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Given a birth—death process on N with semigroup (Pr);>( and a discrete gradient 3, depending on a positive
weight u, we establish intertwining relations of the form 9, Py = Q; 9y, where (Q¢);>¢ is the Feynman-Kac
semigroup with potential V,, of another birth—death process. We provide applications when V), is nonnega-
tive and uniformly bounded from below, including Lipschitz contraction and Wasserstein curvature, various
functional inequalities, and stochastic orderings. Our analysis is naturally connected to the previous works
of Caputo—Dai Pra—Posta and of Chen on birth—death processes. The proofs are remarkably simple and rely
on interpolation, commutation, and convexity.
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1. Introduction

Commutation relations and convexity are useful tools for the fine analysis of Markov diffu-
sion semigroups [2,3,22]. The situation is more delicate on discrete spaces, due to the lack of
a chain rule formula [1,6,7,10,12,13,15,21]. In this work, we obtain new intertwining and sub-
commutation relations for a class of birth—death processes involving a discrete gradient and an
auxiliary Feynman—Kac semigroup. We also provide various applications of these relations. Our
analysis is naturally related to the curvature condition of Caputo—Dai Pra—Posta [10] and to the
Chen exponent of Chen [13,15]. More precisely, let us consider a birth—death process (X;);>0 on
the state space N := {0, 1, 2, ...}, that is, a Markov process with transition probabilities given by

Ayt +0(1) ify=x+1,
Ptx(y):Px(thy):{th+0(t) ify=x—1,
1— Ay + vt +0o(r) if y=ux,

where lim, .ot 'o(f) = 0. The transition rates A and v are respectively called the birth and
death rates of the process (X;);>0. The process is irreducible, positive recurrent (or ergodic), and
nonexplosive when the rates satisfy to A > 0 on N and v > 0 on N* and vy = 0 and

> AOA A > 1 % Vy -V
M<oo and E <_+ X +.+x—l>=oo’
Z VIV by Ay AxAx—i Ax e A1ho
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respectively. In this case, the unique stationary distribution w of the process is reversible and is
given by

Xy O ke ) !
p=pO ]2, xeNwithp@© =14+ > 25220 0
=1 ViV -y

x=1

Let us denote by F (resp., F+ and F,) the space of real-valued (resp., positive and nonnegative
nondecreasing) functions f on N. The associated semigroup (P;);>¢ is defined for any bounded
or nonnegative function f as

Pf)=Ef(XD1=)_ fOPF(),  xeN

y=0

This family of operators is positivity preserving and contractive on L? (i), p € [1, co]. Moreover,
the semigroup is also symmetric in L2(,u) since Ay (x) = vi4xu(1 + x) for any x € N (detailed
balance equation). The generator £ of the process is given for any f € F and x € N by

LI®)=2(fG+D = f0) +u(flx =1 = fx)
= x 0f () + 02 9" f (1),

where 9 and 9* are, respectively, the forward and backward discrete gradients on N:
f):=fx+1)—f(x) and I f(x):=f(x—1) = f(x).

Our approach is inspired from the remarkable properties of two special birth—death processes:
the M/M/1 and the M /M /oo queues. The M /M /oo queue has rates A, = A and v, = vx for
positive constants A and v. It is positive recurrent and its stationary distribution is the Poisson
measure (1, with mean p = A/u. If %, , stands for the binomial distribution of size x € N and
parameter p € [0, 1], the M /M /oo process satisfies for every x € N and ¢ > 0 to the Mehler type
formula

g(X;lX()Z)C)I%X’e—vt */Lp(l—e*‘”)' (12)

The M /M /1 queening process has rates A = A and vy = v\ (0} where 0 < A < v are constants.
It is a positive recurrent random walk on N reflected at 0. Its stationary distribution w is the geo-
metric measure with parameter p := A /v given by u(x) = (1 — p)p* for all x € N. A remarkable
common property shared by the M /M /1 and M /M /oo processes is the intertwining relation

aL=1rva, (1.3)

where £V = L — V is the discrete Schrodinger operator with potential V given by

e V(x):=v in the case of the M /M /oo queue
o V(x):=vljy(x) for the M/M/1 queue.
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Since V > 0 in these two cases, the operator £" is the generator of a birth-death process with
killing rate V and the associated Feynman—Kac semigroup (PIV) >0 18 given by

t
PY f(x)=E, [f(Xt)exp<—/0 V(Xs)dsﬂ.

The intertwining relation (1.3) is the infinitesimal version at time ¢ = 0 of the semigroup inter-
twining

P f(x) = PtV of (x) =E, [8f(X,)exp(—ft V(Xs)ds):|. (1.4)
0

Conversely, one may deduce (1.4) from (1.3) by using a semigroup interpolation. Namely, if we
consider s € [0, 1] — J(5) := PSV 0 P;_; f with V as above, then (1.4) rewrites as J(0) = J ()
and (1.4) follows from (1.3) since

J'(s)=PY (LY 0P _sf —0LP_f)=0.

In Section 2, we obtain by using semigroup interpolation an intertwining relation similar to
(1.4) for more general birth—death processes. By using convexity as an additional ingredient,
we also obtain sub-commutation relations. These results are new and have several applications
explored in Section 3, including Lipschitz contraction and Wasserstein curvature (Section 3.1),
functional inequalities including Poincaré, entropic, isoperimetric and transportation-information
inequalities (Section 3.2), hitting time of the origin for the M /M /1 queue (Section 3.3), convex
domination and stochastic orderings (Section 3.4).

