the law of Xt .

The second class of techniques (also when M = R
d ) has been worked out in [24]; rather than a

differential calculus, one uses a finite difference calculus consisting in appending and removing
jumps. This is not a differential calculus so there is no integration by parts formula in the usual
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sense, but there is still a duality formula which can be written on the Poisson space of jumps,
and this formula can be interpreted as a duality between appending and removing jumps, see
[22,23]; this calculus has been applied to the smoothness of the law of Xt by [24]. Its advantage
is that no smoothness is required for the Lévy measure of �; in particular this measure may have
a countable support. The proof of the smoothness of the law is based on an estimation of the
characteristic function (Fourier transform) of Xt ; if this function is proved to decrease rapidly at
infinity, then Xt has a C∞ density. In [24] (as it will be the case in this article), it is assumed that
� has no Brownian part and that the coefficient a satisfies a nondegeneracy condition similar
to the ellipticity condition for continuous diffusions; notice that the class of so-called canonical
equations with a Brownian part was studied with this finite difference calculus by [14], and
Hörmander type conditions were considered by [17], also for canonical equations.

The extension of [24] to the case where M is a manifold is not immediate. The basic tool of the
case M = R

d was the Fourier transform. When M is a symmetric space, the Fourier transform
can be replaced by the so-called spherical transform, and this has been used by [20] in order to
prove the smoothness of the law for a class of processes (but the Lévy measure was not allowed
to be purely atomic in the case without Brownian part). However, adapting the Fourier transform
technique of R

d seems difficult for general manifolds. When M is diffeomorphic to R
d , we can

of course apply the result for R
d , but the assumptions needed for this result are generally not

translated into canonical assumptions on M : they depend on the choice of the diffeomorphism,
and they may be hard to verify, see in Section 5.1 the example of the hyperbolic space. Actually,
even the case where M is an open subset of R

d is not trivial.
In order to get around these difficulties, our aim here is to apply some localisation techniques;

we consider an atlas of M and use the results of the affine case on each local chart. However, it is
known that localisation is made difficult by the presence of jumps. In [26], we have applied such
a technique in order to study the smoothness of harmonic functions on some domain D of R

d ,
and it appears that these functions are not always C∞, even for processes with a C∞ density;
their order of regularity depends on the number of jumps needed to exit D, so that the smaller
the jumps are, the smoother the function is. Our plan is therefore, first, to apply the localisation
technique and obtain the C� regularity of the density when big jumps are removed, and then
check that adding big jumps does not destroy this smoothness. In order to conclude, when the
manifold is not compact, we have to make an assumption on the size of these big jumps, namely
that for any relatively compact subset U of M , the set of points from which the process can jump
into U is relatively compact (one cannot jump from a very distant location). This condition can
be viewed as dual to the condition of [26] for the smoothness of harmonic functions. The result
(Theorem 2) is given in Section 2, after the particular case of canonical equations (Theorem 1);
it is proved in Section 3.

Then we relax this “big jumps” condition in three cases:

• when the Lévy kernel for these big jumps is smooth (Theorem 3),
• when M is a Lie group G and Xt is a Lévy process on it,
• when M is an homogeneous space G/H and Xt is obtained by projecting on M a Lévy

process on G.

Lie groups and homogeneous spaces are the purpose of Section 4.
In Section 5, we give some examples, and also some counterexamples where the “big jumps”

condition is not satisfied, and the smoothness of the law fails.
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2. The smoothness result on manifolds

In this section, we give a precise meaning for equation (1), but before that we introduce the
manifold M and the Lévy process �t . Then we give the assumptions on the equation, give
the smoothness results about the law of the solution, and make some comments on our model.
Actually, before explaining the general case, we state the main result in the particular case of so-
called canonical equations; assumptions are indeed much easier to write in this case. The proofs
are postponed to Section 3.

2.1. The manifold

The manifold M is supposed to be Hausdorff, separable, paracompact, C∞ and of dimension d ;
we do not suppose that it is connected; it may have an at most countable number of connected
components, and our processes will be allowed to jump from a component to another. The tangent
bundle is denoted by T M = ⋃

x TxM . If M is not compact, we consider its one-point compacti-
fication M ∪ {∞}; if M is compact, ∞ is a point which is disconnected from M . This additional
point will be viewed as a cemetery point; this means that real functions f on M are extended by
putting f (∞) = 0, and that a process on M ∪{∞} which hits ∞ or tends to ∞ stays at that point
forever.

Under these assumptions, one can embed M into an affine space R
N by means of Whitney’s

theorem, and one can consider Riemannian metrics on M by using a partition of unity; Rieman-
nian distances are of course only defined between points in the same connected component, and
they otherwise take the value +∞. We would like to have intrinsic assumptions, which do not
depend on a particular embedding or a particular metric. This will be possible because Rieman-
nian distances are equivalent on compact subsets, so a metric condition which is supposed to hold
uniformly on compact subsets will actually not depend on the choice of the metric. For instance,
if f is a C� function and K is a compact subset of M , if we denote by Djf (x) the iterated
differential of f (this is a multi-linear form on (TxM)j ), we can define

|f |K,� =
�∑

j=0

sup
x∈K

∣∣Djf (x)
∣∣

if we have chosen a Riemannian metric on M , but changing the metric will lead to an equivalent
semi-norm; by allowing K to vary, we obtain a Fréchet space C�(M). A signed measure ν on
M is said to be absolutely continuous, respectively, C�, if its restrictions to local charts are
absolutely continuous, respectively, have C� densities with respect to the Lebesgue measure; it
is said to have positive density if it has (strictly) positive density with respect to the Lebesgue
measure on charts; this does not depend on the atlas; let M �(M) be the set of C� measures. If we
choose a C∞ reference measure dx with positive density, we can define the family of semi-norms

|ν|K,� = |dν/dx|K,�.
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Changing the reference measure and the Riemannian metric will not change the topology of
M �(M). We also let

M �
K = {

ν ∈ M �(M);ν(
Kc

) = 0
}

if K is a compact subset of M .
The notation U � V for open subsets of M will mean that U is relatively compact in V .

2.2. The Lévy process

Let us first recall some basic facts about Lévy processes �t with values in R
m. A Lévy measure

is a measure μ on R
m \ {0} such that

∫
(|λ|2 ∧ 1)μ(dλ) < ∞, and a Lévy process �t without

Brownian part and with Lévy measure μ is a process which can be written by means of the
Lévy–Itô representation formula

�t = κt +
∫ t

0

∫
{|λ|≤1}

λÑ(ds,dλ) +
∫ t

0

∫
{|λ|>1}

λN(ds,dλ) (2)

for some κ ∈ R
m, where the random measure N(dt,dλ) = ∑

t δ(t,��t ) is a Poisson measure on
R+×R

m with intensity dtμ(dλ), and Ñ(dt,dλ) = N(dt,dλ)−dtμ(dλ) is the compensated Pois-
son measure. When

∫
(|λ| ∧ 1)μ(dλ) < ∞, then �t has finite variation, and (2) can be simplified

as

�t = κ0t +
∫ t

0

∫
Rm

λN(ds,dλ).

The relation between κ and κ0 is easily written, and �t is a pure jump process when κ0 = 0.
We will assume an approximate self-similarity condition and a non-degeneracy condition on the
Lévy process written as follows.

Assumption 1. There exist some 0 < α < 2 and some positive c and C such that

cρ2−α|u|2 ≤
∫

{|λ|≤ρ}
〈λ,u〉2μ(dλ) ≤ Cρ2−α|u|2

for u ∈ R
m, 0 < ρ ≤ 1, and where 〈·, ·〉 is the Euclidean inner product. If α = 1, we suppose

moreover that

lim sup
ε↓0

∣∣∣∣∫{ε≤|λ|≤1}
λμ(dλ)

∣∣∣∣ < ∞.

If α < 1 (finite variation case), we suppose that �t is pure jump (κ0 = 0).

The process � has finite variation if and only if α < 1. Notice that no smoothness is assumed
on μ; it can, for instance, have a countable support. The additional conditions of the cases α = 1
and α < 1 are needed to apply the results of [25,26].

As an example, we can consider stable Lévy processes of index α, or more generally semi-
stable processes (see Chapter 3 of [27] for definitions and properties concerning these processes).
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If �t is a semi-stable process and if μ is not supported by a strict subspace of R
m, then Assump-

tion 1 is satisfied when 1 < α < 2. When 0 < α ≤ 1, the additional conditions mean that �t

should be a strictly semi-stable process. Actually, Assumption 1 is only concerned with small
jumps, so that we can also consider for instance truncated semi-stable processes (where jumps
greater than some value are removed).

2.3. The equation

Let us now introduce the process Xt , solution of (1). When M = R
d , the meaning of this equation

is

Xt = Xu +
∫ t

u

a(Xs−)d�s +
∫ t

u

b(Xs)ds

(3)
+

∑
u<s≤t

(
a(Xs−,��s) − Xs− − a(Xs−)��s

)
for u ≤ t , where a(x) is the differential at 0 of λ 
→ a(x,λ). Under convenient smoothness
conditions, the Itô integral with respect to � is well defined, the sum converges, and the equation
has a unique solution for any initial condition X0 = x0. Notice that the jumps are given by
Xt = a(Xt−,��t). Itô’s formula enables to write

f (Xt ) = f (x0) +
∫ t

0
(Df a)(Xs−)d�s +

∫ t

0
(Df b)(Xs)ds

(4)
+

∑
0<s≤t

(
(f ◦ a)(Xs−,��s) − f (Xs−) − (Df a)(Xs−)��s

)
for smooth functions f , and where Df denotes the differential of f .

This formula can be used to give a meaning to (1) when M is a manifold. We consider a
coefficient a and a vector field b,

a :M × R
m → M ∪ {∞}, b :M → T M.

We again let a(x) be the differential of λ 
→ a(x,λ) at 0, so that a(x) is a linear map from R
m

into TxM :

a :M → L
(
R

m,T M
)
, x 
→ ∂λ|λ=0a(x,λ). (5)

We say that (Xt ; t ≥ 0) is a solution of (1) if Xt is a càdlàg (right continuous with left limits)
process with values in M ∪ {∞}, which is adapted with respect to the completed filtration of �t ,
and such that for any smooth function f and any compact subset K of M , equation (4) holds
true up to the first exit time from K . We say that the process dies at time t if Xs ∈ M for s < t

and Xt = ∞. This occurs if either Xt− = ∞ (the solution of the equation explodes at time t ), or
if Xt− ∈ M and Xt = a(Xt−,��t) = ∞ (the process is killed at a jump of �).

If we use a proper embedding I :M → R
N , we can apply (4) to the components of the em-

bedding I and deduce the equation that should be satisfied on I(M) by I(Xt ); in order to obtain
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an equation on R
N , we have to extend the coefficients out of I(M); it is then sufficient to solve

the equation in R
N and prove that the solution remains in M . This is this point of view which is

generally used in order to prove the existence and uniqueness of a solution, see [8] in the case
without killing (a(x,λ) ∈ M for any x ∈ M). We are here in a slightly different framework (pos-
sible killing), and shall prefer to give a proof for the existence and uniqueness by means of local
charts; this is because the proof based on local charts is then used for studying the smoothness of
the law of Xt (it is clear that the embedded process does not have a density in R

N , so proving the
existence of a density on M cannot be made through a Malliavin calculus on R

N ). The equation
on a local chart can also be deduced from (4).

The infinitesimal generator of Xt is

Lf (x) = Df (x)
(
b(x) + a(x)κ

) +
∫

{|λ|≤1}
(
f

(
a(x,λ)

) − f (x) − Df (x)a(x)λ
)
μ(dλ)

(6)

+
∫

{|λ|>1}
(
f

(
a(x,λ)

) − f (x)
)
μ(dλ)

for f bounded and C∞. In particular, if f is constant on a neighbourhood of x, then

Lf (x) =
∫

M

(
f (y) − f (x)

)
μx(dy),

where μx is the image of the Lévy measure μ by λ 
→ a(x,λ). This measure describes the
intensity of jumps; it is the Lévy kernel of the process X.

2.4. Canonical equations

Up to now, we have been given an equation (1) on the manifold M , and have explained the
rigourous meaning of this equation; in this explanation we need the function a given by (5). It
is clear that many functions a are associated to the same a. However, there is a particular class
of equations, called canonical equations, and which were introduced by [21] (see also [18]), for
which a and a are in one-to-one correspondence.

