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We display several examples of generalized gamma convoluted and hyperbolically completely monotone
random variables related to positive α-stable laws. We also obtain new factorizations for the latter, refining
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1. Introduction

A positive random variable X is called a Generalized Gamma Convolution (GGC) if its Laplace
transform reads

E[e−λX] = exp−
[
aλ +

∫ ∞

0
(1 − e−λx)

ϕ(x)

x
dx

]
, λ ≥ 0, (1.1)

where a ≥ 0 and ϕ is a completely monotone (CM) function over (0,+∞). The denomina-
tion comes from the fact that the above class can be identified as the closure for weak conver-
gence of finite convolutions of Gamma distributions. We refer to [3] and [24] for comprehensive
monographs on such random variables. From their definition, GGC random variables are self-
decomposable (SD) hence infinitely divisible (ID), absolutely continuous and unimodal – see,
for example, [19] for the proofs of the latter properties. We also see from (1.1) that GGC random
variables are characterized up to translation by the positive Radon measure on (0,+∞) uniquely
associated to the CM function ϕ by Bernstein’s theorem, which is called the Thorin measure of
X and whose total mass, ϕ(0+), might be infinite. As an illustration of this characterization,
Theorem 4.1.4 in [3] shows that the density of X vanishes in a+ if ϕ(0+) > 1, whereas it is
infinite in a+ if ϕ(0+) < 1. We refer to [14] for a recent survey on GGC variables having a
finite Thorin measure, dealing in particular with their Wiener–Gamma representations and their
relations with Dirichlet processes.

A positive random variable X is said to be hyperbolically completely monotone (HCM) if it
has a density f on (0,+∞) such that for every u > 0 the function

Hu(w) = f (uv)f (u/v), w = v + 1/v ≥ 2,

is CM in the variable w (it is easy to see that Hu is always a function of w). In general, a function
f : (0,+∞) → (0,+∞) is said to be HCM when the above CM property holds for Hu, and this
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extended definition will be important in the sequel. HCM densities turn out to be characterized
as pointwise limits of densities of the form

x �→ Cxβ−1
N∏

i=1

(x + yi)
−γi , (1.2)

where all above parameters are positive – see Sections 5.2 and 5.3 in [3]. This characterization
yields many explicit examples of GGC random variables, since it is also true that HCM random
variables are GGC – see Theorem 5.2.1 in [3]. Actually, HCM variables appear as a kind of center
for GGC in view of Theorem 6.2.1 in [3] which states that the independent product or quotient
of a GGC by a HCM variable is still a GGC. The HCM class is also stable by independent
multiplication and power transformations of absolute value greater than one. We refer to [3] for
many other properties of HCM densities and functions.

The HCM property is connected to log-concavity in the following way. A positive random
variable X is said to be hyperbolically monotone (HM) if it has a density f on (0,+∞) such
that the above function Hu is nonincreasing in the variable w. Similarly as above, one can extend
the HM property to all positive functions on (0,+∞). Obviously, HCM is a subclass of HM.
It is easy to see – see [3], pages 101–102 – that X is HM iff its density f is such that t �→
f (et ) is log-concave on R. This shows that f is a.e. differentiable with x �→ xf ′(x)/f (x) a
nonincreasing function, so that f ′ has at most one change of sign and X is unimodal. The main
theorem in [7] shows that HM variables are actually multiplicatively strong unimodal, viz. their
independent product with any unimodal random variable is unimodal. From the log-concavity
characterization, the HM property is stable by power transformation of any value, and this entails
that the inclusion HCM ⊂ HM is strict: if L ∼ Exp(1), then

√
L is HM but not ID, hence not

HCM. From Prékopa’s theorem, the HM property is also stable by independent multiplication.
For a positive random variable with density, the standard way to derive the GGC property is

to read it from the Laplace transform. For example, it is straightforward to see that positive α-
stable variables are all GGC – see Example 3.2.1 in [3]. On the other hand, it is easier to study
the HCM property from features on the density itself and Laplace transforms are barely helpful.
As an illustration of this, we show without much effort in Section 4 of the present paper that
the quotient of two positive α-stable variables, whose density is explicit, is HCM iff α ≤ 1/2.

Problems become usually more intricate when one searches for GGC without explicit Laplace
transform or for HCM without closed expression for the density.

In 1981, Bondesson raised the conjecture that positive α-stable variables should be HCM iff
α ≤ 1/2 and this very hard problem (quoting his own recent words, see Remark 3 in [5]) is still
unsolved except in the easy case when α is the reciprocal of an integer – see Example 5.6.2
in [3]. Notice, in passing, that the validity of this conjecture is erroneously taken for granted
in [14], page 361. We refer to [1], pages 54–55, [3], pages 88–89 and also to the manuscript [4],
for several reasons, partly numerical, supporting this hypothesis. Let us also mention the main
theorem of [22], which states that positive α-stable random variables are HM iff α ≤ 1/2. Actu-
ally, it follows easily from the proofs of Lemmas 1 and 2 in [22] that the pth power of a positive
(p/n)-stable variable is HCM for any integers p,n ≥ 2 such that p/n ≤ 1/2.

In the present paper, we will present several examples of GGC and HCM densities related
to the above conjecture. In Section 2, we combine the main results of [18] and [22] to show
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the GGC property for a large family of negative powers of α-stable variables with α ≤ 1/4.
This family is actually a bit larger than the one which would be obtained from the validity of
Bondesson’s hypothesis. The more difficult case α ∈ (1/4,1/2] is also studied, with a partial
result. In Section 3, we use Kanter’s and Pestana–Shanbhag–Sreehari’s factorizations to show
that a large class of positive powers of α-stable variables is the product of an HCM variable and
an ID variable. The latter turns out to be always a mixture of exponentials (ME), hence very close
to a GGC. Along the way, we also obtain an independent proof of Pestana–Shanbhag–Sreehari’s
factorization. In Section 4, we show the aforementioned HCM result for the quotient of two stable
variables, and a similar characterization for Mittag–Leffler variables. Not surprisingly, both yield
the same boundary parameter α = 1/2.