2. Intertwining relations and sub-commutations

Let us fix some u € F. The u-modification of the original process (X;);>0 is a birth—death
process (X, 1);>0 with semigroup (P, ;);>0 and generator £, given by

Ly f(x) =25 0f (x) + vy d* f(x),

where the birth and death rates are respectively given by

Ux+1 Ux—1
A= + Ax+1 and VY= V.
Ux Ux

One can check that the measure kuzu is symmetric for (X, ;);>0. As consequence, the process
(Xu.1)r>0 is positive recurrent if and only if 2 is u-integrable. From now on, we restrict to the
minimal solution corresponding to the forward and backward Kolmogorov equations given as
follows: for any function f € F with finite support and ¢ > 0,

d
Epu,tf = Pu,tﬁuf = ﬁuPu,tf’
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cf. [14], Theorem 2.21. In order to justify in all circumstances the computations present in these
notes, we need to extend these identities to bounded functions f. Although it is not restrictive for
the backward equation, the forward equation is more subtle and requires an additional integra-
bility assumption. From now on, we always assume that the transition rates A" and v* and also
the potential V,, are P, ; integrable.

We define the discrete gradient 9, and the potential V,, by

9 :=1/u)d and V,(x):=vep] —vi+ iy — AL
Let ¢ : R — R be a smooth convex function such that for some constant ¢ > 0, and for all » € R,

@' (r)r = co(r). 2.1)

In particular, the behavior at infinity is at least polynomial of degree c.

Let us state our first main result about intertwining and sub-commutation relations between
the original process (X;);>0 and its u-modification (X, ;);>0. To the knowledge of the authors,
this result was not known. A connection to Chen’s results on birth—death processes [14] is given
in Section 3 in the sequel.

Theorem 2.1 (Intertwining and sub-commutation). Assume that the process is irredu-
cible, nonexplosive and that the potential V, is lower bounded. Let f € F be such that
supyen |9y f ()| < 00, and let x € N and t > 0. Then the following intertwining relation holds:

t
P f(x) = P,XMt Ou f(x) =E, I:auf(Xu,t)eXp(_/o Vu(Xu,s)dS>i|- (2.2)

Moreover, if V,, > 0 then we have the sub-commutation relation
t
(0 Pt f)(x) < Ey |:‘p(8uf)(Xu,t) 6Xp<— / cViu(Xu,s) dS)}- (2.3)
0

Proof. The key point is the following intertwining relation
au[/ = ‘CLYM O, 2.4)

where £, is the generator of the u-modification process (X, ;);>0 and £,Y“ =L, —V, is the
discrete Schrodinger operator with potential V,. Note that the relation (2.4) is somewhat similar
to (1.3) and follows by simple computations. To prove (2.2) from (2.4), we proceed as we did to
obtain (1.4) from (1.3). If we define

s€f0,1] > J() =P d,Pf,

s

then (2.2) rewrites as J (0) = J(¢). Hence, it suffices to show that J is constant. By [13], we know
that if 9, f is bounded then 9, P;_; f is also bounded. Hence, using the Kolmogorov equations
and (2.4), we obtain

N

J'(s)= P/ (L 0y Pi—s f — 0, LP_s f) =0,
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yielding to the intertwining relation (2.2).
Now let us prove the sub-commutation relation (2.3) by adapting the previous interpolation
method, under the additional assumption V,, > 0. Denoting

sel0,t] > Jo(s) =P o@uPi—s f).

then (2.3) rewrites as J.(0) < J.(¢). Hence let us show that J. is a nondecreasing function. Since
¢ (0, Pi—_s f) is bounded, we have by the Kolmogorov equations:

JU(s) =P (T),  where T =L5" @@y Pi—s f) — ¢'QuPi—s ) W LP—s f.
Letting g, = 0, P,—s f, we obtain, by using (2.4),

T= ‘szu(p(gu) - <P/(gu)£:,/"gu
= A" (09(gu) — ¢’ (gu) 3gu) + v* (3 @(gu) — ¢ () 0" gu) + V(9 (8) 81 — co(8u))
= 1A% (8, 0gu) + V" A% (84, 0% gu) + Vi (9 (81)8u — co(84)).

where A?(r,s) = o(r +5) — @(r) — ¢'(r)s is the so-called A-transform of ¢ studied in [12] also
known in convex analysis as the Bregman divergence associated to ¢ [8]. Note that g, + 9g, =
gu(-+1)and g, + 3*g, = g, (- — 1). Now, since ¢ is convex, we have A? > 0. Moreover, using
(2.1) and V,, > 0 we obtain that 7 > 0. Finally, we get the desired result since the Feynman—Kac
semigroup (P,f"t/”) ¢>0 18 positivity preserving. (]

Remark 2.2 (Ergodic condition). The potential V, in Theorem 2.1 is assumed to be lower
bounded. When it is positive, the so-called Chen exponent infycn V, (y) is related to the ex-
ponential ergodicity of the original process (X;);>0, cf. [13]. However, identity (2.2) does not
require such an ergodic assumption. A nice study of the exponential decay of birth—death pro-
cesses was recently studied by Chen in [15], with special emphasis on nonergodic situations
including transient cases.

Remark 2.3 (Case of equality). According to the proof of Theorem 2.1, the assumption V,, > 0
can be dropped if the convex function ¢ realizes the equality in (2.1). Such an observation was
expected since in this case the use of Holder’s inequality in (2.2) entails the desired result.

Remark 2.4 (Propagation of monotonicity). The identity (2.2) provides a new proof of the prop-
agation of monotonicity [28], Proposition 4.2.10: if f € F; then P; f € F; for all t > 0. See
Section 3.4 for an interpretation in terms of stochastic ordering.

Remark 2.5 (Other gradients). Theorem 2.1 possesses a natural analogue for the discrete back-
ward gradient 9*. We ignore if there exists a useful “balanced” intertwining relation involving a
combination of both forward and backward gradients.

Remark 2.6 (Higher dimensional spaces). The extension of Theorem 2.1 to higher dimensional
discrete processes such as queuing networks or interacting particles systems arising in statistical
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mechanics is a very natural question, but seems to be technically difficult. However, a first step
has been emphasized by Wu in his study of functional inequalities for Gibbs measures through
the Dobrushin uniqueness condition: see step 1 in the proof of Proposition 2.5 in [31].