Let us first consider a smooth field a(x) ∈ L(Rm,TxM), and let

a(x,λ) = xλ(1) for xλ(t) = x +
∫ t

0
a
(
xλ(s)

)
λds, (7)

assuming that the solution of this ordinary differential equation does not explode. Then it is
easily seen that a and a are related to each other by (5), and x 
→ a(x,λ) is a diffeomorphism of
M onto itself with inverse x 
→ a(x,−λ). Notice that x and a(x,λ) are in the same connected
component, so the study can be reduced to connected manifolds.

For canonical equations, the assumptions needed for our main result (Theorem 2 below), or at
least a sufficient condition ensuring that they are satisfied, can be written in the following simple
form.
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Theorem 1. Let � be a Lévy process satisfying Assumption 1, and let a and b be C∞ functions
on M , with values, respectively, in L(Rm,T M) and T M . Consider equation (1) with coefficient
a given by (7), assuming that the ordinary differential equation never explodes on M . We suppose
that the jumps of � are bounded, and that the linear map a(x) : R

m → TxM is surjective for any
x; if α < 1 we also suppose that b = 0. Then (1) has for any initial condition x0 a unique solution
Xt , and the law of Xt is C∞ for any t > 0.

2.5. Assumptions on the equation

We now return to the case of a general coefficient a. Let us give the assumptions on equation (1)
which will imply the existence and uniqueness of a solution, and the smoothness of the law of
this solution.

Assumption 2. The conditions on the coefficients a and b are as follows.

1. Consider, for any ε > 0, the map aε
 which sends a measure ν to the measure on M

(
aε
ν

)
(A) =

∫ ∫
1A

(
a(x,λ)

)
1{|λ|>ε}ν(dx)μ(dλ). (8)

Let K be any compact subset of M . If ε is small enough, then aε
 is a continuous map from

M �
K into M �(M) (see Section 2.1 for the definition of these spaces).

2. Let K be any compact subset of M . There exists ε > 0 such that x 
→ a(x,λ) is C∞ on K

for μ-almost any λ such that |λ| ≤ ε. The function a given by (5) is assumed to exist and to
be C∞. Letting D be the differentiation operator on M with respect to x, there exists some
α ∨ 1 < γ ≤ 2 such that∣∣Dj

(
f

(
a(x,λ)

) − f (x) − Df (x)a(x)λ
)∣∣ ≤ Cf,j,K |λ|γ

for any C∞ real function f , for x ∈ K , for μ-almost any |λ| ≤ ε, and for any j .
3. The coefficient b is a C∞ vector field on M with values in T M . In the case α < 1, we

suppose that b = 0.
4. The linear map a(x) ∈ L(Rm,TxM) is surjective for any x.

Here are some comments about these four conditions.
First condition. This condition states that jumps preserve the smoothness of the law of the

process. Suppose that x 
→ a(x,λ) is a C� diffeomorphism of M onto itself with inverse y 
→
a−1(y,λ). Fix a Riemannian metric on M and the associated measure dx; then the density p(y)

of aε
ν is obtained from the density p of ν by means of the classical formula

p(y) =
∫

{|λ|>ε}
∣∣detDa−1(y,λ)

∣∣p(
a−1(y,λ)

)
μ(dλ)

(the determinant is computed for orthonormal bases on the tangent spaces). It is therefore suffi-
cient to estimate the derivatives of a−1; the condition is for instance satisfied for the canonical
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equations of Theorem 1. Moreover, the process can be killed when it quits some open subset.
More precisely, consider a process on a manifold M0 associated to an equation with coefficient
a0, let M be an open subset of M0, and kill the process when it quits M . This process is obtained
by considering the equation with coefficient

a(x,λ) =
{

a0(x,λ) if a0(x,λ) ∈ M ,
∞ otherwise.

(9)

Then aε
 is continuous if the same property holds true for a0, because the map which sends

a measure on M0 to its restriction to M is continuous from M �(M0) to M �(M). We shall
however notice that Assumption 3 below often fails for this example. Other examples will be
given in Section 2.7.

Second condition. In this condition, the smoothness of a(x,λ) is assumed with respect to x

for λ small, but no smoothness is assumed with respect to λ except for λ → 0. If however a is
smooth in (x,λ), then the condition is satisfied for γ = 2. In particular, canonical equations of
Section 2.4 satisfy the condition.

Third condition. The additional assumption on b in the finite variation case α < 1 means that
the solution X of our equation is a pure jump process; it is required in order to apply the results
of [25,26].

Fourth condition. The surjectivity of a(x) is a nondegeneracy condition. This condition says
that small jumps go in all the directions, and is similar to the ellipticity condition for continuous
diffusions.

Let us now give the additional assumption concerning big jumps. It is stating, roughly speak-
ing, that the process cannot come from a very distant point by jumping.

Assumption 3. If U is relatively compact, then

a−1(U) = {
x;μ{

λ;a(x,λ) ∈ U
}

> 0
}

is also relatively compact.

This assumption is trivially satisfied when M is compact. It is also satisfied in Theorem 1
because the jumps of � are in some ball B of R

m, so

a−1(U) ⊂ a(U × B),

and the relative compactness of this set follows from the relative compactness of U × B and the
continuity of a. The assumption often fails when the process is obtained by killing as explained
in (9); difficulties generally arise when the original process can jump from M0 \ M into M ;
a counterexample, showing that the law of Xt is not always smooth in this case, will be given in
Section 5.3.

2.6. The results

The main smoothness result for the solution of (1) is the following one.
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Theorem 2. Under Assumptions 1 and 2, the equation (1) has a unique solution Xt for any
initial condition X0 = x0, and the law of Xt is absolutely continuous for any t > 0. If moreover
Assumption 3 holds true, the law of Xt is C∞ for t > 0. More precisely, if K is a compact subset
of M , if t0 > 0, and if p(t, x0, x) is the density of Xt with respect to some C∞ reference measure
with positive density, then the derivatives of p with respect to x satisfy∣∣Djp(t, x0, x)

∣∣ ≤ Cj,Kt−(d+j)/α (10)

uniformly for 0 < t ≤ t0, x0 in M and x in K .

In the case of canonical equations, we see that Theorem 1 is a corollary of this result. In
this result, jumps of � were supposed to be bounded. When M is compact but jumps of �

are unbounded, we see that the condition which may cause problems is the first condition of
Assumption 2. More precisely, if the vector field a(·)λ has for some λ = λ1 a stable equilibrium
x1, then jumps �� = cλ1 for large c concentrate the mass near x1, so that the density of aε

ν

may be unbounded near x1.
When the big jumps condition (Assumption 3) is not satisfied, the conclusion of the theorem

still holds if these big jumps are smooth; some other cases will be studied in Section 4, and on
the other hand, counterexamples will be given in Section 5.

Theorem 3. Under Assumptions 1 and 2, suppose that there exists a decomposition μ = μ� +μ�

of the Lévy measure such that only μ� satisfies Assumption 3, and μ� is finite. Let μ
�
x be the image

of μ� by the map λ 
→ a(x,λ); suppose that μ
�
x is C∞, and that x 
→ |μ�

x |K,� is bounded on M

for any compact K and any � (see the definition of this family of semi-norms in Section 2.1).
Then the solution Xt of (1) has a C∞ law for t > 0, satisfying (10).

The kernel μ
�
x is the part of the Lévy kernel μx coming from μ�. The assumption of Theorem 3

therefore requires the part of the Lévy kernel for jumps coming from distant locations to be
smooth, whereas the Lévy kernel could be purely atomic in Theorem 2.

2.7. About the jump coefficient

In this article, we study Markov processes Xt with infinitesimal generator of the form (6), with
coefficients a and b satisfying some smoothness assumptions. This covers a class of Markov
processes, but not all of them. In particular, in this model, the set of (times of) jumps of X is
contained in the set of jumps of the driving Lévy process �; the inclusion may be strict, since one
may have a(x,λ) = x for some λ �= 0, but introducing such a behaviour generally destroys the
smoothness of a. Thus, X and � have more or less the same times of jumps, and the rate of jump
of X is not allowed to depend on its present state x. This is a drawback of this approach, as well
as of other approaches based on different versions of Malliavin’s calculus. A weak dependence
of the rate of jumps with respect to x can however be obtained through Girsanov transformation,
see [26], and cases of more general dependence have been studied (under frameworks which
are different from ours) by [3,11,15]. We now verify that such a dependence is possible if we
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drop the assumption of smoothness of a, and that this is compatible with our assumptions if only
finitely many jumps are concerned by this behaviour.

Suppose that the generator of X is L + L ′, where L satisfies the assumptions of Theorem 2
or 3, and

L ′f (x) =
∫

M∪{∞}
(
f (y) − f (x)

)
μ′

x(dy),

where x 
→ μ′
x(M ∪ {∞}) is finite and C∞. We also have to assume that the kernel μ′

x is Borel
measurable, that ν 
→ ν′ with

ν′(A) =
∫

μ′
x(A)ν(dx) (11)

is continuous from M �
K into M �(M) (as in Assumption 2), and that jumps corresponding to this

kernel satisfy Assumption 3 (the extension with the assumptions of Theorem 3 is also possible).
In order to prove that this case enters our framework, we apply the fact that the measurable

space M ∪ {∞} can be viewed as a Borel subset of R+ (it is a Lusin space, see [9]); thus we can
view μ′

x as a measure on R+, and if we define

ã(x, u) = inf
{
v ≥ 0;μ′

x

([0, v]) ≥ u
} ∈ R+ ∪ {+∞},

the image of the Lebesgue measure on R+ by ã(x, ·) is the measure μ′
x on R+, plus an infinite

mass at +∞; notice in particular that ã(x, u) = +∞ if u is large enough. Let us then introduce
a real symmetric Lévy process �′

t with Lévy measure μ′(dλ′) = α|λ′|−α−1dλ′, independent of
�; then (�,�′) is a Lévy process on R

m+1 with Lévy measure μ(dλ)δ0(dλ′) + δ0(dλ)μ′(dλ′)
satisfying Assumption 1. We then consider the equation driven by (�,�′), with coefficient
a(x,λ,λ′), where a(x,λ,0) is the coefficient associated to the part L of the generator, and

a
(
x,0, λ′) =

{
ã
(
x,λ′−α)

if λ′ > 0 and this quantity is finite,
x otherwise.

In particular, a(x,0, λ′) = x if λ′ < μ′
x(M ∪ {∞})−1/α . The image of μ′ by a(x,0, ·) is μ′

x plus
an infinite mass at x, so the solution of the equation has generator L + L ′ as required. On the
other hand, if K is a compact subset of M and if

ε <
(

sup
x∈K

μ′
x

(
M ∪ {∞}))−1/α

,

then, with the notations (8) and (11),(
a(·,0, ·)εν

)
(dx) = ν′(dx) + (

ε−α − μ′
x

(
M ∪ {∞}))ν(dx).

Thus these jumps satisfy the first part of Assumption 2, though x 
→ a(x,0, λ′) is generally not
continuous.

We have already seen in (9) that we can consider hard killing of a process (we kill it when
it hits an obstacle), but this may cause difficulties with Assumption 3. With the construction we
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have just described, we can also consider soft killing where the process is killed at some rate
h(x) ≥ 0 depending smoothly on x; this means that we add the term L ′f (x) = −h(x)f (x) to
Lf (x), and μ′

x is the mass h(x) at ∞; in this case, the measure ν′ of (11) is the zero measure on
M , so ν 
→ ν′ is trivially continuous.

3. Proof of Theorems 2 and 3

The two theorems are proved in several steps.

3.1. Construction of the solution

In order to prove the existence and uniqueness of a solution of (1), we first write the equation on
a local chart (U,�), where � is a diffeomorphism from an open subset U of M onto an open
subset V of R

d . We can restrict ourselves to atlases such that � is the restriction to U of a smooth
map on M . If τ is the exit time of X from U , then (4) applied to the components of � shows that
Yt = �(Xt), t < τ , should be a solution of an equation (3) on V with new coefficients

a�(y,λ) = �
(
a
(
�−1(y), λ

))
, b�(y) = D�

(
�−1(y)

)
b
(
�−1(y)

)
,

(12)
a�(y) = D�

(
�−1(y)

)
a
(
�−1(y)

)
.

More precisely, X is solution of (1) if it is a càdlàg process on M ∪ {∞} with initial condition
X0 = x0, satisfying the conditions:

• For any local chart (U,�) and for any time u, if τ is the exit time after u of X from U , the
process Yt = �(Xt) satisfies the equation (3) with coefficients (a�,b�) on {u ≤ t < τ }.

• The jumps of X are given by Xt = a(Xt−,��t).
• If Xt− or Xt is at ∞, then Xs = ∞ for any s ≥ t (∞ is a cemetery point).