The results presented in Sections 2 and 3 are probably not optimal and at the end of Section 3
we state another conjecture, where the power exponent α/(1 − α) appears naturally. We also
hope that the different tools and methods presented here will be helpful to tackle Bondesson’s
conjecture more deeply, even though we have tried to exploit them to their full extent.

Notations

We will consider real random variables X having a density always denoted by fX , unless explic-
itly stated. For the sake of brevity, we will use slightly incorrect expressions like “GGC variable”
or “HCM variable” and sometimes even delete the word “variable” (as was actually already done
in the present introduction). We will also set “positive (negative) α-stable power” for “positive
(negative) power transformation of a positive α-stable random variable”.

2. Negative α-stable powers and the GGC property

2.1. Some consequences of the HM property

Let Zα be a positive α-stable random variable – α ∈ (0,1) – with density function fα normalized
such that ∫ ∞

0
e−λtfα(t)dt = E[e−λZα ] = e−λα

, λ ≥ 0.

In the remainder of this paper, we will use the notation β = 1 − α. We will also set Z1 = 1 by
continuity. Recall that when α = 1/2, our normalization yields

f1/2(x) = 1

2
√

πx3/2
e−1/4x1{x>0}· (2.1)

Kanter’s factorization – see Corollary 4.1 in [15] – reads

Zα
d= L−β/α × b−1/α

α (U), (2.2)
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where L ∼ Exp(1), U ∼ Unif(0,π) independent of L, and

bα(u) = (
sinu/ sin(αu)

)α(
sinu/ sin(βu)

)β
, u ∈ (0,π),

is a bounded, decreasing and concave function – see Lemma 1 in [23]. Observe that when α =
1/2, Kanter’s factorization is a particular instance of the so-called Beta–Gamma algebra – see,
for example, [3], pages 13–14. Indeed, one has

4b−2
1/2(U) = cos−2(U/2)

d= Beta−1(1/2,1/2)

and (2.1) entails 4Z1/2
d= Gamma−1(1/2,1), so that (2.2) amounts when α = 1/2 to

Gamma(1/2,1)
d= Beta(1/2,1/2) × Gamma(1,1).

Put together with Shanbhag–Sreehari’s classical factorization of the exponential law – see, for
example, Exercise 29.16 in [19], Kanter’s factorization also shows that for every γ ≥ α/β the
random variable Z

−γ
α is ME, viz. there exists a positive random variable Uα,γ such that

Z−γ
α

d= L × Uα,γ . (2.3)

See, for example, Section 51.1 in [19] for more material on ME random variables. With the help
of the HM property, one has the following reinforcement.

Proposition 2.1. For every γ > 0, the random variable Z
−γ
α is ID (with a CM density) iff γ ≥

α/β. Moreover, Z
−γ
α is SD for every α ≤ 1/2 and every γ ≥ α/β.

Proof. The factorization (2.3) together with Theorem 51.6 and Proposition 51.8 in [19] show
that Z

−γ
α is ID with a CM density if γ ≥ α/β. On the other hand, a change of variable and

Linnik’s asymptotic expansion – see, for example, (14.35) in [19] – yield

xα/βγ logf
Z

−γ
α

(x) → κα,γ ∈ (−∞,0)

as x → ∞ for every γ > 0. Hence, if γ < α/β, Theorem 26.1 in [19] – see also Exercise 29.10
therein – entails that Z

−γ
α is not ID. When α ≤ 1/2, the main result in [22] shows that Zα is HM,

so that log(Z
−γ
α ) has a log-concave density. If in addition γ ≥ α/β, we have just observed that

Z
−γ
α has a CM density which is hence decreasing and log-convex. This entails that when α ≤

1/2 and γ ≥ α/β, the random variable Z
−γ
α belongs to the class mentioned in [3], Remark VI,

page 28, and is SD. �

The main result of this section shows that the SD property for Z
−γ
α can be refined into GGC,

in some cases. The proof also relies on the HM property.

Theorem 2.1. The random variable Z
−γ
α is GGC for any α ∈ (0,1/4], γ ≥ 4α.



1822 W. Jedidi and T. Simon

Proof. Fix α ∈ (0,1/4], γ ≥ 4α and set δ = 2α/γ ∈ (0,1/2]. Bochner’s subordination for stable
subordinators – see, for example, Example 30.5 in [19] – yields the identity

Z−2α
α

d= cα(Z−1
1/2 × Z−2α

2α )

for some purposeless constant cα > 0. We hence need to show the GGC property for the random
variable (

(4Z1/2)
−1 × Z2α

2α

)1/δ
,

whose density is in view of (2.1), the multiplicative convolution formula, and a series of standard
changes of variable, expressed as

δxδ−3/2

α
√

2π

∫ ∞

0
e−xδyf2α(y1/2α)y1/2α−1/2 dy.