Our second new result below complements the previous one for the case u = 1. Let Z be an
open interval of R and let ¢ : Z — R be a smooth convex function such that ¢” > 0 and —1/¢"
is convex on Z. Following the notations of [12], we define on the convex subset A7 := {(r, s) €
R?: (r,r +5) € T x T} the nonnegative function B® on Az by

BY(r,s):=(¢'(r +5) — ¢'(r)s, (r,s) € Az.

By Theorem 4.4 in [12], B? is convex on .A7. Some interesting examples of such functionals
will be given in Section 3.2 below.

Theorem 2.7 (Sub-commutation for 1-modification). Assume that the process is irreducible
and nonexplosive. If the transition rate A is nonincreasing and v is nondecreasing then for any
Junction f € F such that supc |9f (y)| < 0o and for any t > 0,
1%
BY(Pif, 0P f) < P, ; BY(f,0f), (2.5)

where the nonnegative potential is V1 := 9(v — A).

Proof. Under our assumption, the two processes (X;);>0 and (X1,);>0 are nonexplosive. By
using standard approximation procedures, one may assume that f has finite support. If we define

se0,t]— J(s):= P B‘p(Pt sf, 0Pi—s f) we see that (2.5) rewrites as J(0) < J(¢). Denote
F=P_sfand G = 8P, _sf =0F.Since BY(F, G) is bounded, the Kolmogorov equations are

available and using (2.4) with the constant function u = 1, we have J'(s) = Pl‘fls(T) with
1% 0 0 1%
T=L,"B(F,G)— —BY(F,G)LF — —BY(F,G)L|'G
ax dy
1 9 1 90
=\ 0BY(F,G)—A—B¥*(F,G)dF —A» —B?*(F,G)0G
ax dy
1 q% J * 1 J *
+v 3*BY(F,G)—v—BY(F,G)3*F —v —BY(F,G)3*G
ax ay
+3(v—k)< BY(F,G)G — BY(F, G))
dy
0
> 8v<a—B“’(F, G)G — BY(F, G))
y

a d
—dx| —B¥Y(F,G)G — —B*(F,G)G — B*(F, G) |,
ay ox

and where in the last line we used the convexity of the bivariate function B¥. Moreover, since
the birth and death rates A and v are respectively, nonincreasing and nondecreasing on the one
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hand, and using once again convexity on the other hand, we get

9

d Ry %

: BY(F.G)G > axB (F,G)G + BY(F, G),
y BY(F, G)

from which we deduce that T is nonnegative and thus J is nondecreasing. O

Remark 2.8 (Diffusion case). Actually, the intertwining relations above have their counterpart
in continuous state space, as suggested by the so-called Witten Laplacian method used for the
analysis of Langevin-type diffusion processes, see for instance Helffer’s book [19]. Let A be the
generator of a one-dimensional real-valued diffusion (X;),>¢ of the type

.AfZO'ZfN—I-bf/,

where f and the two functions o, b are sufficiently smooth. Given a smooth positive function a
on R, the gradient of interest is V, f = af’. Denote (P;);>¢ the associated diffusion semigroup.
Then it is not hard to adapt to the continuous case the argument of Theorem 2.1 to show that the
following intertwining relation holds:

t
Va P f(x) =E, I:Vaf(Xa,t)eXp(_/ Va(Xa,s)dS)i|-
0
Here (X4,;)r>0 is a new diffusion process with generator
Aaf:0,2f//+baf/
and drift b, and potential V,, given by

a/ a// a/
by :=200"+b—202— and V,:=0%— —b + —b,.
a a a
In particular, if the weight a = o, where o is assumed to be positive, then the two processes

above have the same distribution and by Jensen’s inequality, we obtain

t O,/
Vo Prf(x)] = Ex |:|Vaf(Xt)| eXP<—/ <60” —-b'+ b;)(Xs)dSH-
0
Hence under the assumption that there exists a constant p such that
O_/
infoo” —b' +b— > p,
o

then we get |V, P; f| < e ?' P,|V, f|. This type of sub-commutation relation is at the heart of the
Bakry—Emery calculus [2,3,22]. See also [25] for a nice study of functional inequalities for the
invariant measure under the condition p = 0. However, as we will see in Remark 3.6 below, such
a choice of the weight is not really adapted when studying the optimal constant in the Poincaré
inequality.
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3. Applications

This section is devoted to applications of Theorems 2.1 and 2.7.

3.1. Lipschitz contraction and Wasserstein curvature

Theorem 2.1 allows to recover a result of Chen [13] on the contraction property of the semigroup
on the space of Lipschitz functions. Indeed, the intertwining (2.2) can be used to derive bounds
on the Wasserstein curvature of the birth—death process, without using the coupling technique
emphasized by Chen. For a distance d on N, we denote by P, (N) the set of probability measures
& on N such that ZX end(x, x0)§(x) < oo for some (or equivalently for all) xo € N. We recall
that the Wasserstein distance between two probability measures (1, wa € Py(N) is defined by

Wa(i1, u2) = inf //d(x,y)y(dx,dy), (3.1)
yeMarg(u1,12) JN JN

where Marg(it1, t2) is the set of probability measures on N? such that the marginal distributions
are u1 and g, respectively. The Kantorovich—Rubinstein duality [30], Theorem 5.10, gives

Wa(ut, p2) = sup /gd(m—m), (3.2)
geLip, (d) N

where Lip(d) is the set of Lipschitz function g with respect to the distance d, that is,

lellLine) = sup lg(x) —g(y)l

1 = - . .~

P x,yeN d(x,y)
Xy

and Lip; (d) consists of 1-Lipschitz functions. We assume that the kernel P;* € Py (N) for every
x € N and ¢ > 0 so that the semigroup is well-defined on Lip(d). The Wasserstein curvature of
(X:)r>0 with respect to a given distance d is the optimal (largest) constant ¢ in the following
contraction inequality:

Il P | Lip(a)—Lipt) <€ ", t>0. (3.3)

Here || PrllLip(d)—Lipa) denotes the supremum of || P flLip@) When f runs over Lip,(d). It is
actually equivalent to the property that

Wa(P*, Py <e 'd(x,y), x,yeN,t>0.