In order to solve the equation (1) up to the first exit time from U , we shall have to extend
coefficients (a�,b�) out of V , and solve the resulting equation (3) on R

d .

Lemma 1. The equation (1) has a unique solution Xt for any initial condition x0.

Proof. Consider open subsets of M with relatively compact inclusions U1 � U2 � U3. We sup-
pose that there exists a diffeomorphism � from U3 onto an open subset V3 of R

d , so that (U3,�)

is a local chart. We define V1 = �(U1), V2 = �(U2), and let h : Rd → [0,1] be a smooth func-
tion such that h = 1 on V1 and h = 0 on V c

2 . The coefficient b�(y) of (12) is defined on V3. On
the other hand, from Assumption 2, there exists ε > 0 such that

|λ| ≤ ε ⇒ a(U2, λ) ⊂ U3.

Then a�(y,λ) is well defined for y ∈ V2 and |λ| ≤ ε, and takes its values in V3. Thus, for y ∈ R
d

and |λ| ≤ ε, we can define(̃
a�(y,λ), b̃�(y)

) =
{(

h(y)a�(y,λ) + (
1 − h(y)

)
y,h(y)b�(y)

)
if y ∈ V2,

(y,0) otherwise
(13)
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which is an interpolation between (a�,b�) on V1 and the motionless process on the complement
of V2. Notice that from Assumption 2,

ã�(y,λ) = y + h(y)a�(y)λ + O
(|λ|γ )

for a� given by (12), and similarly for its derivatives. We can consider on R
d the equation (3)

with coefficients (̃a�, b̃�), driven by

�ε
t = �t −

∑
s≤t

��s1{|��s |>ε}. (14)

Our smoothness assumptions on a and b imply that it has a unique solution Yt for Y0 = �(x0)

fixed. Let

τ = inf
{
t ≥ 0;Yt /∈ V1 or |��t | > ε

}
.

Defining Xt = �−1(Yt ) for t < τ , and Xτ = a(Xτ−,��τ ), the process X is solution of our
equation (1) up to the time τ ; if |��τ | > ε and Xτ ∈ U1, then we can solve again the equation
from this time τ and point Xτ ; since jumps greater than ε are in finite number on any finite time
interval, we deduce the existence of a solution Xt up to its first exit time from U1. Conversely, we
can go from X to Y and deduce the uniqueness of X from the uniqueness of Y . Thus, equation (1)
has a unique solution up to the first exit time from U1.

Let us deduce the existence of a solution (Xt ;0 ≤ t ≤ t0) for a fixed t0 > 0. We consider a
locally finite atlas of M made of subsets U0(k) (any compact subset intersects finitely many of
these U0(k)) such that U0(k) is relatively compact in an open subset U(k) of the type of the set
U1 of the first part of the proof. We can choose for any x an index k(x) such that k is measurable
and x ∈ U0(k(x)), and we solve the equation starting from x up to the first exit time τ1 of the
set U(k(x)) (apply the first part of the proof). Let Px be the law of this solution. If δ is some
Riemannian distance on M , one can check that supt≤u δ(x,Xt ) under Px converges in probability
to 0 as u ↓ 0, uniformly for x such that k(x) = k (this follows from the similar property satisfied
by Y = �(X)); thus there exists uk > 0 such that

Px[τ1 ≥ uk] ≥ Px

[
sup
t≤uk

δ(x,Xt ) < δ
(
U0(k),U(k)c

)] ≥ 1/2 (15)

if k = k(x).
The equation is then solved by means of the following iterative procedure. For a fixed initial

condition x0, we solve the equation from time τ0 = 0 up to the exit time τ1 from U(k(x0)). If
τ1 ≥ t0 (the time up to which we want to solve the equation), we have obtained the solution up to
time t0 and we can stop the procedure; if Xτ1 = ∞ the process stays at ∞ and the procedure can
also be stopped; otherwise, starting at time τ1 from Xτ1 , we solve the equation up to the exit time
τ2 from U(k(Xτ1)), and so on. We stop the procedure either when τj ≥ t0, or when the process
has been killed (jump to ∞). Thus, the procedure goes on forever when τj < t0 and Xτj

�= ∞ for
any j . On the other hand, denoting by Ft the filtration of �t , we have from (15) and the strong
Markov property that

P[τj+1 − τj ≥ uk|Fτj
] ≥ 1/2 on Ak

j = {τj < t0} ∩ {
k(Xτj

) = k
}
.
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We deduce that ∑
j≥0

P
[
Ak

j

] ≤ 2
∑
j≥0

P
[
Ak

j ∩ {τj+1 − τj ≥ uk}
] ≤ 2(1 + t0/uk)

because there are at most t0/uk disjoint intervals of length ≥ uk included in [0, t0]. Thus, for k

fixed, Ak
j cannot be satisfied infinitely many times. We deduce that if the procedure goes on for-

ever, then k(Xτj
) tends to infinity, so Xτ− = ∞ for τ = lim τj (the solution explodes at time τ ).

In this case the solution is obtained by putting Xt = ∞ for t ≥ τ .
The uniqueness can be proved by considering the first time τ at which two solutions X1

t and
X2

t differ, and by supposing that τ < ∞ with positive probability; then X1
τ− = X2

τ−, so X1
τ = X2

τ

and the uniqueness of the solution in U(k) for k = k(X1
τ ) leads to a contradiction. �

3.2. The case with only small jumps

In Lemma 1, we have worked out a construction of the process by means of local charts. We
now verify that this construction also provides a smoothness result for the law on these local
charts. In all the proofs, we choose a Riemannian metric on M , and the associated C∞ measure
dx with respect to which we will consider the densities of M-valued random variables. We shall
study the solution Xε of equation (1) driven by the Lévy process without its jumps greater than ε

(the process �ε defined in (14)). The parameter ε will be fixed and will be assumed to be small
enough; notice however that the constants involved in the calculations will not be uniform in ε;
this does not cause any difficulty because we shall never take the limit as ε ↓ 0.

Lemma 2. Consider open subsets of M with relatively compact inclusions U0 � U1 � U2 � U3,
such that U3 is diffeomorphic to an open subset of R

d . Moreover, let B be a neighbourhood of
the diagonal in M × M . We consider the process Xε solution of equation (1) driven by �ε . The
surjectivity of a(x) is only assumed on U2. Let � ≥ 0. Then the following properties hold true if
ε is small enough.

1. The law of the process Xε starting from x0 ∈ U1 and killed at the exit from U1 has a C�

density on U0.
2. The density x 
→ qε(t, x0, x) of this killed process and more generally its derivatives of

order j ≤ � are uniformly dominated by t−(d+j)/α for 0 < t ≤ t0, x0 ∈ U1 and x ∈ U0.
3. The density and its derivatives up to order � are uniformly bounded for 0 < t ≤ t0 and

(x0, x) ∈ (U1 × U0) \ B .

Proof. We apply the construction given in the proof of Lemma 1, denote Vi = �(Ui), and obtain
the process Yt solution of (3) driven by �ε , with coefficients (̃a�, b̃�) given by (13). Then Xε

can be written as Xε
t = �−1(Yt ) strictly before the first exit from U1, so the killed processes Xε

and �−1(Y ) coincide. The nonkilled process Yt has of course not a smooth law for any initial
condition, since it is motionless out of V2. It is however possible to modify Y by adding extra
independent noise in its equation, without modifying the killed process. For λ ∈ R

m, |λ| ≤ ε and
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λ′ ∈ R
d , we can replace ã� by

ã�

(
y,λ,λ′) =

{
h(y)a�(y,λ) + (

1 − h(y)
)(

y + λ′) if y ∈ V2,
y + λ′ otherwise,

so that

ã�

(
y,λ,λ′) = y + h(y)a�(y)λ + (

1 − h(y)
)
λ′ + O

(|λ|γ )
.

Then, letting �′ be a d-dimensional Lévy process independent of �, satisfying Assumption 1 and
with jumps bounded by ε, we can solve the equation (3) with coefficients (̃a�, b̃�) and driven by
(�ε,�′). The advantage is that now the differential of ã� with respect to (λ,λ′) at (0,0) is now
surjective onto R

d , uniformly in y; moreover, if ε has been chosen small enough and if |λ| and
|λ′| are ≤ ε, the map y 
→ ã�(y,λ,λ′) is a diffeomorphism from R

d onto itself, and its Jacobian
determinant is uniformly positive. Consequently, we can apply Theorem 1 of [25], and deduce
that Yt has a smooth density y 
→ pY (t, y0, y), with derivatives satisfying

sup
y0,y

∣∣DjpY (t, y0, y)
∣∣ ≤ Cj t

−(d+j)/α. (16)

Moreover, it is proved in Lemma 2 of [26] that pY and its derivatives up to order � are actually
bounded as t ↓ 0 if the number of jumps necessary to go from y0 to y is large enough; thus, for
c > 0 fixed and if ε has been chosen small enough,

sup
{∣∣DjpY (t, y0, y)

∣∣;0 < t ≤ t0, |y − y0| ≥ c
} ≤ Cj . (17)

If τ is the first exit time of Y from V1, we have from

Ey0

[
f (Yt )1{t<τ }

] = Ey0

[
f (Yt )

] − Ey0

[
f (Yt )1{t≥τ }

]
and the strong Markov property that the process Y killed at τ has density

qY (t, y0, y) = pY (t, y0, y) − Ey0

[
pY (t − τ,Yτ , y)1{t≥τ }

]
.

The first term is estimated from (16) and (17), and for the second one, we notice that Yτ /∈ V1,
and that the number of jumps necessary to go from V c

1 into V0 is large if ε is small enough,
so y 
→ pY (t − τ,Yτ , y) and its derivatives up to order � are bounded on V0. We deduce the
smoothness of qY , and, by applying �−1, the smoothness of the law of the process Xε killed as
well as the estimates claimed in the lemma. �

Lemma 3. Let U be a relatively compact open subset of M . The surjectivity of a(x) is only
assumed on the closure of U . Consider again the solution Xε of (1) driven by �ε . If ε is small
enough, then Xε

t has a C� density pε(t, x0, x) on U for any x0 ∈ M ; the density and more
generally its derivatives of order j ≤ � are uniformly dominated by t−(d+j)/α , for 0 < t ≤ t0, x0

in M and x in U .
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Proof. It is sufficient to prove the result for U = U0, for open subsets U0 � U1 � U2 � U3 �
U4 � M such that U4 is diffeomorphic to an open subset of R

d , and a(x) is surjective on U4; the
subset U of the lemma can indeed be covered by a finite number of such sets U0. Put τ0 = 0, and

τ ′
k = inf

{
t ≥ τk;Xε

t /∈ U3
}
, τk+1 = inf

{
t ≥ τ ′

k;Xε
t ∈ U2

}
.

We can associate to this sequence of stopping times an expansion for the law of Xε
t on U0,

Px0

[
Xε

t ∈ dx
] =

∞∑
k=0

Px0

[
Xε

t ∈ dx, τk ≤ t < τ ′
k

]
=

∞∑
k=0

Ex0

[
Px0

[
Xε

t ∈ dx, t < τ ′
k|Fτk

]
1{t≥τk}

]
=

∞∑
k=0

Ex0

[
Qε

(
t − τk,X

ε
τk

,dx
)
1{t≥τk}

]
,

where Ft is the filtration of � and Qε is the transition kernel of the process Xε killed at the exit
from U3. From Lemma 2, this kernel has for any � a C� density qε on U0 if ε is small enough,
so the law of Xε

t is absolutely continuous on U0 with density

pε(t, x0, x) =
∞∑

k=0

Ex0

[
qε

(
t − τk,X

ε
τk

, x
)
1{t≥τk}

]
(18)

= qε(t, x0, x) +
∞∑

k=1

Ex0

[
qε

(
t − τk,X

ε
τk

, x
)
1{t≥τk}

]
.