Observe that since
∫ ∞

0
f2α(y1/2α)y1/2α−1/2 dy = 2α

∫ ∞

0
f2α(z)zα dz = 2α

√
π

	(1 − α)
< +∞

(see, e.g., (25.5) in [19] for the second equality), the function Kαf2α(y1/2α)y1/2α−1/2 is a prob-
ability density on R

+, where we have set Kα = 	(1 − α)/2α
√

π. Denoting by Xα the corre-
sponding random variable, we have to show that

x �→ Kα,δx
δ−3/2

E[e−xδXα ]
is the density of a GGC, with Kα,δ = √

2δ/	(1 − α). Since δ ≤ 1/2 < 3/2, we see from Theo-
rem 6.2 in [2] (and the Remark 6.1 thereafter) that this will be done as soon as

E[e−xδXα ] = E
[
e−x(Zδ×X

1/δ
α )

]
is, up to normalization, the density of a GGC. We will now obtain this property with the help of
Theorem 2 in [18]. On the one hand, it is easy to see that all negative moments of Zδ and Xα are
finite, so that the density of Zδ × X

1/δ
α fulfils (1.1) in [18]. On the other hand, the main result of

[22] entails that Z2α is HM because 2α ≤ 1/2, so that the function

t �→ f2α(et/2α)et/2α−t/2

is log-concave and Xα is HM as well. Also, Zδ is HM because δ ≤ 1/2. Since the HM property
is stable by independent multiplication, this shows that Zδ × X

1/δ
α is HM, in other words that it

belongs to the class C defined in [18], page 183, and we can apply Theorem 2 therein to conclude
the proof. �

Remarks 2.1. (a) From (14.30) in [19] and a change of variable, one has

sup
{
u; lim

x→0
f

Z
−γ
α

(x)/xu−1 = 0
}

= α/γ
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for every γ > 0, so that (3.1.4) in [3] shows that under the assumptions of Theorem 2.1, the GGC
random variable Z

−γ
α has a finite Thorin measure whose total mass is α/γ. In other words, there

exists a nonnegative random variable Gα,γ such that

E[e−λZ
−γ
α ] = exp−

[
(α/γ )

∫ ∞

0
(1 − e−λx)E[e−xGα,γ ]dx

x

]
, λ ≥ 0.

It would be interesting to get more properties of the random variables Gα,γ .

(b) It is easily seen that the above proof remains unchanged (and is even shorter) if we take
δ = 1 viz. γ = 2α, so that Z−2α

α is GGC as well for any α ∈ (0,1/4]. In view of Theorem 2.1
and the general conjecture made in [5], Remark 3(ii), it is plausible that Z

−γ
α is GGC for any

α ∈ (0,1/4], γ ≥ 2α.

2.2. A certain family of densities on R
+ and a partial result

A drawback of Theorem 2.1 is that it only covers the range α ∈ (0,1/4]. Indeed, with the same
subordination method one should expect to handle the range α ∈ (1/4,1/2] as well. Motivated
by the key-properties (2.20) and (2.23) in the proof of Theorem 2 in [18], let us define the class
P of probability densities f on (0,+∞) satisfying

f (x)f (c/x) ≥ f (1/x)f (cx) (2.4)

for all x, c > 0 such that (x −1)(c−1) ≥ 0. With an abuse of notation, we shall say that a random
variable X with density f belongs to P if f ∈ P . If X ∈ P , then it is easy to see that Xγ ∈ P
for any γ �= 0. Besides, it follows from [18], pages 187–188, that HM ⊂ P . Notice also that P �⊂
HM, as the following example shows. Consider the independent quotient Tα = (Zα/Zα)α which
has an explicit density gα given by

gα(x) = sin πα

πα(x2 + 2 cos(πα)x + 1)

(see, e.g., Exercise 4.21(3) in [6]). A computation yields

(πα)2

sin2 πα

(
1

gα(x)gα(c/x)
− 1

gα(cx)gα(1/x)

)
= (1 − c2)(x − 1/x)(x + 1/x + 2 cos πα),

which is clearly nonpositive whenever (x − 1)(c − 1) ≥ 0, so that Tα ∈ P for any α ∈ (0,1).

However, it is easy to show – see the proof of Corollary 4.1 below – that Tα is HM iff α ≤ 1/2.

However, we know from (ix), page 68 in [3] that Tα is never HCM since gα has two poles eiπα

and e−iπα in C\ (−∞,0]. Notice also that the variable T1/2 is SD but not GGC – see [10] and the
references therein. We will come back to this example in Section 4. The following proposition
makes the relationship between HM and P more precise.

Proposition 2.2. For any nonnegative random variable X having a density, one has

X is HM ⇐⇒ cX ∈ P ∀c > 0.
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Proof. The direct part is easy since cX is HM for any c > 0 whenever X is HM. For the indirect
part, setting gX(t) = logfX(et ) for any t ∈ R, the fact that cX ∈ P for any c > 0 shows that for
any −∞ < a ≤ b ≤ c ≤ d < +∞ with b + c = a + d, one has gX(b)+ gX(c) ≥ gX(a)+ gX(d),

so that gX is concave. �

Together with the above example, this proposition entails that P is not stable by multiplication
with positive constants. Since on the other hand P is clearly stable under weak convergence and
since any positive constant can be approximated by a sequence of truncated gaussian variables
which all belong to HM ⊂ P , the instability of P w.r.t. constant multiplication entails that P is
not – contrary to HM – stable by independent multiplication either, viz. there exist independent
X,Y ∈ P such that X × Y /∈ P .

Let now Y be a nonnegative random variable with a density of the form κx−a
E[e−xX] for some

a ≥ 0 and a nonnegative random variable X with finite negative moments such that c−1X ∈ P
for some c > 0. A perusal of the proof of Theorem 2 in [18] – see especially (2.10), (2.20) and
(2.23) therein – shows, together with Theorem 6.2 in [2], that ϕY (x) = E[e−xY ] is such that
Hc(w) = ϕY (cv)ϕY (c/v) is CM in the variable w = v + 1/v. On the other hand, it is possible to
show the following intrinsic property of positive stable densities.

Theorem 2.2. For every α ∈ (0,1), there exists cα ≥ 0 such that cZα ∈ P ⇔ c ≥ cα.