If the optimal constant is positive, then the process is positive recurrent and the semigroup con-
verges exponentially fast in Wasserstein distance W, to the stationary distribution p [14], Theo-
rem 5.23.

Let p € F be an increasing function and define u € F as u, := p(x + 1) — p(x). The metric
under consideration in the forthcoming analysis is

du(x,y) =1p(x) —p(I.
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Hence, u remains for the distance between two consecutive points. In particular, the space of
functions f for which the intertwining relation of Theorem 2.1 is available is actually Lip(d,).
Then it is shown in [13,20] by coupling arguments that the Wasserstein curvature ¢, with respect
to the distance d,, is given by the Chen exponent, that is,

Ux—1 Ux+1

+ Ay — )Vx—&-l

Ux Ux

o,=1inf vy4 1 —v
u ceN x+1 X
The following corollary of Theorem 2.1 allows to recover this result via an intertwining relation.

Corollary 3.1 (Contraction and curvature). Assume that the potential V, is lower bounded.
Then with the notations of Theorem 2.1, for any t > 0,

t
| Pt lILip(d)—~Lip(d) = | Pt o l|Lip(a,) = sup Ex [eXp<—f0 Vu(Xy,s) dS>]- 34
xeN

In particular, the contraction inequality (3.3) is satisfied with the optimal constant

o, = inf V,(y). 3.5
yeN

Proof. Let f € Lip,(d,) be a 1-Lipschitz function with respect to the distance d,,. For any y, z €
N such that y < z (without loss of generality), we have by the intertwining identity (2.2) of
Theorem 2.1 and Jensen’s inequality,

z—1

IPf@) = Pf O <D ueldu Prf (x)]

xX=y

z—1 t
< ZuxEx[wuf(xu,tnexp(— | vu(xu,ads)]
x=y 0

t
Sdu(Z’)’)SUPEx[eXP(—/ VM(XM,S)dS>]s
xeN 0

so that dividing by d,, (z, y) and taking suprema entail the inequality:

t
| PrlILip(d)—Lip(dy) < sup Ex [GXP(—/ Vu(Xu,s)dS>:|-
0

xeN
Finally, since by Remark 2.4 the semigroup (P;);>( propagates monotonicity, the right-hand side
of the latter inequality is nothing but || P o||Lip(d,), Showing that the supremum over Lip, (dy,) is
attained for the function p. The proof of equation (3.4) is achieved.

To establish (3.5), note that it suffices to get part < since the other inequality follows from
(3.4). Applying (2.2) to the function p which is trivially in Lip; (d,,), we have for all x e N,

1 t
o, < -7 logE, [exp(—f V,,(Xu’s)ds):|, t>0,
0
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and taking the limit as ¢+ — O entails the inequality o, < V,,(x), available for all x € N. The proof

of (3.5) is now complete. U

Remark 3.2 (Pointwise gradient estimates for the Poisson equation). The argument used in
the proof of Corollary 3.1 allows also to obtain pointwise gradient estimates for the solution
of the Poisson equation at the heart of Chen—Stein methods [4,5,9,27]. More precisely, let us
assume that d,, is such that p € L! (n). For any centered function f € Lip;(d,), let us consider
the Poisson equation —Lg = f, where the unknown is g. Then under the assumption o, > 0,
there exists a unique centered solution gy € Lip(d,) to this equation given by the formula g s =
fooo P; f dt. We have for any x € N the following estimate (compare with [23], Theorem 2.1):

o0
sup |dgr(x)[= sup Mx/ [0, Py f (x)| dt
feLipy(du) feLip; (dy) 0

o

:ux/ 0u Prp(x)dt
0
o0 t

=uxf Ex|:exp<—/ Vu(Xu,S)ds>:|dt
0 0

Ux
= %

3.2. Functional inequalities

Theorems 2.1 and 2.7 allow to establish a whole family of discrete functional inequalities. We
define the bilinear symmetric form I on F by

T(f.8):=1(L(fg)— fLg—gLf)=3(Laf dg+vd*fd*g).

Under the positive recurrence assumption, the associated Dirichlet form acting on its domain
D(EL) x D(E,) is given by

1
Eu(f. 8) ZZ—/NF(f,g)dMZ/NMfang,

2
where the second equality comes from the reversibility of the process. Here the domain D(E,,)
corresponds to the subspace of functions f € L?(u) such that Eu(f, f) is finite. The stationary
distribution p is said to satisfy the Poincaré inequality with constant c if for any function f €
D(gu.)»

cVar, (f) <&E.(f. ), (3.6)

where Var, (f) := ,u(fz) — u(f)2 and u(f) := fN f du. The optimal (largest) constant cp is
the spectral gap of L, that is, the first nontrivial eigenvalue of the operator — L. The constant cp
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governs the L% (1) exponential decay to the equilibrium of the semigroup: for all f € L?(u) and
>0,

1P f = (2 <€ N = (Dl 200

Several years ago, Chen used a coupling method which provides the following formula for the
spectral gap:

cp= sup oy,
M€f+

where o, is the Wasserstein curvature of Section 3.1 or, in other words, the Chen exponent. It
corresponds to Theorem 1.1 in [13], equation (1.4). The following corollary of Theorem 2.1
allows to recover the > part of Chen’s formula.