We already know from Lemma 2 that the first term (which is 0 if x0 /∈ U3) and its derivatives
are dominated by t−(d+j)/α . Moreover, we can choose ε small enough so that the process cannot
jump from Uc

2 into U1, and in this case Xε
τk

/∈ U1 for k ≥ 1; in particular (Xε
τk

, x) remains out of a
neighbourhood of the diagonal of M ×M for x ∈ U0. Thus, qε(t − τk,X

ε
τk

, x) and its derivatives
are uniformly bounded on U0 for k ≥ 1 (third assertion of Lemma 2). Thus, the proof of the
lemma is complete from

∣∣Djpε(t, x0, x)
∣∣ ≤ Cj

(
1U3(x0)t

−(d+j)/α +
∞∑

k=1

Px0 [t ≥ τk]
)

(19)

as soon as we prove that the series converges and is bounded. We have similarly to (15) that
Px[τ ′

0 ≥ u] ≥ 1/2 for x ∈ U2 if u is small enough, so by applying the strong Markov property
of X,

Px0

[
τ ′
k > u|Fτk

] ≥ Px0

[
τ ′
k − τk ≥ u|Fτk

] ≥ 1/2
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for k ≥ 1 on {τk < ∞}. Thus,

Px0

[
Xε

t ∈ U3
] ≥

∞∑
k=1

Px0

[
τk ≤ t < τ ′

k

] =
∞∑

k=1

Ex0

[
Px0

[
τ ′
k > t |Fτk

]
1{t≥τk}

]
≥ 1

2

∞∑
k=1

Px0 [t ≥ τk]

for t ≤ u, so the series in (19) is bounded, and we have∣∣Djpε(t, x0, x)
∣∣ ≤ Cj

(
1U3(x0)t

−(d+j)/α + 2Px0

[
Xε

t ∈ U3
])

for t ≤ u. If t > u, we use the Markov property, write

pε(t, x0, x) = Ex0

[
pε

(
u,Xε

t−u, x
)]

and deduce ∣∣Djpε(t, x0, x)
∣∣ ≤ Cj

(
Px0

[
Xε

t−u ∈ U3
]
t−(d+j)/α + 2Px0

[
Xε

t ∈ U3
])

(20)
≤ C′

j t
−(d+j)/α

Px0

[
Xε

t ∈ U4
]

by using the fact that P[Xε
t ∈ U4|Xε

t−u] ≥ 1/2 on {Xε
t−u ∈ U3} if u has been chosen small

enough. �

We have proved the estimate (20) which is more precise than the statement of the lemma. This
property will be used in Section 4.

The absolute continuity of the law of Xt claimed in Theorem 2 follows easily from Lemma 3,
by conditioning on the last jump of � before time t greater than ε. If τ is this last jump (we put
τ = 0 when there is no big jump), then we deduce that X has a density given by

p(t, x0, x) = Ex0

[
pε(t − τ,Xτ , x)

]
. (21)

However, this formula is not sufficient to obtain the smoothness and even the local boundedness
of p, because pε(t − τ,Xτ , x) is of order (t − τ)−d/α , at least when Xτ and x are close to each
other, and (t − τ)−d/α is not integrable if d ≥ α.

3.3. The case with big jumps

In Lemma 3, we have proved the smoothness of the law when big jumps of � have been removed.
We now have to take into account the effect of these big jumps. Notice that the following lemma
completes the proof of Theorem 2 when M is compact (choose U = M).
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Lemma 4. Let U be a relatively compact open subset of M . There exists a Markov process Yt

such that the laws of X and Y killed at the exit from U coincide, and Yt has on U a C� density
pY (t, y0, y), the derivatives of which satisfy∣∣DjpY (t, y0, y)

∣∣ ≤ Cj t
−(d+j)/α (22)

for 0 < t ≤ t0, y0 in M and y in U .

Proof. For any ε > 0, we have a decomposition L = (L − L ε) + L ε of the infinitesimal gener-
ator, where L − L ε is the generator of the process Xε driven by �ε , and

L εf (x) =
∫

{|λ|>ε}
(
f

(
a(x,λ)

) − f (x)
)
μ(dλ).

Choose U � U ′ � U ′′ � M . Fix a Riemannian metric on M and consider the Riemannian expo-
nential function; then its inverse exp−1

x y ∈ TxM is well defined and smooth if y is close to x.
Thus, if ε is small enough, we can consider a0(x,λ) = exp−1

x a(x,λ) for x ∈ U ′′ and |λ| ≤ ε. Let
h0 :M → [0,1] be a smooth function such that h0 = 1 on U ′ and h0 = 0 on U ′′c, and let

ã(x, λ) = expx

(
h0(x)a0(x,λ)

)
, b̃(x) = h0(x)b(x)

for |λ| ≤ ε. Let L̃ ε be the infinitesimal generator L − L ε where coefficients (a, b) have been
replaced by (̃a, b̃); this corresponds to a process X̃ driven by �ε , which is interpolated between
Xε and the motionless process (this is similar to the construction of Lemma 1 but we are here
on the manifold instead of R

d ); it satisfies Assumption 2, except the surjectivity condition which
does not hold out of U ′′ but holds on the closure of U ′. On the other hand, let h :M → [0,1] be
a smooth function such that h = 1 on U and h = 0 on U ′c, and define

L ε
f (x) =

∫
{|λ|>ε}

(
f

(
a(x,λ)

)
h
(
a(x,λ)

)
h(x) − f (x)

)
μ(dλ).

This means that we consider the jumps λ of � greater than ε; if the process is at a point x before
this jump, we kill it with probability 1 − h(x); if it is not killed, it jumps to x1 = a(x,λ) and
is killed with probability 1 − h(x1). We let Y be the process with generator L̃ ε + L ε

; this is
the process X̃ interlaced with jumps described by L ε

. This process enters our framework from
Section 2.7, and X and Y coincide when killed at the exit from U .

From Lemma 3, if ε is small enough, the process X̃ has on U ′ a C� density p̃(t, x0, x) with
respect to the Riemannian measure. On the other hand, there are Nt jumps ��τk

greater than
ε on the time interval [0, t], for a random τ = (τ1, τ2, . . .); we also let τ0 = 0 and append a last
τNt+1 = t . Let K be the random index k such that τk+1 − τk is maximal. Then

P[YτK+1− ∈ dy|τ ;�s,0 ≤ s ≤ τK ] = p̃(τK+1 − τK,YτK
, y)dy

on U ′, with ∣∣Dj p̃(τK+1 − τK,YτK
, y)

∣∣ ≤ Cj (τK+1 − τK)−(d+j)/α. (23)
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On {K = Nt }, we obtain the conditional density of Yt . Otherwise, we have to apply the jump at
τK+1 to this distribution; we first kill the process with probability 1 − h(y) and therefore get a
C� law on M supported by U ′; from Assumption 2, this law is then transformed by aε

 into a C�

law on M , which is restricted into a C� law supported by U ′ by the second killing. We therefore
obtain

P[YτK+1 ∈ dy|τ ;�s,0 ≤ s ≤ τK ] = p(y)dy

for a conditional density p which is C�, with derivatives dominated as in (23).
This density is then propagated from τK+1 to (τK+2)− by means of the semigroup of X̃ with

generator L̃ ε; if ε is small enough, then x 
→ ã(x, λ) are diffeomorphisms of M onto itself for
|λ| ≤ ε, and the process X̃ can be written as X̃t = �t(X̃0) for a flow of diffeomorphisms �t of
M onto itself; the technique of [12] for compact manifolds can be adapted to our case since the
process is motionless out of a compact part of M . We choose a copy of � which is independent
of �, and obtain

P[YτK+2− ∈ dy|τ ;�s,0 ≤ s ≤ τK ] (24)

= Ẽ
[
p

(
�−1

τK+2−τK+1
(y)

)∣∣det
(
D�−1

τK+2−τK+1

)
(y)

∣∣]dy,

where Ẽ is the expectation only with respect to �, and the determinant is computed relatively to
orthonormal bases on the tangent spaces. The differential of �t is solution of

D�t+dt (x) = Dã
(
�t(x),d�̃t

)
D�t(x) + Db̃

(
�t(x)

)
D�t(x)dt, D�0(x) = I.

If M is embedded in R
N , this can be transformed into an equation on R

N and it is a standard pro-
cedure to prove that supt≤T |D�t(x)| has bounded moments, uniformly in x: use the technique
of [13]. By differentiating this equation, the same property holds true for higher order derivatives,
so actually supt,x |Dj�t(x)|, t ≤ t0, has bounded moments. The same property can be verified

for the derivatives of the inverse map �−1
t , by looking at the equation of its derivative. Thus, in

(24), we obtain an estimate on the derivatives of the conditional density of YτK+2− similar to (23).
By iterating this procedure on all the subsequent jumps τk , we prove that Yt has a conditional
density; the unconditioned density pY is then obtained by taking the expectation and satisfy∣∣DjpY (y)

∣∣ ≤ CE
[
eCNt (τK+1 − τK)−(d+j)/α

]
on U ′, because each jump at τk and each use of the flow � between τk and τk+1 appends a
multiplicative constant in the estimation, and they are at most Nt of these jumps. The number Nt

of big jumps is a Poisson variable so has finite exponential moments. Moreover,

τK+1 − τK ≥ t

Nt + 1
,

so

(τK+1 − τK)−(d+j)/α ≤ (Nt + 1)(d+j)/αt−(d+j)/α

and we can conclude. �
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We now give an estimation of the probability for Xt to be in some relatively compact open
subset when one needs many jumps to come from the initial condition.

Lemma 5. Consider open subsets of M with relatively compact inclusions Un � Vn � Un+1,
and suppose that X cannot jump from Uc

n+1 into Vn. Let n ≥ 1. Then Px0 [Xt ∈ U0] is O(tn) as
t ↓ 0 uniformly for x0 in V c

n−1.

Proof. A similar result was proved in Lemma 1 of [26] for R
d ; the proof of this variant is much

simpler. Let hk , 0 ≤ k ≤ n − 1, be a smooth function with values in [0,1], which is 1 on Uk and
0 on V c

k . Let Ck = sup |Lhk| for the generator L of X. Then hk(x0) = 0 for x0 ∈ V c
n−1 ⊂ V c

k , and
Lhk(x) = 0 for x ∈ Uc

k+1, so

Px0 [Xt ∈ Uk] ≤ Ex0

[
hk(Xt )

] = Ex0

∫ t

0
Lhk(Xs)ds ≤ Ckt sup

0≤s≤t

Px0 [Xs ∈ Uk+1].

Applying this inequality for k = 0,1, . . . , n − 1 completes the proof. �

Proof of Theorem 2. The absolute continuity has already been proved in (21), the smoothness
has been obtained in Lemma 4 in the compact case, so we now have to study the smoothness of
the density in the non compact case. Let U0 be a relatively compact open subset of M which is
diffeomorphic to an open subset of R

d , and let K ⊂ U0 be compact. Under Assumption 3, there
exists a sequence (Un,Vn) satisfying the conditions of Lemma 5 starting from the given U0. For
ε and n which will be chosen respectively small and large enough, there also exists a process Y

constructed in Lemma 4 for U = Un+1, with a C� density pY (t, y0, y) on Un+1. The law of Y

killed at the exit τ from Un+1 has on U0 the density

qY (t, y0, y) = pY (t, y0, y) − Ey0

[
pY (t − τ,Yτ , y)1{τ<t}

]
. (25)

Consider the process Y when it is out of Un+1; its big jumps (coming from L ε
) are included in

jumps of X, so by construction of the sequence (Un,Vn), it is not possible to jump directly from
Uc

n+1 into Vn; the small jumps (coming from L̃ ε) have been modified, but they are small, so if ε

is small enough, it is again not possible to jump directly from Uc
n+1 into Vn. On the other hand,

Y coincides with X on Un+1 and has therefore the same jumps, so it cannot jump from Uc
k+1

into Vk for k < n. Thus, we can apply Lemma 5 to Y and deduce that Py0 [Yt ∈ U0] is O(tn) for
y0 /∈ Vn−1; we also have the uniform estimates (22), and we can deduce as in Lemma 2 of [26]
that if n has been chosen large enough, then DjpY (t, y0, y) is uniformly bounded for 0 < t ≤ t0,
y ∈ K and y0 /∈ Vn−1 (this result was proved on R

d but U0 can be viewed as a subset of R
d ).

These estimates on pY imply by means of (25) that DjqY (t, y0, y) is O(t−(d+j)/α) uniformly for
0 < t ≤ t0, y0 ∈ Un+1, y ∈ K , and is bounded if y0 ∈ Un+1 \ Vn−1.

The killed processes X and Y coincide, and the smoothness of the non killed process X is then
deduced as in the proof of Lemma 3 by considering successive exits from Un+1 and entrances
into Vn; we obtain an expansion similar to (18). When the process enters Vn, it is at a point out
of Vn−1, so we have the uniform boundedness of the derivatives of qY starting from this point,
and we can proceed and estimate the series as in Lemma 3. �
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Proof of Theorem 3. The decomposition μ = μ� + μ� of the Lévy measure corresponds to a
decomposition �t = �

�
t + �

�
t of the Lévy process into independent Lévy processes, where ��

is of pure jump type. We can apply Theorem 2 and deduce that the process X� driven by �� has
a smooth density p�. Let τ be the time of the last jump of �� before t , with τ = 0 when �� has
no jump on [0, t]; this last event has probability exp−tμ�(Rm). Similarly to (21), the density of
Xt can be written as

p(t, x0, x) = Ex0

[
p�(t − τ,Xτ , x)

]
= p�(t, x0, x) exp

(−tμ�
(
R

m
)) + Ex0

[
p�(t − τ,Xτ , x)1{τ>0}

]
.