Though it has independent interest, we prefer not giving the proof of this theorem since it is
quite long, relying on the single intersection property for Zα – see Theorem 4.1 in [15], an ex-
tended Yamazato property for fα which is displayed in (1.4) in [22] and the discussion thereafter,
and a detailed analysis. Notice from Proposition 2.2 and the main result in [22] that cα = 0 for
any α ≤ 1/2, and that necessarily cα > 0 when α > 1/2. Theorem 2.2 and a painless adaptation
of the proof of Theorem 2.1 entail the following property of the variable Z−2α

α .

Corollary 2.1. For every α ∈ (1/4,1/2], there exists c̃α > 0 such that for every c ∈ [0, c̃α],
the function Hα

c (w) = ϕα(cv)ϕα(c/v) is CM in the variable w = v + 1/v, where ϕα(x) =
E[e−xZ−2α

α ], x ≥ 0.

If we could show that c̃α = +∞, then Theorem 6.1.1 in [3] would entail that Z−2α
α is GGC

for every α ∈ (1/4,1/2]. Notice from Proposition 2.1 that when α > 1/2 the random variable
Z−2α

α is not ID (since then 2α < α/β), hence not GGC. From Corollary 2.1 and the above Re-
mark 2.1(b), it is very plausible that Z

−γ
α is GGC for any α ≤ 1/2, γ ≥ 2α. See also the general

Conjecture 3.3 raised at the end of the next section.

3. On the infinite divisibility of Kanter’s random variable

In this section, we will deal with positive α-stable powers. From the point of view of the factor-
ization (2.2), we need to study negative powers of L and positive powers of the random variable
b

−1/α
α (U), which will be referred to as Kanter’s variable subsequently. The latter plays an im-

portant role in simulation – see [9] where it is called Zolotarev’s variable, although the original



GGC and HCM densities 1825

computation leading to (2.2) is due to Chernine and Ibragimov as explained in [15]. It is inter-
esting to remark that Kanter’s variable also appears explicitly in the context of free stable laws –
see [8], page 138 and the references therein.

Negative powers of L are not completely well understood from the point of view of infinite
divisibility. It follows from (iv) in [3] that Ls is HCM for every s ≤ −1, but it is not even known
whether Ls is ID or not for s ∈ (−1,0) – see [24], page 521. Here, we will rather focus on
positive powers of Kanter’s variable. Let us first notice that the above factorization (2.3) was also
observed in [21], Theorem 1, where it is actually shown that Uα,γ = exp(−Wα,γ ) for some ID
random variable Wα,γ . In this section, we will investigate (2.3) more thoroughly and give finer
properties of the random variable

Vα = U−1
α,α/β = b−1/β

α (U).

We could actually consider any positive power of Kanter’s random variable, but the latter choice
is more convenient for our purposes because of the identities

Zαs/β
α

d= L−s × V s
α (3.1)

for every s ∈ R. Our purpose is three-fold. First, we provide an alternative proof of Theorem 1
in [21], with the improvement that each positive power V s

α (in particular, Kanter’s variable itself)
is ID with a log-convex density. Second, we show that all V s

α are actually positively translated
ME’s. Third, we study in some detail the case α = 1/2 and propose a general conjecture which
is, in some sense, a reinforcement of Bondesson’s.

3.1. Another proof of Pestana–Shanbhag–Sreehari’s factorization

Let us consider the random variable

Wα = log(Vα) = −(1/β) log(bα(U))

and observe that Wα,γ
d= γ −1

α Wα + log(Zγα ) for every γ ≥ α/β, with the notation γα = α/βγ.

Since log(Zγα ) is ID – see, for example, Exercise 29.16 and Proposition 15.5 in [19], Theorem 1
in [21] follows as soon as Wα is ID. In view of Theorem 51.2 in [19] and the fact (obvious from
the definition of bα) that the support of Wα is unbounded on the right, this is a consequence of
the following, which we prove independently of [21].

Theorem 3.1. The density of Wα is log-convex.

This theorem entails that all positive powers of Kanter’s random variable b
−1/α
α (U) are ID, as

shown in the next corollary. In particular, Z
γ
α is the product of a HCM random variable and an

ID random variable for every γ ≥ α/β.

Corollary 3.1. For every s > 0, the density of V s
α is decreasing and log-convex.
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Proof. Suppose first that s = 1. Since the support of Wα is unbounded on the right, the log-
convexity of its density entails that it is also decreasing, so that the function gα(t) = fVα (e

t )

is also decreasing and log-convex. Since logx is increasing and concave, this shows that
fVα (x) = gα(logx) is decreasing and log-convex. The general case s > 0 follows analogously in
considering the variable sWα = log(V s

α ). �

The proof of Theorem 3.1 relies on the following lemma.

Lemma 3.1. The function hα = b′′
αbα/(b′

α)2 is increasing on (0,π).

Proof. First, observe that b1/2(u) = 2 cos(u/2), so that h1/2(u) = − cot2(u/2), an increasing
function on (0,π). In the general case, the proof is more involved. Since bα = bβ, it is enough to
consider the case α < 1/2. Set Aγ (u) = γ cot(γ u)−cot(u) for every γ ∈ (0,1), f = αAα +βAβ

and g = f ′ − f 2. One has b′
α = −f bα and b′′

α = −gbα, so that hα = 1 + (1/f )′ and we need to
show that 1/f is strictly convex, in other words that

2(f ′)2 − ff ′′ = 2gf ′ − fg′ > 0. (3.2)

It is shown in Lemma 1 of [23] that g = αβ +h+k, with the further notations h = αβ(Aα −Aβ)2

and k = 2(Aα − Aβ)(βAβ − αAα). On the other hand, the Eulerian formula

π cot(πz) = 1

z
+ 2z

∑
n≥1

1

z2 − n2

shows that

Aγ (πz) = 2(1 − γ 2)z

π

∑
n≥1

n2

(n2 − z2)(n2 − γ 2z2)

is a strictly absolutely monotonic function on (0,1) (i.e., all its derivatives are positive) for every
γ ∈ (0,1), so that f = αAα + βAβ is absolutely monotonic on (0,π), too. In particular, since
αβ > 0, (3.2) holds if

(2hf ′ − f h′) + (2kf ′ − f k′) ≥ 0.