Corollary 3.3 (Spectral gap and Wasserstein curvatures). Assume that there exists some func-
tion u € F4 such that the associated Wasserstein curvature o, is positive. Then the Poincaré

inequality (3.6) holds with constant Sup,c 70y, or in other words

cp > sup oy.
ME]:+

Proof. Since there exists some function u € F such that the Wasserstein curvature o, is posi-
tive, the process is positive recurrent. By Proposition 6.59 in [14], the subspace of D(£,,) con-
sisting of functions with finite support is a core of the Dirichlet form and thus we can assume
without loss of generality that f has finite support. We have

® g
Var, (f) = — / f O e d
NJo df
o0
=—2// P, fLP; fdrdu
NJO
o
=2/ /Au2(8uP,f)2dudt
0 N
o
52] e—2<’uf/ Au? Py (8, f) dpdt,
0 N

where in the last line we used Theorem 2.1 with the convex function ¢ (x) = x%. Now the measure
Auzu is invariant for the semigroup (P, ;);>0, so that we have

o0
Var, (f) <2 / o0t / M2 (3 f) dudt
0 N

1 2
i / AOf)? du
oy JN

1
O._ugﬂ(fv f)a
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where in the second line we used o,, > 0. The proof of the Poincaré inequality is complete. [J

Remark 3.4 (M /M /oo and M/M/1). The spectral gap of the M /M /oo and M /M /1 processes
is well-known [13]. Corollary 3.3 allows to recover it easily. Indeed, in the M /M /oo case, the
value cp = v can be obtained as follows: choose the constant weight u = 1 to get cp > v, and
notice that the equality holds for affine functions. For a positive recurrent M /M /1 process, that
is, A < v, we obtain cp > (ﬁ — ﬁ)z by choosing the weight u, := (v/k)xﬂ, whereas the
equality asymptotically holds in (3.6) as k¥ — /v/A for the functions «*, x € N. We conclude
that cp = (v/A — V).

Remark 3.5 (Alternative method for M/M/1). In the M/M/1 case, let us recover the bound

cp > (W — ﬁ)z by using a different method. Letting p(x) :=x for x e Nand g = f — f(0)
for a given function f € D(£,), we have

1
/gzduz—/gz(—ﬁp)du
N v—24JN

1
= ——&,(g%
BRIy

A
= / (g% dpdu
v—A N

A
- _)L/N(Zgaf—i-(af)z)du

Vv

A ) ) 2
< v—k(z\//Ng dﬂ\//N(af) dM+/N(3f) d,u>,

where in the last inequality we used Cauchy—Schwarz’ inequality. Solving this polynomial of
degree 2 entails the inequality

2 A f 2
d _— af) du.
/Ng ol i

Finally using the inequality Var, (f) < [y g% dpu, we get the result.

Remark 3.6 (Diffusion case). As mentioned in Remark 2.8, the argument above leading to the
Poincaré inequality might be extended to the positive recurrent diffusion case. In particular, under
the same notation we obtain the following lower bound on the Poincaré constant

cp > sup inf V,(x),
a xeR

where the supremum is taken over all positive € function a on R. Note that up to the transfor-
mation a — 1/a, such a formula was already obtained by Chen and Wang in [16] through their
Theorem 3.1, equation (3.4), by using a coupling approach somewhat similar to that emphasized
by Chen in the discrete case.
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Theorem 2.7 allows to derive functional inequalities more general than the Poincaré inequality.
Let Z be an open interval of R and for a smooth convex function ¢ : Z — R such that ¢” > 0 and

—1/¢" is convex on Z, we define the ¢-entropy of a sufficiently integrable function f:N — 7
as

Entf, (f) = n(p(f)) — o(u(f)).

Following [11], we say that the stationary distribution p satisfies a ¢-entropy inequality with
constant ¢ > 0 if for any Z-valued function f € D(,) such that ¢'(f) € D(E,),

cEnt! (f) < E.(f, ¢'()). (3.7
See, for instance, [12] for an investigation of the properties of g-entropies. The ¢-entropy in-
equality (3.7) is satisfied if and only if the following entropy dissipation of the semigroup holds:
for any sufficiently integrable Z-valued function f and every ¢ > 0,

Entl“i(P,f) <e Ent/“j(f).

We have the following corollary of Theorem 2.7.

Corollary 3.7 (Entropic inequalities and Wasserstein curvature). If the birth rate A is nonin-
creasing and the Wasserstein curvature o1 (with the constant weight u = 1) is positive, then the
@-entropy inequality (3.7) holds with constant o1.

Proof. As in the proof of Corollary 3.3 the assertion o1 > 0 entails the positive recurrence of
the process. Moreover, we assume once again that the Z-valued function f has finite support. By
reversibility, we have

Entf(f) = /N (0(Pof) — o(u())) du

= v d (P f)ded

__/N/O E‘P ) n

_ f / o/ (P f)LPf dpudr

0 N

:/m/kaptfa(p/(ﬂf)d,udt
0 N

=/°°/ ABY(P,f. 0P, f)dudr,
0 N

where BY is as in Theorem 2.7 (the identity dg d¢’(g) = B¥(g,dg) comes from g + dg =
g(- 4+ 1)). Using now Theorem 2.7 together with the invariance of the measure Ap for the 1-
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modification semigroup (P1);>0, We obtain
o0
Ents (f) < / / e~ APy BY(f, 0f) du dr
0o JN

=foofe—“1',\3¢(f, af)du dt
0 N

1
L / ABY(f, 3f ) dpt
o1 Jn

1

l /
= &4/ (). .

Remark 3.8 (Examples of entropic inequalities). The constant in the g-entropy inequality pro-
vided by Corollary 3.7 is not optimal in general (compare for instance with the Poincaré inequal-
ity of Corollary 3.3 when ¢(r) = r? with 7 = R). The choice ¢(r) = rlogr with Z = (0, c0)
allows us to recover the modified log-Sobolev inequality of [10], Theorem 3.1: for any positive
function f € D(£,) such that log f € D(E,,),

o1 Entf) (f) < Eu(flog f). (3.8)

Note that beyond this entropic inequality, it is proved in [10] that the entropy is convex along the
semigroup (a careful reading of the proof in [10] suggests that it simply boils down to commu-
tation and convexity of A transforms!). For the M /M /oo process, the estimate of Corollary 3.7
is sharp since o1 = v and the equality in (3.8) holds as @ — oo for the function x € N — e**.
Note that the M /M /1 process and its invariant distribution, which is geometric, do not satisfy a
modified log-Sobolev inequality. Another p-entropy inequality of interest is that obtained when
considering the convex function ¢ (r) :=r?, p € (1, 2], with Z = (0, oo): for any positive func-
tion f € D(E,) such that fP~1 € D(E,),

n(fPy —p(f)F < O%S,L(f, 0. (3.9)

Such an inequality has been studied in [7] in the case of Markov processes on a finite state space
and also in [12] for the M /M /oo queuing process. In particular, it can be seen as an interpolation
between Poincaré and modified log-Sobolev inequalities.