The first term is smooth. On the event {τ > 0}, it follows from the assumption of the theorem
about μ

�
x that the conditional law of Xτ given �� has a smooth density p0 on M , so

Ex0

[
p�(t − τ,Xτ , x)1{τ>0}

] = Ex0

[
1{τ>0}

∫
p�(t − τ, z, x)p0(z)dz

]
.

We want to verify that the smoothness of p0 is preserved by p�(t − τ, ·, ·). We know from the
proof of Theorem 2 that p�(t − τ, z, ·) is C�

b on K if the initial condition z is out of a large
enough subset, so it is sufficient to consider the case of a smooth p0 with compact support. It
also follows from previous proof that it is sufficient to prove the result for the modified process
Y , and the propagation of the smoothness of the law by the semigroup of Y has been obtained in
the proof of Lemma 4. �

4. Lie groups and homogeneous spaces

In Theorem 2, we have assumed that the process cannot come from infinity by jumping (except
in the case of smooth jumps of Theorem 3). This assumption is not needed in the affine case
M = R

d , but other conditions are required in this case, and assumptions made for instance in
[24] are not intrinsic if R

d is viewed as a differentiable manifold (they are not invariant by
diffeomorphisms). We can of course apply the affine theorem when M is diffeomorphic to R

d ,
but again the conditions on the coefficients will depend on the diffeomorphism.

Thus, if jumps are not bounded, we need additional structure on M (as this is the case on R
d

where the affine structure is used). We consider here the case of Lévy processes on Lie groups;
more generally, we consider the case where M is an homogeneous space on which a Lie group
G acts, and Xt is the projection on M of a Lévy process on G.

Exposition about Lévy processes on Lie groups can be found in [19]. We shall use the theory
of integration on Lie groups or homogeneous spaces (Haar measures, invariant and relatively
invariant measures), which is explained in [6], see also for instance [28]. We recall here the
points which are useful for our study.

4.1. Lie groups

Let M = G be a d-dimensional Lie group with neutral element e and Lie algebra g; as a vector
space, g is the tangent space TeG; it can be identified to the space of left invariant vector fields
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on G; the Lie bracket of two elements of g, as well as the exponential map exp :g → G can be
constructed from this identification. We can choose as a smooth reference measure on G a left
Haar measure H G←, or a right Haar measure H G→; each of them is unique modulo a multiplicative
constant; they satisfy

H G←(gA) = H G←(A), H G←
(
Ag−1) = χG(g)H G←(A),

(26)
H G→(Ag) = H G→(A), H G→(gA) = χG(g)H G→(A)

for a group homomorphism χG :G → R
+ which is the modulus of G. If we are given H G←, we

can define H G→ by

H G→(dg) = χG(g)H G←(dg). (27)

The group G is said to be unimodular if χG ≡ 1; this holds true when G is compact because
any group homomorphism from G into R

+ must be equal to 1. Let Ad :G → GL(g) be the
adjoint representation of G; this means that Adg is the differential at e of the inner automorphism
x 
→ gxg−1. Then

χG(g) = |det Adg|. (28)

On G there are two differential calculi, a left invariant one and a right invariant one. The left and
right invariant derivatives are the linear forms

D←f (g)u = d

dε

∣∣∣∣
ε=0

f
(
g exp(εu)

)
, D→f (g)u = d

dε

∣∣∣∣
ε=0

f
(
exp(εu)g

)
for smooth functions f :G → R and u ∈ g. The invariance means that D←Lhf = LhD←f and
D→Rhf = RhD→f , with the notations Lhf (g) = f (hg) and Rhf (g) = f (gh). The left and
right invariant derivatives are related to each other by

D→f (g)u = D←f (g)Ad−1
g u. (29)

If we choose an inner product on g, we can consider the norms |D←f (g)| and |D→f (g)| of the
linear forms, and norms corresponding to different inner products are of course equivalent. We
can also consider classes C�

b,← or C�
b,→ of functions for which the left or right invariant deriva-

tives are bounded (without boundedness we can simply use the notation C� since the classes for
the left and right calculi coincide).

Let Xt be a left Lévy process on G with initial condition X0 = e. This is a strong Markov
process which is invariant under left multiplication, so that its semigroup satisfies PtLh = LhPt ;
equivalently, the infinitesimal generator should satisfy LLh = LhL. For 0 ≤ s ≤ t , the variable
X−1

s Xt must be independent of (Xu;0 ≤ u ≤ s) and must have the same law as Xt−s . We con-
sider here the subclass of Lévy processes without Brownian part. Let V be a relatively compact
neighbourhood of e in G which is diffeomorphic to a neighbourhood U of 0 in g by means of
the Lie exponential function. Then a left Lévy process without Brownian part is characterised by
a drift κ ∈ g and a Lévy measure μX on G \ {e} which integrates smooth bounded functions f
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such that f (e) = D←f (e) = 0; the infinitesimal generator of X can be written in the Hunt form
as

Lf (g) = D←f (g)κ +
∫

V

(
f (gx) − f (g) − D←f (g) exp−1 x

)
μX(dx) (30)

+
∫

V c

(
f (gx) − f (g)

)
μX(dx).

It is explained in [2] that X can be viewed as the solution of an equation driven by a Poisson
measure on R+ × G; by means of a technique similar to Section 2.7, it is also the solution of an
equation of type (1) driven by a g-valued Lévy process. More precisely, let μ be the measure on
U \ {0} which is the image of μX|V by exp−1; on the other hand, there exists a bi-measurable
bijection i from V c onto a Borel subset U ′ of Uc, so we can let μ be on Uc the image of μX|V c

by i. Then

Lf (g) = D←f (g)κ +
∫

U

(
f (g expλ) − f (g) − D←f (g)λ

)
μ(dλ)

+
∫

U ′

(
f

(
gi−1(λ)

) − f (g)
)
μ(dλ).

Thus Xt can be viewed as the solution of Xt = a(Xt−,d�t), where �t is a Lévy process in the
vector space g with Lévy measure μ supported by U ∪ U ′, and

a(g,λ) =
{

g expλ if λ ∈ U ,
gi−1(λ) if λ ∈ U ′.

Then a(g) :g → Tg(G) is the map which sends u to the value at g of the left invariant vector
field associated to u, so it is bijective, and it is also not difficult to verify the second part of
Assumption 2. The nondegeneracy condition of Assumption 1 on μ is immediately transferred
to an assumption on μX as

cρ2−α|u|2 ≤
∫

{| exp−1 x|≤ρ}
〈
exp−1 x,u

〉2
μX(dx) ≤ Cρ2−α|u|2 (31)

for u ∈ g and ρ ≤ ρ0 small enough so that exp−1 is well defined; the additional condition in the
case α = 1 is written as

lim sup
ε↓0

∣∣∣∣∫{ε≤| exp−1 x|≤ρ0}
exp−1 xμX(dx)

∣∣∣∣ < ∞. (32)

These two conditions do not depend on the choice of the inner product on g. If α < 1, we also
suppose that the process is pure jump, so that (30) becomes

Lf (g) =
∫

G

(
f (gx) − f (g)

)
μX(dx).
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For the first part of Assumption 2, we have to study the propagation of the smoothness of the
measure by a right translation; this is easy if we choose a right Haar measure as a reference
measure.

Thus, under these conditions, we can apply Theorem 2 and deduce that Xt has a smooth den-
sity if μX has compact support. If the support is not compact, a possibility is to use Theorem 3.
Otherwise, we can use the following result.

Theorem 4. Let Xt be a left Lévy process on G with X0 = e, the Lévy measure μX of which
satisfies (31), and the additional condition (32) if α = 1. If α < 1, suppose moreover that Xt is
a pure jump process. Then the law of Xt , t > 0, is absolutely continuous with respect to the left
Haar measure H G←. Let � ≥ 0. If∫

V c

χG(g)|Adg|jμX(dg) < ∞ (33)

for a relatively compact neighbourhood V of e and for j ≤ �, then the density is in C�
b,←. In

particular, if ∫
V c

|Adg|jμX(dg) < ∞ (34)

for any j , the density is in C∞
b,←.

Proof. The absolute continuity follows from Theorem 2. Assume now (33) for j = 0. Let V be
a relatively compact neighbourhood of e, and let μ

�
X and μ

�
X be the restrictions of μX to V and

V c; as usually, X can be written on [0, t] as a Lévy process X� with Lévy measure μ
�
X interlaced

with Nt big jumps at times τk described by μ
�
X . We proceed as in the proof of Lemma 4 and let

τK+1 be the end of the longest subinterval of [0, t] without big jump. Then, from Theorem 2,
conditionally on (τk), the variable Y = XτK+1− has with respect to the left Haar measure a C�

density pY satisfying ∣∣Dj←pY (y)
∣∣ ≤ Cj (τK+1 − τK)−(d+j)/α (35)

on V , and the right-hand side is integrable as in Lemma 4. But Theorem 2 also states that the
estimate is uniform with respect to the initial condition, so the same estimate holds true for
any gY , and one deduces that (35) holds uniformly on G. Then, we have Xt = YZ where Z =
X−1

τK+1−Xt is, conditionally on (τk), independent of Y . Conditionally on Z and (τk), the variable
Xt is therefore absolutely continuous with density

p(x|Z) = χG(Z)pY

(
xZ−1) (36)

(this follows from (26)). Thus, by integrating this formula and applying (35), we deduce that the
density of Xt is bounded and continuous as soon as χG(Z) is integrable. On the other hand,

χG(Z) = χG

((
X�

τK+1

)−1
X

�
t

) Nt∏
k=K+1

χG

(
X−1

τk−Xτk

)
,
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where the different terms are conditionally independent given (τk); the process χG(X
�
t ) is a geo-

metric Lévy process with bounded jumps, so the first term has bounded conditional expectation,
and we deduce from (33) for j = 0 that the conditional expectation of χG(Z) is bounded by
some exponential of Nt , so χG(Z) is integrable and the case � = 0 is proved.

We can differentiate (36) and get

D←p(x|Z)u = χG(Z)D←pY

(
xZ−1)AdZ(u)

for u ∈ g. For higher order derivatives, we have

Dj←p(x|Z)(u1, . . . , uj ) = χG(Z)Dj←pY

(
xZ−1)(AdZ(u1), . . . ,AdZ(uj )

)
.

We deduce the smoothness of the law of Xt and the boundedness of its derivatives if we prove
that χG(Z)|AdZ|j is integrable. To this end, we notice that

χG(Z)|AdZ|j ≤
Nt∏

k=K+1

(
χG

((
X�

τk

)−1
X�

τk+1

)|Ad
((X

�
τk

)−1X
�
τk+1 )

|j )

×
Nt∏

k=K+1

(
χG

(
X−1

τk−Xτk

)|Ad
(X−1

τk−Xτk
)
|j )

where the different terms are again conditionally independent given (τk); the integrability is
deduced similarly to the case j = 0 by using (33) for the terms of the second product. The last
claim of the theorem follows from (28). �

Condition (33) is trivially satisfied for j = 0 when G is unimodular, so in this case we obtain
the existence of a continuous bounded density without any assumption on the big jumps.

Notice also that (34) is related to the existence of exponential moments for big jumps. Assume
that μX is the image of a measure μ on g by the Lie exponential (this holds for instance when the
exponential is surjective). For λ ∈ g, let adλ :g → g be the adjoint action given by adλ(u) = [λ,u]
for the Lie bracket [·, ·]. We have Adexp(λ) = exp(adλ), so

|Adexp(λ)| ≤ exp
(|adλ|

) ≤ exp
(
c|λ|),

and (34) is satisfied if ∫
{|λ|>1}

exp
(
C|λ|)μ(dλ) < ∞

for any C. This is however the worst case. If G is nilpotent, then the expansion of exp(adλ) is
finite, and exponential moments can be replaced by ordinary moments; notice however that the
class of stable processes introduced by [16] on simply connected nilpotent groups does not enter
our framework, because (31) is not satisfied.