A further computation entails 2hf ′ − f h′ = 2(Aα − Aβ)(A′
βAα − AβA′

α) and 2hf ′ − f h′ =
2((βAβ − αAα) − 2αβ(Aα − Aβ))(A′

βAα − AβA′
α), so that we need to prove

2(A′
βAα − AβA′

α)
(
(α2 + β2)(Aα − Aβ) + (βAβ − αAα)

) ≥ 0.

The above Eulerian formula entails readily that Aα − Aβ and βAβ − αAα are positive (actually,
absolutely monotonic) functions on (0,π) and we are finally reduced to prove

A′
βAα − A′

αAβ ≥ 0. (3.3)
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We found no direct argument for the nonnegativity of the above Wronskian. Writing
(

Aβ

Aα

)
(u) = β cot(βu) − cot(u)

α cot(αu) − cot(u)
=

(
sin(αu)

sin(βu)

)(
β cos(βu) sin(u) − cos(u) sin(βu)

α cos(αu) sin(u) − cos(u) sin(αu)

)

for every u ∈ (0,π) shows that
(

Aβ

Aα

)′
(πz) = 1

A2
α

(
(1 − β2)Aα − (1 − α2)Aβ + AαAβ(Aα − Aβ)

)
(πz)

= 8(β2 − α2)(1 − α2)(1 − β2)z3

π3A2
α(πz)

(
Sα(z)Sβ(z)S(z) − π2Sα,β(z)/4

)

for every z ∈ (0,1), with the notations

Sα(z) =
∑
n≥1

n2

(n2 − α2z2)(n2 − z2)
, Sβ(z) =

∑
n≥1

n2

(n2 − β2z2)(n2 − z2)
,

S(z) =
∑
n≥1

n2

(n2 − α2z2)(n2 − β2z2)
,

Sα,β(z) =
∑
n≥1

n2

(n2 − α2z2)(n2 − β2z2)(n2 − z2)
·

Since S(z) ≥ S(0) = π2/6, we see that (3.3) is true if

Sα(z)Sβ(z) ≥ 3Sα,β(z)/2

for every z ∈ (0,1). The latter follows for example, after isolating the first term in each series
and using the fact that π2/6 ≥ 3/2. We leave the details to the reader. Observe that the latter is
also true for z = 0 because Sα(0) = Sβ(0) = π2/6 and Sα,β(0) = π4/90. �

Proof of Theorem 3.1. We need to show that the density of log(b−1
α (U)) is log-convex, in other

words that the function

xf ′
b−1
α (U)

(x)

f
b−1
α (U)

(x)

is increasing over its domain of definition which is [ααββ,+∞). Since (log(b−1
α ))′ = f is a

strictly absolutely monotonic function, the same holds for b−1
α and we set b̃α for its increasing

reciprocal function. A computation yields

xf ′
b−1
α (U)

(x)

f
b−1
α (U)

(x)
= xb̃′′

α(x)

b̃′
α(x)

= −2 +
(

bαb′′
α

(b′
α)2

)
(b̃α(x)),

which is an increasing function by Lemma 3.1. �
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3.2. Further properties of Wα and Vα

In [21], the infinite divisibility of Wα is proved together with a closed formula for its Lévy
measure. In this paragraph, we use the latter expression to show that Wα is actually a translated
ME.

Theorem 3.2. The density of Wα is CM.

As a consequence, we obtain the following reinforcement of Corollary 3.1, which entails that
Z

γ
α is the product of a HCM random variable and a positively translated ME random variable for

every γ ≥ α/β:

Corollary 3.2. For every s > 0, there exists cα,s > 0 such that V s
α − cα,s is ME.

Proof. Suppose first that s = 1. Theorem 3.2 shows that gα(t) = fVα (e
t ) is CM, with the notation

of Corollary 3.1. Since logx has a CM derivative, the classical Criterion 2 in [12], page 417,
entails that fVα (x) = gα(logx) is CM over its domain of definition. It is clear from the definition
of bα that the latter is [βαα/β,+∞), so that Vα −βαα/β is ME, by Proposition 51.8 in [19]. The
general case s > 0 follows analogously in considering the density of sWα instead of Wα. �

The proof of Theorem 3.2 relies on the following lemma.

Lemma 3.2. The Lévy measure of Wα has a CM density given by

wα(x) = β

∫ ∞

1
e−βtx([t] − [αt] − [βt])dt, x ≥ 0,

where [t] stands for the integer part of any t ≥ 0.

Proof. From (3.1) and (3.5), (3.6) and (3.7) in [21] – beware our notation β = 1 − α, for every
λ ≥ 0 one has

E[e−βλWα ] = E[Z−λα
α ]/E[Lλβ ]

= 	(1 + λ)

	(1 + λα)	(1 + λβ)

= exp−
[
aαλ +

∫ ∞

0
(1 − e−λx − λx)gα(x)

dx

x

]

for some constant aα ∈ R, where

gα(x) = e−x

1 − e−x
− e−x/α

1 − e−x/α
− e−x/β

1 − e−x/β
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is a nonnegative function – see Lemma 3 in [21] – which is also integrable with

∫ ∞

0
gα(x)dx = −(α logα + β logβ).