Under the positive recurrence assumption, Theorem 2.1 implies also other type of functional
inequalities such as discrete isoperimetry and transportation-information inequalities. Given a
positive function u, we focus on the distance d,, constructed in Section 3.1, where we assume
moreover that p € D(E,,), that is, au? is w-integrable or, in other words, the u-modification
process (X, /)r>0 18 positive recurrent. The invariant measure p is said to satisfy a weighted
isoperimetric inequality with weight # and constant s, > O if for any absolutely continuous
probability measure = with density f € D(E,,) with respect to u,

hWa, e, 0 = [ daad (3.10)
N
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where the Wasserstein distance WV, is defined in (3.1) with respect to the distance d,,. The termi-
nology of isoperimetry is employed here because it is a generalization of the classical isoperime-
try, which states that the centered L!-norm is dominated by an energy of L!-type. Indeed, if the
weight u is identically 1, then the distance d; between two different points is at least 1, so that
(3.10) entails

2h1/N|f—1|du=hlwd<n,u)shlwdlm,ms/NMaﬂdu,

where d is the trivial distance O or 1. Note that the L'-energy emphasized above differs from the
discrete version of the diffusion case, since our discrete gradient does not derive from I".

On the other hand, let us introduce the transportation-information inequalities emphasized
in [18]. Let o be a continuous positive and increasing function on [0, co) vanishing at 0. The
invariant measure p satisfies a transportation-information inequality with deviation function « if
for any absolutely continuous probability measure & with density f with respect to ©, we have

aWg, (r, u)) <Z(m, p), (3.11)

where the so-called Fisher—Donsker—Varadhan information of 7 with respect to u is defined as

otherwise.

T(r, p) = {ig(«/? V) iV eDEY:;

Note that Z(-, n) is nothing but the rate function governing the large deviation principle in large
time of the empirical measure L; := i1 fot dx, ds, where &, is the Dirac mass at point x. In
other words, the Fisher—-Donsker—Varadhan information rewrites as the variational identity [14],
Theorem 8.8:

LV
Z(r, )= sup f——dn.
V€.7:+ N V

The interest of the transportation-information inequality resides in the equivalence with the fol-
lowing tail estimate of the empirical measure [18], Theorem 2.4: for any absolutely continuous
probability measure 7 with density f € L?(u) with respect to j, and any g € Lip, (dy),

Pr(Li(g) — n(g) > r) < I fll2qe ", r>0,t>0.

We have the following corollary of Theorem 2.1.

Corollary 3.9 (Weighted isoperimetry and transportation-information inequality). With the
notations of Theorem 2.1, assume that the process is positive recurrent and that the following
quantity is well defined:

o0 t
Ky :=/ supE, |:exp<—/ VM(XM,X)ds)i| dr < oo.
0 xeN 0
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Then the weighted isoperimetric inequality (3.10) is satisfied with constant h, = 1/x,. If more-
over there exists two constants € > 0 and 6 > 1 such that

(I + et + (L + 1/’ < —a(re(@ — 1) +vx(1/6 — 1) + b, xeN, (@3.12)

where a :==ag 9 > 0 and b := b g > 0 are two other constants depending on both & and 0, then
the transportation-information inequality (3.11) is satisfied with deviation function

Vb2 +2a(r/i)? —b
a(r):= sup .

e>0,0>1 2a

Remark 3.10 (The case of positive Wasserstein curvature). In particular, if the Wasserstein
curvature o, with respect to the distance d,, is positive, then the process is positive recurrent and
we have

0 Wi, (., 1) < / Juldfldi and  aWq, (r. 1)) < Z(r, ),
N

with the deviation function

Vb2 +2a@ro)? —b
a(r) = sup .

e>0,0>1 2a

Proof of Corollary 3.9. For every f, g € D(€,) we have, by reversibility,

Cov,(f. 8) :=/N(g—/Nng)fdu
=/N<—/OOO£P,gdt>fdu
:/OOO<—/NPtg£fd/L)dt

2/0 Eu(Prg, fHdr.

(3.13)

Now, for every probability measure 7 <« p with dmw = fdu, f € D(£,), we get, using (3.13),

Wa, (. u) = sup  Covy(f,g)
geLip (dy)

o0
= Ssup / EH(P,g, f)de
geLipy(dy) JO

oo
= sup / /Auafa,,P,ngdt
geLip;(dy) JO JN
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o
0 N

o0 t
< / supE{exp(— f vu<xu,s)ds)}dr / Juldf) due,
0 xeN 0 N

where in the last inequality we used Theorem 2.1. This concludes the proof of the weighted
isoperimetric inequality.
Using now Cauchy—Schwarz inequality, reversibility and then (3.12) with Vg (x) := 6%, x € N,

Wa, (70, ) < kuv/ L(m, M)\//N (VFCFD+F) du

5,@,,/1(71,“)\// ((L+eru?+ 1+ 1/e)vu? ) fdu
N

< kuv I(m, M)\// (—a%:g + b)fdu
N

< iuy/Z(, v/ aZ(mw, ) +b,

from which the desired transportation-information inequality holds. ]