Theorem 4 can of course be translated into the case of right Haar measure, right invariant
derivatives, and right Lévy processes (invariant by right multiplication). Then the conditions
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(33) and (34) are replaced by conditions on χG(g)−1 and |Ad−1
g |. On the other hand, left and

right Lévy processes with the same infinitesimal generator at e have the same law at any fixed
time t , because the right Lévy process Y can be deduced from the left process X on [0, t] by
the formula Ys = X−1

t−sXt . Thus, in order to study the law of Xt = Yt , one can choose between
left and right calculi. Notice however that if for instance we apply the result for the right Lévy
process, we obtain that the density p→ of Xt with respect to H G→ is of class C�

b,→; from (27), the

relation between the densities with respect to the left and right Haar measures is p→ = χ−1
G p←;

the density p← is of class C�, but not necessarily of class C�
b,← (the relation between left and

right invariant derivatives is given in (29)).

4.2. Homogeneous spaces

We now consider the case where the manifold M is an homogeneous space M = G/H . More
precisely, G is a m-dimensional Lie group of transformations acting transitively and smoothly on
the left on M , and H = {h ∈ G;h(o) = o} is the isotropy group of some fixed point o of M ; the
projection π :G → M is given by π(g) = g(o). We can choose a Lebesgue measurable section S

of π−1 (which exists from the measurable section theorem), and any g in G can then be uniquely
written as g = Sxh for x = π(g) = g(o) and some h in H . The action of G on M can be written
as g(y) = π(gSy). We will denote by g and h the Lie algebras of G and H .

We can look for a measure on M which would be invariant under the action of G, but such
a measure does not always exist. We therefore weaken the invariance into a relative invariance
property, see [6,28] for an introduction to the topic and some of the properties which are given
below; we say that a Radon non-identically zero measure H M is relatively invariant under the
action of G with multiplier χ if χ :G → R

+ is a group homomorphism and

H M
(
g(A)

) = χ(g)H M(A).

Then the measure is invariant if χ ≡ 1; this is necessarily the case when G is compact. For
instance, we have seen in (26) that the right Haar measure on G is relatively invariant under the
left multiplication with multiplier χG. A relatively invariant measure also does not always exist,
but it exists in more general situations than invariant measures. It exists on M = G/H if and
only if χG/χH :H → R

+ can be extended to a group homomorphism χ :G → R
+; in this case

there exist a relatively invariant measure with multiplier χ , and this measure is unique modulo a
multiplicative constant. In particular, an invariant measure exists if and only if χG = χH on H ;
this property holds in particular when H is compact.

The relationship between left Haar measures on G and H and relatively invariant measures
on M is the following one. If H H← is a left Haar measure on H and if χ :G → R

+ is a group
homomorphism, then a Radon measure H M on M is relatively invariant with multiplier χ if and
only if the measure H G← defined on G by∫

G

f (g)H G←(dg) =
∫ ∫

M×H

f

χ
(Sxh)H M(dx)H H←(dh) (37)
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is a left Haar measure. For right Haar measures, (37) becomes (use (27))∫
G

f (g)H G→(dg) =
∫ ∫

M×H

f (Sxh)
χG

χ
(Sx)H M(dx)H H→(dh). (38)

If � is a G-valued variable with densities p← and p→ with respect to H G← and H G→, we
deduce from (37) and (38) that π(�) has density

p(x) =
∫

H

p←
χ

(Sxh)H H←(dh) = χG

χ
(Sx)

∫
H

p→(Sxh)H H→(dh) (39)

with respect to H M . Estimates on p can therefore be deduced from estimates on p← or p→, but
this is clearly simpler when H is compact.

We now explain how left and right invariant differential calculi on G can be transported to M .
For the left invariant calculus, notice that if F is a smooth function on M , we can differentiate
f = F ◦ π which is defined on G and consider

D←F(x)u = D←f (Sx)u (40)

for u ∈ g; notice that the result is 0 if u is in h, so the differential is actually a linear form on the
vector space g/h. The problem is that it depends on the choice of the section S; if S′ is another
section and if we fix x, then S′

x = Sxh for some h ∈ H , and

D←f
(
S′

x

)
u = D←f (Sx)Adhu.

If however H is compact, then we can choose on g an Ad(H)-invariant inner product (this means
that |Adhu| = |u| for h in H ), we can consider D←F(x) on the orthogonal p of h in g, and the
norm |D←F(x)| will not depend on the choice of S. It is invariant under the action of G in the
sense ∣∣D←(F ◦ g)(x)

∣∣ = ∣∣(D←F)
(
g(x)

)∣∣.
Higher order derivatives have a similar behaviour, and we can consider the classes of functions
C�

b,← on M .
For the right differential calculus, we only consider the case where (M, ·) is itself a Lie group,

and left translations of M form a normal subgroup of G. In this case, a canonical choice for
the section S is to let Sx be the left translation by x, so that S :M → G is an injective group
homomorphism. The group G is a semi-direct product

G = S(M) � H (41)

satisfying the commutation property hSx = Sh(x)h for h ∈ H . All elements of G can be written
in the form Sxh for some x ∈ M and h ∈ H , and we have the product rule

S(x1)h1S(x2)h2 = S
(
x1 · h1(x2)

)
h1h2.
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The vector space g can be written as g = h ⊕ m for the Lie algebras h and m of H and M ∼
S(M). We can consider the differential D→F(x)u computed on the Lie group M for u ∈ m, and
therefore the classes of functions C�

b,→. The relation with the differential on G is given by

D→F(x)u = D→f (Sx)u for f = F ◦ π

similar to (40), because exp(εu)Sx = Sexp(εu)x . The behaviour under the action of G is

D→(F ◦ g)(x)u = (D→F)
(
g(x)

)
Adgu. (42)

If H H→ and H M→ are right Haar measures on H and M , a right Haar measure can be defined on
G by ∫

G

f (g)H G→(dg) =
∫ ∫

M×H

f (Sxh)H M→ (dx)H H→(dh) (43)

because the right-hand side is invariant under the right action of H and S(M) (use SxhSy =
Sx·h(y)h). By comparing with (38), we see that H M→ is a measure on M with multiplier

χ(Sxh) = χG(Sxh)/χH (h), (44)

since this is a group homomorphism and χG/χ(Sx) = 1. In particular, the Haar modulus of M is
χM(x) = χ(Sx) = χG(Sx) and (39) becomes

p(x) =
∫

H

p→(Sxh)H H→(dh). (45)

In the next subsections, we study some classes of Markov processes on M . In the first case, we
assume that H is compact, and consider the class of Markov processes on M which are invariant
under the action of G; they can be written as the projection of left Lévy processes on G, and
we apply the left differential calculus. We also consider the case where X is the projection of a
right Lévy process. In the second case, we assume that G is a semi-direct product of type (41),
and we let X be the projection of a right Lévy process on G; we then apply the right differential
calculus.

4.3. Case 1: Compact isotropy subgroup

We here assume that M = G/H for a compact Lie subgroup H of G; in particular, there is on
H a unique probability measure H H which is both a left and right Haar measure, and there is
on M a measure H M which is invariant under the action of G, and which is related to a left
Haar measure on G by (37) with χ ≡ 1. We choose an Ad(H)-invariant inner product on g; it
induces a H -invariant inner product on the tangent space ToM , and a G-invariant Riemannian
metric on M . We consider the class of Markov processes Xt which are invariant under the action
of G; this means that Pt (F ◦ g) = (PtF ) ◦ g for any g ∈ G; in particular, the law of (Xt ; t ≥ 0)

with initial condition X0 = o is invariant under the action of H . From Theorem 2.2 of [19], these
processes are obtained as Xt = π(�t ), where �t is a left Lévy process on G which is invariant
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under the right action of H . The invariance of X implies in particular that its Lévy kernel μx can
be deduced from μo which will be simply called the Lévy measure μX of X; it is a H -invariant
measure on M \ {o} which integrates δ2(o, x) ∧ 1 (for the Riemannian distance δ). The Lévy
process � on G can be obtained by taking a Lévy measure given by

μ�(A) =
∫ ∫

H×M

1A

(
hSxh

−1)H H (dh)μX(dx), (46)

where the H -invariance of μX implies that μ� does not depend on the choice of the section
S (see [19]). Then the generator of � can be written by means of (30), for a neighbourhood
VG = expUG, where UG is a small enough ball of g (in particular UG is Ad(H)-invariant), and
for a drift κ ∈ g which is Ad(H)-invariant.

For 0 ≤ s ≤ t fixed, notice that �t has the same law as �s�
′
t−s , for �′ an independent copy of

�; moreover, the variable �s can be written as SXs hs , for hs a H -valued variable. Thus, letting
X′ = π(�′),

Xt = �t(o) ∼ �s�
′
t−s(o) = SXs hs

(
X′

t−s

) ∼ SXs

(
X′

t−s

)
(47)

because the law of X′
t−s is H -invariant. More generally, if μ1 and μ2 are two H -invariant mea-

sures on M , one can define the convolution μ1 ∗ μ2 as the image of the product measure by
(x, y) 
→ Sx(y); it does not depend on S and is again H -invariant. The relation (47) shows that
the law νt of Xt satisfies νt = νs ∗ νt−s . If the convolution product is commutative on the set of
H -invariant measures, then (G,H) is said to be a Gelfand pair.

An example of space M is the hyperbolic space viewed as a subspace of the Minkowski space,
namely

H
d = {

x = (x0, x1, . . . , xd) ∈ R
1,d ; |x| = 1, x0 > 0

}
, |x|2 = x2

0 −
d∑

i=1

x2
i ,

with o = (1,0, . . . ,0). It can be viewed as G/H , where G = SO+(1, d) is the restricted Lorentz
group of linear transformations of R

1,d which preserve the pseudo-norm, the time direction and
the space orientation, and H = {h ∈ G;h(o) = o} ∼ SO(d). Then it is known that (G,H) is a
Gelfand pair.

For our result, we need the functions

χM(x) = χG(Sx), A(x) = |AdSx |

which do not depend on S because χG = 1 on H and the inner product of g is Ad(H)-invariant.

Theorem 5. On M = G/H for H compact, let Xt be a G-invariant Markov process without
Brownian part, with X0 = o, the Lévy measure μX of which satisfies the non degeneracy as-
sumption (31) where exp−1 = exp−1

o denotes the inverse Riemannian exponential function based
at o, and the additional condition (32) if α = 1. If α < 1 suppose moreover that Xt is a pure
jump process. Then the law of Xt , t > 0, is absolutely continuous with respect to the G-invariant
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measure H M . Let � ≥ 0. If ∫
V c

χM(x)A(x)jμX(dx) < ∞ (48)

for a relatively compact neighbourhood V of o and for j ≤ �, then the density is in C�
b,← (see

Section 4.2 for the definition). In particular, if∫
V c

A(x)jμX(dx) < ∞ (49)

for any j , the density is in C∞
b,←. If (G,H) is a Gelfand pair, conditions (48) or (49) are not

needed.

Proof. We write X as Xt = π(�′
t ) for a left Lévy process �′ with Lévy measure μ�′ given by

(46); denote by L ′ its infinitesimal generator. The question is to know whether the non degener-
acy condition (31) for X can be translated into the similar condition for �′ (and similarly for (32)
when α = 1). Recall that g is written as the orthogonal sum of h and p, and we can choose the
section S such that Sx ∈ expp for x in a neighbourhood of o; then S is uniquely determined and
smooth on a maybe smaller neighbourhood; the measure μX on a neighbourhood of o is there-
fore transported to a measure μ′ on a neighbourhood of 0 in p, and μ′ satisfies Assumption 1. If
Sx = expλ, then

exp−1(hSxh
−1) = Adhλ + O

(|λ|2).
On the other hand, we have from (46) that

I (ρ) =
∫

{| exp−1 ξ |≤ρ}
〈
exp−1 ξ,u

〉2
μ�′(dξ)

=
∫ ∫

{| exp−1(hSxh−1)|≤ρ}
〈
exp−1(hSxh

−1), u〉2 H H (dh)μX(dx),

so obtaining the lower and upper bounds (31) for I (ρ) is equivalent to estimating

I ′(ρ) =
∫ ∫

H×{|λ|≤ρ}
〈Adhλ,u〉2 H H (dh)μ′(dλ).