Besides, gα(x) → 1 as x → 0 so that one can rewrite

E[e−βλWα ] = exp−
[
ãαλ +

∫ ∞

0
(1 − e−λx)gα(x)

dx

x

]
(3.4)

for every λ ≥ 0, where ãα = α logα + β logβ is the left-extremity of the support of the variable
βWα (this shows that the above constant aα is actually zero). Observe that

gα(x) =
∞∑

k=0

(
e−(k+1)x − e−(k+1)x/α − e−(k+1)x/β

) =
∫ ∞

1
e−txμα(dt),

where

μα =
∞∑

k=1

(δk − δk/α − δk/β)

is a signed Radon measure over R
+. Integrating by parts, we get

gα(x) = x

∫ ∞

1
e−txμα([1, t))dt = x

∫ ∞

1
e−tx([t] − [αt] − [βt])dt.

Putting everything together shows that the density of the Lévy measure of Wα is given by

wα(x) = β

∫ ∞

1
e−βtx([t] − [αt] − [βt])dt, x ≥ 0. �

Proof of Theorem 3.2. From Lemma 3.2 and Theorem 51.10 in [19], we already know that
Wα − ãα belongs to the class B, which is the closure of ME for weak convergence and convolu-
tion. Moreover, one has

wα(x) =
∫ ∞

0
e−txθα(t)dt, x ≥ 0,

with the notation θα(t) = ([t/β] − [t] − [(α/β)t])1{t≥β}, and it is clear that

∫ 1

0
θα(t)

dt

t
< ∞ and 0 ≤ θα(t) ≤ 1, t ≥ 0.

From Theorem 51.12 in [19], this shows that Wα − ãα belongs to the class ME itself, as re-
quired. �
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Remarks 3.1. (a) In the terminology of Schilling, Song and Vondraček [20], Lemma 3.2 shows
that the Lévy exponent of the ID random variable Wα is, up to translation, a complete Bernstein
function. Using Theorems 6.10 and 7.3 in [20] and simple transformations leads to the same
conclusion that the density of Wα is CM.

(b) Corollary 3.2 and Theorem 51.10 in [19] show that for every s > 0 the Lévy measure of
the random variable V s

α has a density vα,s which is CM. We believe that x �→ xvα,s(x) is also
CM, in other words, that V s

α is actually GGC for every s > 0. See Conjecture 3.1 below.
(c) The above Radon measure μα is signed and not everywhere positive, and we see from (3.4)

that Wα is not the translation of a GGC random variable. This latter property might have been
helpful for a better understanding of the random variables V s

α , although it is still a conjecture –
see Comment (1), page, 101 in [3] – that the transformation x �→ ex −1 leaves the GGC property
invariant.

3.3. The case α = 1/2 and three conjectures

Taking α = 1/2 in (3.1) yields the factorizations

Zs
1/2 = L−s × V s

1/2

for every s ∈ R, where V1/2 has the explicit density

fV1/2(x) = 1

2πx
√

x − 1/4
1{x>1/4}.

Since logV1/2 has a log-convex density, the random variables V s
1/2 are not HM (this fact was

already noticed in [15], see the remark before Theorem 4.1 therein) and in particular not HCM.
However, the following proposition shows that V s

1/2 is GGC at least for s ∈ [1/2,1]. We set
Ys = V s

1/2 − 4−s for every s > 0.

Proposition 3.1. The random variable Ys is HCM if and only if s ∈ [1/2,1].

Proof. Changing the variable and using the fact that every function f on R
+ is HCM iff

xλf (1/x) is HCM for every λ ∈ R, one sees that the following equivalences hold:

Ys is HCM ⇔ 1

(x + 1)
√

(x + 1)t − 1
is HCM ⇔ 1

(x + 1)
√

(x + 1)t − xt
is HCM,

with the notation t = 1/s. Using the notation

ft (x) = 1

(x + 1)
√

(x + 1)t − xt

for every t > 0, it is obvious that f1 and f2 are HCM. If now 1 < t < 2, then x �→ (x + 1)t − xt

is obviously a Bernstein function (i.e., a positive function with CM derivative), Criterion 2 in
[12], page 417, entails that 1/

√
(x + 1)t − xt is CM and ft is also CM. Since ft (0) = 1, this
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shows that ft is the Laplace transform of some positive random variable and, by Theorem 5.4.1
in [3], ft will be HCM iff the latter variable is GGC. By the Pick function characterization given
in [3], Theorem 3.1.2, setting gt (z) = ft (−z) we need to show that g is analytic and zero-free on
C \ [0,∞) and Im(g′

t (z)/gt (z)) ≥ 0 for Im z > 0 (in other words, that g′
t /gt is a Pick function –

see Section 2.4 in [3]). The first point amounts to show that 1 − (z/(z − 1))t does not vanish on
C \ [0,∞), which is true because 1 < t < 2. For the second point, we write

g′
t (z)

gt (z)
= 1

1 − z
+ t

2

(
(1 − z)u − (−z)u

(1 − z)u+1 − (−z)u+1

)

with u = t − 1 ∈ (0,1). Since 1/(1 − z) is obviously Pick, we need to show that

hu(z) = (
(1 − z)u − (−z)u

)(
(1 − z̄)u+1 − (−z̄)u+1)

is also Pick for every u ∈ (0,1). We compute

Im(hu(z)) = Im(z)(|1 − z|2u + |z|2u) − Im
(
(−z)u(1 − z̄)u+1 + (−z̄)u+1(1 − z)u

)
= Im(z)

(|(1 − z)u − (−z̄)u|2) − Im
(
(−z)u(1 − z̄)u

)
= Im(z)

(|(1 − z)u − (−z̄)u|2) + Im
(
(|z|2 − z̄)u

)
which is nonnegative when Im z > 0 because u ∈ (0,1). This shows the required property
and proves that Ys is HCM if s ∈ [1/2,1]. Suppose now that s > 1 viz. t < 1. If 1/(x +
1)

√
(1 + x)t − 1 were HCM, then it would also be HM and the function

y �→ log(1 + ey) + 1

2
log

(
(1 + ey)t − 1

)

would be convex on R. Differentiating the above entails that the function

x �→ 1

x
+ t

2

(
xt−1 − 1

xt − 1

)
∼ − t

2xt
as x → ∞

would be nonincreasing on [1,+∞), a contradiction. Last, in view of (ix), page 6 in [3] it is easy
to see that Ys is not HCM if s < 1/2, since (1 + z)t − 1 vanishes at least twice on C \ (−∞,0]
when t > 2. This completes the proof. �

Remarks 3.2. (a) Except in the trivial cases t = 1 and t = 2, we could not find any series of
functions of the type described in (1.2) converging pointwise to ft when t ∈ [1,2].