Remark 3.11 (M /M /oo and M /M /1 revisited). Corollary 3.9 exhibits optimal functional in-
equalities, at least in the M /M /oo case and its stationary distribution, the Poisson measure of
mean X /v. Choosing the weight # = 1, we obtain the optimal constant 7; = v in the isoperimet-
ric inequality. Indeed, Corollary 3.9 entails /i; > v, whereas the other inequality is obtained
by choosing 7w a Poisson measure of different parameter. For the transportation-information
inequality, we recover Theorem 2.1 in [24] since the choice of a := 0(1 + 1/¢)/(6 — 1) and
b:=r(14+e+(141/¢)0) allows us to obtain the deviation function «(r) := A(/1 + vr/A — 12,
r > 0. Note that it is optimal in view of Example 4.5 in [17]: for any absolutely continuous prob-
ability measure 7 with square-integrable density with respect to u,

1 1 [ A vr 2
lim —logP, | — Xsds——>r)==A,/1+——-1]), r>0.
t—o00 tJo Y A

For the M /M /1 process, we have the following inequalities for the optimal isoperimetric con-
stant i, with u, = (v/A)*/? (a quantity that will appear again in Section 3.3):

(VA = V) = = (VI = VRV

To get the second inequality, we choose the density f = (v/A)(1 — 1{0}) and the 1-Lipschitz test
function g = p. In particular as the ratio A /v is small, we obtain /, =~ v. However, we ignore if
such a process satisfies a transportation-information inequality.
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3.3. Hitting time of the origin by the M /M /1 process

Recall that we consider the ergodic M /M /1 process (A < v) for which the stationary distribution
is geometric of parameter A /v. Since the process behaves as a random walk outside 0, the ergodic
property relies essentially on its behavior at point 0. Using the notation of Theorem 2.1, the
intertwining relation (2.2) applied with a positive function u entails the identity

0 P f (x) =E, |:8uf(Xt)eXp(_ ft Vu(Xu,x)ds)]a
0

where the potential is given for every x € N by

Ux—1
; vi20) +A —

X X

Ux+1

Vux):=v— A.

Following Robert [26], the process (X ?7)120 is the solution of the stochastic differential equation

Xp=y and dx}=dNY —1 _odN", 10, (3.14)

where (Ntm )i=0 and (N,(V)) >0 are two independent Poisson processes with parameter A and v,
respectively. Since the process is assumed to be positive recurrent, the hitting time of 0,

Ty :=inf{t > 0: X; =0}
is finite almost surely. We have the following corollary of Theorem 2.1.

Corollary 3.12 (Hitting time of the origin for the ergodic M/M/1 process). Given x € N,
consider a positive recurrent M/M /1 process (Xf“)tzo starting at point x + 1, and denote
(X;,.1)e=0 its u-modification process starting at point x, where

v x/2

Then we have the following tail estimate: for any t > 0,

t
exp (—\/E/ 1{0}(X;"Y)ds>i|
0

P(Ty ! > 1) = ”xe_t(ﬁ_ﬁ)zE[u(xx )
u,t

< uxe—“ﬁ—ﬁ)z.

Proof. Let us use a coupling argument. Let (X7),;>0 be a copy of (X} +1)z30, starting at point x.
We assume that it constructed with respect to the same driving Poisson processes (N,(A)) >0 and

(Nt(v)) />0 as the process (X7 + ):>0. Hence, the stochastic differential equation (3.14) satisfied by
the two coupling processes entails that the difference between (X7 +1) >0 and (X7 );>0 remains
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constant, equal to 1, until time 7}y *+1 the first hitting time of the origin by (X7 +h >0. After time
Ty +1 the processes are identically the same, so that the following identity holds:

X = x¥ +1{T6r+] t>0.

>t}
Since the original process is assumed to be positive recurrent, the coupling is successful, that is,
the coupling time is finite almost surely. Therefore, we have for any function f € Lip(d;), where
dj is the distance dj (x, y) = |x — y|,

0P f()=Pf(x+ 1) = P f@) =ELf X)) = fFXDI=E[of X)L panr_ )]
so that if we denote the function p(x) = x, we obtain

P(T3H > 1) = 0P p(x) = ux 3, P p (x).

Using now (2.2) with the function u, we get

1 t
IP(T(;“rl > t):ux]E[u(X" )exp (—/0 Vu(Xij’S)ds)],
u,t

where V,, := (v/A — V)2 + +/Av]|g. O

Remark 3.13 (Sharpness). Using a completely different approach, Van Doorn established in
[29], through his Theorem 4.2 together with his Example 5, the following asymptotics

1
lim —log]P’(T(;H'] >t)=—(\/X—\/§)2, x€N.
=00

Hence, one deduces that the exponential decay in the result of Corollary 3.12 is sharp. On the
other hand, Proposition 5.4 in [26] states that Td‘“ has exponential moment bounded as fol-
lows:

) (x+1)/2
(3]

so that Chebyshev’s inequality yields a tail estimate somewhat similar to ours — although with a

worst constant depending on the initial point x + 1.

Remark 3.14 (Other approach). The proof of Corollary 3.12 suggests also a martingale ap-
proach. First, note that we have the identity

Lu
—l)l{()} = —7 -V
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which entails as in the previous proof and since u# > 1, the following computations:

P(Tt! > 1) =8P p(x)

'
=E|:exp<—/ vl{()}(Xf)ds>i|
0
< ]E|:u(X;‘)exp<— /l<% + Vu)(Xf)d5>]
0

< uxe—t(ﬁ—ﬁ)z,

since the process (M;");>¢ given by

‘L
M :=u(X;‘)exp(—/ —”(Xf)ds>, >0,
0 u

is a supermartingale. Indeed, denoting
'L
Z¢ = exp(— / —M(Xf) ds),
0o u

AM" = Z" du(X¥) + u(X})dZ"

we have by Ito’s formula:

L
= ZM(AM, + Lu(X]) dr) — u(X]) =2 (X5 ZV dt
u
== Z;" th 5
where (M;);>0 is a local martingale. Therefore, the process (M;");>0 is a positive local martingale

and thus a supermartingale.