The upper bound follows easily since μ′ satisfies Assumption 1, and for the lower bound, we can
restrict the domain of integration H to a small neighbourhood of the unity on which |Adhλ−λ| ≤
c|λ| for c arbitrarily small. We deduce that (31) holds true for the process �′ but the lower bound
is only for u in p. In order to obtain all of g, we add extra independent noise in �′. Let �′′
be a left Lévy process on H with generator L ′′ satisfying the conditions of Theorem 4; it is
therefore associated to a measure μ′′ on a neighbourhood of 0 in h, satisfying (31); we have
L ′′(F ◦π) = 0 for any smooth F on M . Let � be the process with generator L = L ′ + L ′′. Then
L(F ◦ π) = L ′(F ◦ π), so Xt = π(�′

t ) can also be written as Xt = π(�t ), and �t is a left Lévy
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process associated to the measure μ′ + μ′′ which now satisfies (31) for any u in g. Condition
(32) is similarly extended to � when α = 1.

Thus, we deduce from Theorem 4 that �t has a density p←(t, ·) with respect to H G←. We have
from (39) that the density of Xt with respect to H M is given by

p(t, x) =
∫

H

p←(t, Sxh)H H (dh).

Condition (48) for X implies (33) for �′ because χG(h) = |Adh| = 1 for h in H , so that
χG(hSxh

−1) = χM(x) and |Ad(hSxh−1)| = A(x), and (33) always holds for �′′ for the same
reason. Thus, Theorem 4 can also be applied to � for the smoothness of the law. In the case
� = 0, the continuity of p follows from the continuity of p← and the fact that we can choose a S

which is smooth in a neighbourhood of x. In the case � = 1, we have

p
(
t, π(g)

) =
∫

H

p←(t, Sπ(g)h)H H (dh) =
∫

H

p←(t, gh)H H (dh)

from the left invariance of H H , and we deduce from the definition (40) that

D←p(t, x)u =
∫

H

D←p←(t, Sxh)Ad−1
h uH H (dh),

so ∣∣D←p(t, x)
∣∣ ≤

∫
H

∣∣D←p←(t, Sxh)
∣∣H H (dh).

The study of higher order derivatives is similar.
If (G,H) is a Gelfand pair, we write a decomposition μX = μ

�
X +μ

�
X where μ

�
X is the restric-

tion to a H -invariant relatively compact neighbourhood of o; this corresponds to a decomposition
L = L � + L �, and X can be viewed as the process with generator L � interlaced with big jumps
described by L �. Conditionally on the times of the Nt big jumps before t , the law of Xt is there-
fore the convolution of (2Nt + 1) H -invariant laws. From the commutativity of the convolution,
all the big jumps can be put together, and we can write Xt in law for t fixed as S

X
�
t
(X

�
t ). The law

of X
�
t is in C∞

b,←, and this smoothness is preserved under the action of S
X

�
t
. �

If (G,H) is a Gelfand pair, the technique of previous proof for putting together big jumps can
be extended to other cases. For instance, we can obtain the smoothness of the law if the Lévy
measure is the sum of two measures, and only one of them satisfies the assumptions. This implies
that the upper bound in (31) can be weakened, as in [20].

We can also consider the class of processes Xt = π(�t ), for right Lévy processes on G. There
are Markov processes with semigroup Ptf (x) = Ef (�t (x)). Noticing that �t can also be viewed
at fixed time as the value of a left Lévy process, we again apply left differential calculus and
immediately obtain from the above proof the following result.

Theorem 6. On M = G/H for H compact, let Xt = π(�t ) = �t(o) for a right Lévy process
�t on G. We suppose that the left Lévy process having the same generator at e as � satisfies
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the assumptions of Theorem 4 for some �. Then Xt has a C�
b,← density with respect to the G-

invariant measure H M .

4.4. Case 2: Semi-direct product

We consider as in Theorem 6 processes Xt = π(�t) = �t(o) where �t is a right Lévy process on
G, but do not assume that H is compact. Instead, we suppose that G is a semi-direct product as
described in (41), and we apply the right differential calculus; recall that the right Haar measure
H M→ of M is relatively invariant under the action of G with multiplier χ given by (44).

A typical example is when M is the additive group R
d and G is the affine group. Then H =

GL(d).

Theorem 7. On M = G/H for G = S(M)�H , let Xt = π(�t ) = �t(o) for a right Lévy process
�t on G. We suppose that the Lévy measure μ� of � satisfies (31), and the additional condition
(32) if α = 1, and that � is a pure jump process if α < 1. Assume also that∫

V c

1

χ(g)

∣∣Ad−1
g

∣∣jμ�(dg) < ∞ (50)

for j ≤ �, where V is a relatively compact neighbourhood of e, and χ is given by (44). Then Xt

has a C�
b,→ density with respect to the right Haar measure H M→ .

Proof. Let us consider �t . We know that it can be viewed as the solution of an equation driven by
a g-valued Lévy process �. We denote by �ε or �(ε) the same process when jumps of � greater
than some ε (for some norm) have been removed, and by Xε or X(ε) its projection on M . We
have seen in (20) that we have an estimate for the density of �ε and its derivatives at e involving
P[�ε

t ∈ VG] for a relatively compact neighbourhood VG of e, uniformly in the initial condition.
From the right invariance of the process, we also have an estimate for the density at g involving
P[�ε

t ∈ VGg], uniform in g. In particular, we can write∣∣Dj→p�(ε)→
(
t, Sxhg−1

0

)∣∣ ≤ Cj t
−(d+j)/α

P
[
�ε

t ∈ VGSxhg−1
0

]
(51)

for any g0 ∈ G, x ∈ M , h ∈ H . We want to estimate the integral of this quantity with respect
to h. Let VM be a relatively compact neighbourhood of o; then V ′

G = VGS(VM)−1 is a relatively
compact neighbourhood of e. For x in M , let V x

M = x−1 ·VM · x. We have VG ⊂ V ′
GSxSyS

−1
x for

y ∈ V x
M , so

P
[
�ε

t ∈ VGSxhg−1
0

] ≤ P
[
�ε

t ∈ V ′
GSxSyhg−1

0

]
for any y ∈ V x

M and h ∈ H . By taking the mean value on V x
M , we obtain

P
[
�ε

t ∈ VGSxhg−1
0

] ≤ 1

H M→
(
V x

M

) ∫
V x

M

P
[
�ε

t ∈ V ′
GSxSyhg−1

0

]
H M→ (dy),
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and H M→ (V x
M) = H M→ (VM)/χM(x). Thus,∫

H

P
[
�ε

t ∈ VGSxhg−1
0

]
H H→(dh)

≤ CχM(x)

∫ ∫
V x

M×H

P
[
�ε

t ∈ V ′
GSxSyhg−1

0

]
H M→ (dy)H H→(dh)

(52)

≤ CχM(x)

∫
G

P
[
�ε

t ∈ V ′
GSxgg−1

0

]
H G→(dg)

= CχM(x)E
[

H G→
(
S−1

x

(
V ′

G

)−1
�ε

t g0
)] = CH G→

((
V ′

G

)−1)
,

where we have used (43) in the second inequality and χG(S−1
x ) = 1/χG(Sx) = 1/χM(x) in the

last equality. The density of �ε
t g0 at g is p�(ε)→ (t, gg−1

0 ), and similarly for its right invariant
derivatives. The law of the variable π(�ε

t g0) is the law of Xε
t with initial condition x0 = π(g0),

and (45) becomes

pX(ε)→ (t, x0, x) =
∫

H

p�(ε)→
(
t, Sxhg−1

0

)
H→(dh).

By differentiating, we have

∣∣Dj→pX(ε)→ (t, x0, x)
∣∣ ≤

∫
H

∣∣Dj→p�(ε)→
(
t, Sxhg−1

0

)∣∣H H→(dh) ≤ Cj t
−(d+j)/α

from (51) and (52). Thus, the smoothness of the law of Xε is proved. We now have to take into
account big jumps with the technique of Lemma 4, by considering Xε interlaced with the big
jumps, and letting (τK, τK+1) be the longest interval without small jumps. Previous argument
shows that, conditionally on the times of big jumps, the variable XτK+1− has a density p which
is in C�

b,→, and its derivatives are of order (τK+1 −τK)−(d+j)/α . The variable Xt is then obtained

from the action of ϒ = �t�
−1
τK+1−, so its density is

pX→(t, x0, x) = E
[
p

(
ϒ−1(x)

)
/χ(ϒ)

]
.

The variable 1/χ(ϒ) is conditionally integrable (given the times of big jumps) if (50) holds for
j = 0, so the theorem can be proved for � = 0 by the technique of Lemma 4; the case � ≥ 1 is
similar by applying (42) for the derivatives of p(ϒ

−1(x)). �

5. Examples

We here give some examples, and also some counterexamples where the “big jumps” condition
(Assumption 3) does not hold, and the smoothness of the density fails.
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5.1. Isotropic jumps

We have assumed that X is solution of an equation driven by some Lévy process �, but usually,
jumps are often described by the Lévy kernel μx , the image of μ by λ 
→ a(x,λ). It is not
easy to know when some Markov process with some Lévy kernel can be represented as the
solution of an equation of our type. We have already seen in Section 2.7 how it is possible
to deal with a finite part of the Lévy kernel. We now give the example of [1] where this is
globally possible. Let M be a complete Riemannian manifold, and suppose that μx is the image
by (r, u) 
→ expx(ru) of μR ⊗ νx , where μR is a measure on (0,∞) (radial part), and νx is the
uniform probability measure on the unit sphere of TxM (angular part); this means that we choose
a direction uniformly in the unit sphere, then go along a geodesic in that direction, at a distance
chosen according to μR . Such a μx is singular if μR is singular.

In order to construct an equation for this process, as explained in [1], we lift it to the bundle
O(M) of orthonormal frames, as this is classically done in the Eells–Elworthy–Malliavin con-
struction of the Brownian motion. Points of this bundle can be written as ξ = (x, g) for x ∈ M

and g : Rd → TxM is an orthogonal linear map; we put π(ξ) = x. Then, for λ ∈ R
d , we can

define a(ξ,λ) for ξ = (x, g) by

π
(
a(ξ,λ)

) = expx(gλ),

and the frame at π(a(ξ, λ)) is deduced from the frame g at x by parallel translation along the
geodesic (expx(gλt);0 ≤ t ≤ 1). Let � be the solution of the equation on O(M) with this coeffi-
cient a and with b = 0, driven by a symmetric Lévy process � with Lévy measure μ = μR ⊗ ν,
where ν is the uniform measure on the unit sphere of R

d . Then X = π(�) is the process that we
are looking for. The process � can be viewed as the horizontal process above X. Notice that if
(ei) is the canonical basis of R

d , the vector fields a(·)ei are the canonical horizontal vector fields
on O(M), and the equation of � is a canonical equation, since a is obtained from a by means
of (7).

However, the surjectivity of a(ξ) cannot be satisfied, since the dimension of O(M) which
is d(d + 1)/2 is greater than the dimension d of R

d . Nevertheless, we can add extra noise in
� without modifying the law of X and get this non degeneracy condition; more precisely, the
extra noise acts vertically on the process �. We enlarge the space R

d of the Lévy process as
R

d × O(d), put a(x,λ, e) = a(x,λ), and let a(x,0, g) be the vertical transformation which
modifies the frame by composing it with g. We let �′ be an independent Lévy process on O(d),
and consider the equation driven by (�,�′).

We choose the reference measure on O(M) which, when projected on M is the Riemannian
measure, and which is on each fibre the uniform measure (normalised measure invariant under
the action of O(d)). We consider the process � on O(M) the initial condition �0 of which has
uniform law on the fibre above some x0. We deduce from Theorem 2 the smoothness of the law
of �t on O(M) if μR has bounded support, and

∫
{|λ|≤ρ} |λ|2μR(dλ) is bounded below and above

by constants times ρ2−α as ρ ↓ 0. Conditionally on Xt = π(�t ), the variable �t has uniform law
on the fibre above Xt , so the density of �t is a function of x only; this is also the density of Xt ,
so Xt has a smooth law too.

When M is the sphere or the hyperbolic space, then M is a Riemannian symmetric space, and
we are in the framework of a G-invariant process on M = G/H , where (G,H) is a Gelfand
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pair. Thus, the smoothness of the law holds on H
d also in the case of unbounded jumps (The-

orem 5). The hyperbolic space is diffeomorphic to R
d ; however, if we use normal coordinates,

we cannot apply the theorem of [24] for R
d because the ellipticity condition is not satisfied. The

matrix (aa)−1, which is the hyperbolic Riemannian metric, explodes indeed exponentially fast
at infinity, whereas at most polynomial growth was assumed in [24].