(b) From the above proposition, one might wonder if Kanter’s variable bα(U)−1/α is not a
translated HCM in general. If it were true, then (2.2) would show that Zα would be the product
of a HCM and a translated HCM for every α ≤ 1/2, so that from Theorem 6.2.2. in [3] we
would be quite close to the solution to Bondesson’s hypothesis. Nevertheless, to show the above
property raises computational difficulties significantly greater than those in Lemma 3.1, and it
does not seem that this approach could be simpler than the one suggested in [3], pages 88–89.
See also Conjecture 3.1 below.
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The following corollary shows that there are GGC random variables related to positive α-stable
powers with α ≥ 1/2.

Corollary 3.3. For every α ∈ [1/2,1), the random variable (Zα × Z1/2)
α is GGC.

Proof. Kanter’s and Shanbhag–Sreehari’s factorizations entail

(Zα × Z1/2)
α d= (Zα/L)α × V α

1/2
d= L−1 × (Yα + 4−α)

and from Proposition 3.1 and Theorem 4.3.1 in [3], we know that Yα + 4−α is GGC because
α ∈ [1/2,1). Since L−1 is HCM, Theorem 6.2.1 in [3] shows that (Zα × Z1/2)

α is GGC as
well. �

As just mentioned, Proposition 3.1 shows that V s
1/2 is GGC for every s ∈ [1/2,1]. From the

conjecture made in [5], Remark 3(ii), one may ask if this property does not remain true for every
s > 1. Considering the variable Ys instead, this amounts to show that the non-HCM function

x �→ t

π(x + 1)
√

(x + 1)t − 1

is still a GGC density for every t ∈ (0,1). From Example 15.2.2. in [20], one sees that the Laplace
transform of the renewal measure of a tempered t -stable subordinator subordinated through a
(1/2)-stable subordinator, which is given by

x �→ 1√
(x + 1)t − 1

,

is a factor in this density. However, we could not find any convenient expression for the Stielt-
jes (i.e., double Laplace) transform of the above renewal measure which would entail that the
Laplace transform of Ys is HCM. If this renewal measure had a log-concave density, we could
apply Theorem 4.2.1 in [3], but this property does not seem to be true even in the semi-explicit
case t = 1/2 (inverse Gaussian distribution).

From the above Remark 3.1(b), we know that for every s > 0 and every α ∈ (0,1) the Lévy
measure of V s

α has a density vα,s which is CM (more precisely, of the form given in Theo-
rem 51.12 of [19]). Proposition 3.1 yields the reinforcement that x �→ xv1/2,s(x) is CM for every
s ∈ [1/2,1]. Even though this is a very particular case, one might wonder if it is not true in
general.

Conjecture 3.1. The random variable V s
α is GGC for every s > 0 and every α ∈ (0,1).

When α = 1/2, a part of this conjecture can be rephrased in terms of a more general question
on Beta variables. Since

(Beta(α1, α2))
−1 d= 1 + Gamma(α2,1)

Gamma(α1,1)
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for every α1, α2 > 0 – see, for exmple, [3], page 13, the HCM property for Gamma variables
and Theorem 5.1.1 in [3] show that (Beta(α1, α2))

−1 is always a GGC. A particular case of the
conjecture made in [5], Remark 3(ii), is hence the following.

Conjecture 3.2. The random variable (Beta(α1, α2))
−s is GGC for every α1, α2 > 0 and every

s ≥ 1.

We could not find in the literature any result on the infinite divisibility of negative powers of
Beta variables. Proposition 3.1 shows that (Beta(1/2,1/2))−s is a positively translated HCM,
hence GGC and ID, when s ∈ [1/2,1]. The same conclusion holds for other values of the param-
eters, not covering the full range α1, α2 > 0. From the identities (3.1) and Theorem 6.2.1 in [3],
a positive answer to Conjecture 3.1 would also show that Zs

α is GGC for every s ≥ α/(1 − α). In
view of our results in the previous section for negative stable powers, it is tantalizing to raise the
following general conjecture.

Conjecture 3.3. The random variable Z
γ
α is GGC for every α ∈ (0,1) and |γ | ≥ α/(1 − α).

If Bondesson’s HCM conjecture is true, then Zs
α is GGC for every α ≤ 1/2 if |s| ≥ 1. The

above statement is stronger since it takes values of α which are greater than 1/2 in consideration,
and since α/(1 − α) < 1 when α < 1/2. Notice that if Conjecture 3.3 is true, then from Propo-
sition 2.1 we would also have Z

−γ
α is GGC ⇔ Z

−γ
α is ID for every γ > 0. Last, since the main

theorem of [23] shows that all positive stable powers are unimodal, it would also be interesting
to know if Z

γ
α is still a GGC when γ ∈ (0, α/(1 − α)).

4. Related HCM densities

In this section, we study two families of random variables which are related to Bondesson’s
hypothesis, and have their independent interest. For every α ∈ R, introduce the function

gα(u) = 1

u2α + 2 cos(πα)uα + 1

from R
+ to R

+. The following elementary result might be well known, although we could not
trace any reference in the literature. As for Proposition 3.1, we could not find any constructive
argument either.