3.4. Convex domination of birth—death processes

Let (X;);>0 be the M /M /oo process starting from x € N. The Mehler-type formula (1.2) states
that the random variable X7 has the same distribution as the independent sum of the variable X?,
which follows the Poisson distribution of parameter (1/v)(1 — e™""), and a binomial random

variable fo) of parameters (x, e~""). By convention, B,(O) is assumed to be 0. Hence, we have
for any nonnegative function f and any x € N,

Elf (X)) =E[f(x*+B™)], >0 (3.15)
Such an identity can be provided by using the commutation relation (1.4). Indeed we have

ELf (XD = (1 —eELF(X)]+e ELf (X} + D],
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so that a recursive argument on the initial state provides the required result. An interesting con-
sequence of (3.15) appears in terms of concentration properties. For instance, a straightforward
computation entails that for any 6 > 0, we get the following inequality on the Laplace transforms

E[e"*7] < E[e"™],

where N} is a Poisson random variable with the same mean as X;. Therefore, using the expo-
nential Chebyshev inequality entails an upper bound on the tail of the centered random variable
X7 — E[X7], which is sharp as t — oo (recall that the stationary distribution is Poisson with
parameter A/v).

Actually, one may ask if for a more general birth—death process, the intertwining relation of
type (2.2) may imply a relation similar to (3.15). This leads to the notion of stochastic ordering.

Following the presentation enlighten by Stoyan in [28], let us start with the classical notion of
stochastic ordering for integer-valued random variables. We say that X is stochastically smaller
than Y, and we note X <, Y, if for any function f € Fy,

ELf (O] =E[f(M)].

Such a relation, as the convex domination introduced below, is a partial ordering on the set of
distribution functions. The interesting feature of this stochastic ordering resides in its character-
ization in terms of coupling: we have X <; Y if and only if there exist random variables X
and Y1, both defined on the same probability space and with the same distribution as X and Y,
respectively, such that P(X| < X») = 1. Moreover, it is equivalent to the following comparison
between tails: we have X <; Y if and only P(X > x) < P(Y > x) for any x € R. In other words,
the random variable X takes small values with a higher probability than Y does.

Another stochastic ordering of interest is the convex ordering, or convex domination. Denote
F. the subset of F; consisting of nonnegative nondecreasing convex functions, where in our
discrete setting the convexity of a function f:N — R is understood as 8% f > 0. We say that X
is convex dominated by Y, and we note X <. Y, if for any function f € F,

E[Lf(XDO] <E[f(Y)].
It is known to be equivalent to the inequality
E[(X —x)* ] <E[(Y —x)7], x €R,

where a™ := max{a, 0}. Typically, one may deduce from the convex domination concentration
properties like a comparison of moments or Laplace transforms as in the M /M /oo case above.
Moreover, this refined ordering might appear for instance when using de-la-Vallée-Poussin’s
lemma about uniform integrability of a family of random variables. However, in contrast to the
<4 ordering, the authors ignore if there exists a genuine interpretation of the convex domination
in terms of coupling.

Coming back to our birth—death framework, we observe that if we want to use the intertwining
relation (2.2) of Theorem 2.1 in order to obtain stochastic domination, then a first difficulty
arises. Indeed, another birth—death process appears in the right-hand-side of (2.2), namely the
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u-modification of the original process. Therefore, let us provide first a lemma which allows us to
compare two birth—death processes with respect to the <; ordering. Although the result below is
somewhat obvious from the point of view of coupling, we give an alternative proof based on the
interpolation method emphasized in the proof of Theorem 2.1. See also [28], Proposition 4.2.10.

Lemma 3.15 (Stochastic comparison of birth—-death processes). Let (X});>0 and (X~ )i>0
be two birth-death processes both starting from x € N. Denoting respectively A, v and X,V the
transition rates of the associated generators L and L, we assume that they satisfy the following
assumption:

Then for every t > 0, the random variable X~f is stochastically smaller than X7 . In other words,
we have X} <q X7.

Proof. Let g € F; and define the function s € [0,¢] — J(s) := 133 P;_sg where (P);>0 and
(ﬁt)tzo are the semigroups of (X;);>0 and (X7 );>0, respectively. By differentiation, we have

J'(s) = Py(LP—sg — LP_sg) = Py((h— 1) dP—sg + (D — ) 3* Pr_yg),

which is nonpositive since the semigroup (Ps);>¢ satisfies the propagation of monotonicity, cf.
Remark 2.4. Hence, the function J is nonincreasing and the desired result holds. ]

Now we are able to state the following corollary of Theorem 2.1, which states a new convex
domination involving decoupled random variables in the right-hand side. However, despite some
particular cases like the M /M /1 case for which the convenient coupling appearing in the proof
of Corollary 3.12 allows us to extend the next result to the <; ordering, we ignore if it can be
done in full generality.

Corollary 3.16 (Convex domination). Denote (X ,y )i=0 a birth—death process starting at some
point 'y € N. We assume that the birth rate A is nonincreasing and that there exists k > 0 such
that

(v —A) >«k.

Then for any t > 0 and any x € N, the random variable X} +1 s convex dominated by the in-
dependent sum of X} and a Bernoulli random variable Y; of parameter e™*" € (0, 1]. In other
words, we have

X < X¥ 4y,
Proof. We have to show that for any function f € F,

E[f (X TH] < ELf(XF + Y))). (3.16)
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Using the intertwining relation (2.2) of Theorem 2.1, we have since f is nondecreasing:

ELf (X7 TD] < BLF(X)]+e M EI9f (X1 )]
<E[f(XO)]+e ™ "E[3f (XP)]
= (1 —e ™ HE[f(X)]+e “E[f (X} + 1]
=E[f (X} + 1),

where to obtain the second inequality we used Lemma 3.15 with the 1-modification process
(Xf,)tzo playing the role of (X7 ),>0 since df is nondecreasing (recall that f € F.). O

Remark 3.17 (More on convex domination). By an easy recursive argument one obtains from
the latter result the following convex domination:

X; << X)+ Bz(x)’

where Bt(x) is a binomial random variable of parameters (x, e~ "), independent from X?, as in
the case of the M /M /oo queuing process.
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