5.2. Affine transformations

Let G be the group of affine transformations of R
d ; it enters the framework of (41) as G = R

d
�

GL(d), where g = (g2, g1) is the map g(x) = g1x + g2. The Lie algebra is the set R
d × gl(d),

and if u = (u2, u1), we have

g exp(εu)g−1(x) = x + ε
(
g1u1g

−1
1 x + g1

(
u2 − g1u1g

−1
1 g2

)) + O
(
ε2),

so

χG(g) = |detg1|, Adgu = (
g1u1g

−1
1 , g1

(
u2 − g1u1g

−1
1 g2

))
.

We deduce from Theorem 4 the uniform smoothness of the laws of a left Lévy process �t and
its projection Xt = π(�t ) on R

d , under the nondegeneracy condition on the small jumps (with
additional conditions if α ≤ 1), and if the moments of |Adg| for the big jumps part are finite.
Under the similar condition on |Ad−1

g |, we can also consider the right Lévy process, and deduce
the smoothness of its R

d component from Theorem 7; in this case H = GL(d) is unimodular, so
χ = χG.

Notice that G is not unimodular, so without the assumption on big jumps, we are not even sure
of the local boundedness of the density of Xt , except when we can apply Theorem 3 (smooth
Lévy measure). In order to find a counterexample, we are going, for simplicity, to consider a
subgroup of G.

So let now G be the group of transformations of R
d generated by translations and by dilations

of rate en, n ∈ Z. Thus G = R
d

�Z, where (y,n) corresponds to the transformation z 
→ enz+y.
The composition law of this group is

(y2, n2).(y1, n1) = (
en2y1 + y2, n1 + n2

)
.

Its Lie algebra is Abelian and can be identified to R
d . Denoting by dn and dy the counting

measure on Z and the Lebesgue measure on R
d , the Haar measures on G, the modulus and the

adjoint representation are

H G←(dy dn) = e−nd dy dn, H G→(dy dn) = dy dn, χG(y,n) = end, Ad(y,n)u = enu.

We consider on G left Lévy processes Xt = (Yt ,Nt ) such that Nt is a random walk on Z, and
Yt is deduced from a Lévy process �t on R

d , independent of N , by means of

Yt =
∫ t

0
eNs d�s.
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We want to study the density near (0,0) of X1 with respect to H G←, or equivalently the density
near 0 of Y1 restricted to {N1 = 0}. Suppose that � is an isotropic stable process. Then

Y1 ∼ �

(∫ 1

0
eαNs ds

)
∼

(∫ 1

0
eαNs ds

)1/α

�1,

and its conditional density at 0 given N is

pY (0|N) = c�

(∫ 1

0
eαNs ds

)−d/α

, (53)

where c� is the density of �1 at 0. Let pn be the mass of the Lévy measure of N at n, with∑
pn < ∞. Let An, n ≥ 1, be the following event: the process N has exactly two jumps before

time 1, one jump of size −n followed by a jump of size +n. Then the probability of An is
cNp−npn with cN = 1

2 exp−∑
pj ; conditionally on An, the times of the two jumps are obtained

from two independent variables uniformly distributed on [0,1], and by letting the negative jump
be the smallest one, and the positive jump the largest one. The law of X1 restricted to An is
smooth; by applying (53) and by denoting c = c�cN , its density at (0,0) is

pAn(0,0) = 2cp−npn

∫ 1

0

∫ t

0

(
s + (t − s)e−nα + 1 − t

)−d/α ds dt

= 2cp−npn

∫ 1

0
(1 − s)

(
1 + s

(
e−nα − 1

))−d/α ds

≥ cp−npne−2nα
(
1 − (

1 − e−nα
)2)−d/α

≥ cp−npnen(d−2α).

The law of X1 restricted to
⋃

1≤k≤n Ak is smooth with density
∑n

k=1 pAk
, so for any neighbour-

hood U of (0,0), the density p of X1 satisfies

ess sup
U

p ≥ c

n∑
k=1

p−kpkek(d−2α).

If the series diverges, then X1 does not have a locally bounded density, and examples can be
constructed as soon as d > 2α.

Choose for instance

pn = e−βn, p−n = e−σn (54)

for n ≥ 1, β > 0, σ > 0. In this case the density is not locally bounded if d ≥ 2α + β + σ . On
the other hand, Theorem 4 implies that if d < β , the density is bounded uniformly with respect
to the initial condition.

Consider now the law of Y1. We can consider the right Lévy process X′ with the same gener-
ator at e as X; if N and � are the same independent random walk and stable isotropic processes,
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X′ can be obtained as X′ = (Y ′,N), where Y ′ the solution of Y ′
t+dt = a(Y ′

t ,dNt,d�t), and
a(y,n,λ) = eny + λ. We have the equalities in law X′

1 ∼ X1 and Y ′
1 ∼ Y1.

The study of the law of Y ′ has been the subject of Theorem 7. For the example (54), this
theorem implies that Y ′

1 ∼ Y1 has a bounded density if d < σ . On the other hand, we have just
verified that this density is not locally bounded if d ≥ 2α + β + σ ; actually, this condition can
be improved because we now study Y1 instead of X1. The event An can be replaced by A′

n: the
process N has exactly one jump of size −n before time 1, and we deduce that the density is not
locally bounded if d ≥ α + σ .

5.3. Killed processes

Consider a process which satisfies our sufficient conditions for the smoothness of the law in some
manifold, say the affine space R

d , but which is killed at the exit from some open subset M . The
existence of a locally bounded density is preserved, but it appears that this killing can destroy the
smoothness of this density. We have seen in (9) that Assumption 2 is preserved, but Assumption 3
may fail; a problem can occur when jumps are allowed to enter the subset (coming from the
infinity of M), or at least (by applying Theorem 3) if the non-smooth part of these jumps are
allowed to enter the subset. If directions of non-smooth jumps lie in some closed cone of the
vector space R

d , then smoothness is preserved if the obstacle Mc is such a cone based at some
point of R

d ; in the general case however, roughly speaking, the obstacle can produce singularity
behind it. Let us give a one-dimensional example.

Let �t = �0
t − �1

t where �0
t and �1

t are real, independent, and are respectively, a symmetric
stable Lévy process with Lévy measure |λ|−α−1 dλ and a standard Poisson process. Let Xt be
the process �t killed when it quits M = (−∞,1). It is solution of the equation corresponding to
b = 0 and a(x,λ) = x + λ if x + λ < 1, equal to ∞ otherwise; the initial condition is x0 = 0.

Notice that the similar process without �1
t has smooth densities from Theorem 3. If �1

t is
added instead of subtracted, the law should also be smooth since the appended jumps do not
enable the process to enter M . We are now going to prove that in our framework, the law of X1

is not C1 as soon as α ≤ 2/3.
Let τ be the lifetime of X, which is the first exit time of � from M . Then the density of X1 is

p(x) = q(1, x) − E
[
q(1 − τ, x − �τ )1{τ<1}

]
, (55)

where q(t, ·) is the density of �t . We have

q(t, x) = e−t
∑

k

tk

k!q0(t, x + k),

where the density q0 of �0 is C∞ on (R+ × R) \ {(0,0)}, with bounded derivatives out of any
neighbourhood of (0,0). Consequently, q is smooth on (R+ × R) \ ({0} × Z−), and

q(k)(t, x) = q(t, x) − e−t t
k

k!q0(t, x + k) (56)



1916 J. Picard and C. Savona

is smooth on R+ × (−k − 1,−k + 1). We are going to study the derivative of p(x) as x ↑ 0.
We need some information on the joint law of the exit time τ and the overshoot �τ −1. To this

end, we first check that τ is almost surely a time of jump of �; this means that the process cannot
creep upward, see [10]; a simple way of verifying this fact is to notice that �0 cannot creep both
upward and downward because it has no Brownian part; since it is moreover symmetric, it creeps
neither upward, neither downward, and � which is obtained by adding a process with finitely
many jumps satisfies the same property. Consider the joint law of (τ,�τ−,�τ ), and denote by
T the set of jumps of �; notice that τ is a jump of �0; then

E
[
f (τ,�τ−,�τ )1{τ<∞}

] = E

∑
t∈T

f (t,Xt−,Xt− + ��t)1{Xt−�=∞}1{��t≥1−Xt−}

= E

∫ ∞

0

∫ ∞

0
f (t,Xt ,Xt + λ)1{Xt �=∞}1{λ≥1−Xt }λ−1−α dλdt

from a key formula of stochastic calculus on Poisson spaces. Thus,

P[τ ∈ dt,�τ− ∈ dx,�τ ∈ dy] = P[Xt ∈ dx](y − x)−1−α dt dy

on (0,∞) × (−∞,1) × (1,∞), and the density of (τ,�τ ) is

ζ(t, y) = E
[
(y − Xt)

−1−α
]

(57)

on (0,∞) × (1,∞); in particular y 
→ ζ(t, y) is C∞
b on [1 + ε,∞) for any ε > 0, uniformly

in t . Let h : R → [0,1] be a smooth function which is 1 on (−∞,4/3] and 0 on [5/3,+∞).
From (55), we have

p(x) = q(1, x) −
∫ ∞

1

∫ 1

0
q(1 − t, x − y)ζ(t, y)dt dy

= q(1, x) −
∫ ∞

1

∫ 1

0
q(1 − t, x − y)

(
1 − h(y)

)
ζ(t, y)dt dy − p(x)

with

p(x) =
∫ ∞

1

∫ 1

0
q(1 − t, x − y)h(y)ζ(t, y)dt dy.

The measure (1 − h(y))ζ(t, y)dy is C∞
b , uniformly in t , so its convolution with the law of �1−t

is also smooth, and we obtain that p+p is smooth. It is therefore sufficient to study the regularity
of p.

The function q(1− t, ·) is smooth out of Z−, so we can differentiate p on (−1/3,0) and obtain

Dp(x) =
∫ 5/3

1

∫ 1

0
Dq(1 − t, x − y)h(y)ζ(t, y)dt dy

=
∫ 5/3

1

∫ 1

0
(1 − t)et−1Dq0(1 − t, x + 1 − y)h(y)ζ(t, y)dt dy + O(1)
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as x ↑ 0, because the rest involves the function q(1) of (56) which is smooth on (−2,0). The
self-similarity of �0 enables to write

Dp(x) =
∫ 5/3

1

∫ 1

0
(1 − t)1−2/αet−1Dq0

(
1,

x + 1 − y

(1 − t)1/α

)
h(y)ζ(t, y)dt dy + O(1).

The law of the stable variable �0
1 is symmetric and unimodal, so Dq0 is nonnegative on R−,

and is bounded below by a positive constant on some [−C2,−C1] ⊂ (−∞,−21/α]. Thus, the
double integral can be bounded below by considering only the part where the fraction in Dq0
is in [−C2,−C1], where 1/2 ≤ t ≤ 1, and where 1 < y ≤ 4/3. With the change s = 1 − t , we
obtain

Dp(x) ≥ c

∫ 4/3

1

∫
J (y)

s1−2/αζ(1 − s, y)ds dy − C (58)

with

J (y) = {
0 < s ≤ 1/2;C1 ≤ s−1/α(y − 1 − x) ≤ C2

}
.

On the other hand, from (57),

ζ(t, y) = E
[
(y − Xt)

−1−α
] ≥ e−t

E
[(

y − X0
t

)−1−α]
,

where e−t is the probability for �1 to be 0 up to time t , and X0 is the process �0 killed at the
exit of M . We have from [7] that the law of X0

t with initial condition X0
0 = 0 is bounded below

and above by some positive constants times (1 − u)α/2 du for 0 ≤ u < 1 and 1/2 ≤ t ≤ 1, so

ζ(1 − s, y) ≥ c

∫ 1

0
(y − u)−α−1(1 − u)α/2 du

(59)

≥ c

∫ 1−(y−1)

1−3(y−1)

(
(y − 1) + (1 − u)

)−α−1
(1 − u)α/2 du ≥ c′(y − 1)−α/2

for 1 < y ≤ 4/3 and 0 ≤ s ≤ 1/2. We also have

J (y) = {
s > 0;C1 ≤ s−1/α(y − 1 − x) ≤ C2

}
for 1 < y ≤ 5/3 and −1/3 ≤ x < 0, because 0 ≤ y − 1 − x ≤ 1 and C−α

2 < C−α
1 ≤ 1/2; thus∫

J (y)

s1−2/α ds = C(y − 1 − x)2α−2. (60)

It follows from (58), (59) and (60) that

Dp(x) ≥ c

∫ 4/3

1
(y − 1 − x)2α−2(y − 1)−α/2 dy − C.

If α ≤ 2/3, we obtain that Dp(x) tends to +∞ as x ↑ 0, so Dp(x) tends to −∞ and the law of
X1 is not C1.
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