Proposition 4.1. The function gα is HCM iff |α| ≤ 1/2.

Proof. Since u2αgα(u) HCM ⇔ gα(u) HCM and since cosine is an even function, it is enough
to consider the case α ≥ 0. Suppose first α > 1/2. Rewriting

gα(u) = 1

(uα + eiπα)(uα + e−iπα)
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shows that gα has two poles in C/(−∞,0] (because |(α − 1)/α| < 1) and from (ix), page 68 in
[3], this entails that gα is not HCM. Suppose next 0 ≤ α ≤ 1/2. The cases α = 0 with m0(u) =
1/4 and α = 1/2 with m1/2(u) = 1/(u+ 1) yield the HCM property explicitly, and we only need
to consider the case 0 < α < 1/2. Rewriting

gα(u) = u−α

2 cos(πα) + u−α + uα

we see that it is enough to show that ρ :u �→ 1/(c+uα +u−α) is HCM for any c > 0. Developing,
one obtains

ρ(uv)ρ(u/v) = 1

c2 + u2α + u−2α + v2α + v−2α + c(uα + u−α)(vα + v−α)

for any u,v > 0. Since the function v2α + v−2α + c(uα + u−α)(vα + v−α) has CM derivative
in w = v + 1/v for any fixed u, c > 0 (see [2], page 183), again Criterion 2 in [12], page 417,
entails that the function ρ(uv)ρ(u/v) is CM in w, so that ρ is HCM. �

This proposition has several interesting consequences. Let us first consider the random variable

Yα = T 1/α
α

with the notation of Section 2.2, and recall that it is the quotient of two independent copies of
Zα. The fact that Yα has a closed density seems to have been first noticed in [16], in the context
of occupation time for certain stochastic processes. If Bondesson’s conjecture is true, then Yα

is HCM whenever α ≤ 1/2, as a quotient of two independent HCM random variables – see
Theorem 5.1.1 in [3]. The next corollary shows that this is indeed the case.

Corollary 4.1. The random variable Yα is HCM iff α ≤ 1/2.

Proof. From a fractional moment identification, the density of Yα is explicitly given by

fYα (x) = sin παxα−1

π(x2α + 2xα cos πα + 1)
= sin πα

π
xα−1gα(x)

over R
+ – see Exercise 4.21(3) in [6] already mentioned in Section 2. The second derivative of

t �→ logfYα (e
t ) equals

−4α2(1 + cos πα coshαt)

(eαt + 2 cos πα + e−αt )2

and is not everywhere nonpositive whenever α > 1/2, so that Yα is not HM, hence not HCM
either. When α ≤ 1/2, the above Proposition 4.1 shows immediately that fYα is a HCM function,
so that Yα is HCM as a random variable. �
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We now turn our attention to the so-called Mittag–Leffler random variables which were intro-
duced in [17], and appeared since then in a variety of contexts. Let

Eα(x) =
∞∑

n=0

xn

	(1 + αn)

be the classical Mittag–Leffler function with index α ∈ (0,1]. The Mittag–Leffler random vari-
able Mα has an explicit decreasing density given by

fMα(x) = αxα−1E′
α(−xα)

over R+. Its Laplace transform is also explicit: for every λ ≥ 0 one has

E[e−λMα ] = 1

1 + λα
= exp

[
−α

∫ ∞

0
(1 − e−λx)Eα(−xα)

dx

x

]
(4.1)

(see Remark 2.2 in [17] and correct xk → xαk therein). From the classical fact that x �→ Eα(−x)

is the Laplace transform of Z−α
α – see, for example, Exercise 29.18 in [19] – and hence a CM

function, this shows that Mα is a GGC (with finite Thorin measure). This latter fact follows also
from the factorization

Mα
d= Zα × L1/α,

where L ∼ Exp(1) (the latter is a direct consequence of the first equality in (4.1) – see also the
final remark in [17]), and from Theorem 6.2.1 in [3] since Zα is GGC and L1/α is HCM. Notice
that in Example 3.2.4 of [2], the GGC property for Mα is also obtained in a slightly more general
context with the help of Pick functions.

Corollary 4.2. The random variable Mα is HCM iff α ≤ 1/2.

Proof. As a consequence of the above discussions, one has the classical representation

Eα(−xα) = E[e−xαZ−α
α ] = E[e−xYα ] = sin πα

π

∫
R+

uα−1e−xu

u2α + 2uα cos πα + 1
du

so that the density of Mα writes

fMα(x) = sin πα

π

∫
R+

uαe−xu

u2α + 2uα cos πα + 1
du.

From Proposition 4.1, the function

u �→ sin παuα

π(u2α + 2uα cos πα + 1)
= ufYα (u)

is HCM as soon as α ≤ 1/2, so that it is also a widened GGC density with the notations of
Section 3.5 in [2]. By Theorem 5.4.1 in [3], this shows that fMα is a HCM density function
whenever α ≤ 1/2.
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There are two ways to prove that Mα is not HCM for α > 1/2. First, again from Theorem 5.4.1
in [2], it suffices to show that ufYα (u) is no more a widened GGC density when α > 1/2. If it
were true, then from Remark 6.1 in [2] the function u1−δfYα (u) would also be a widened GGC
density for every δ > 0. In particular, for every δ ∈]α,1 + α[ the function u1−δfYα (u) would be
up to normalization the density of a GGC. The derivative of the above function equals

−uα−δ−1((δ + α)u2α + 2δuα cos πα + (δ − α))

(u2α + 2uα cos πα + 1)2

and is easily seen to vanish twice on R
+ if δ is close enough to α > 1/2. This shows that the

underlying variable is bimodal and contradicts Theorem 52.1 in [19] since all GGC’s are SD.
The second argument shows that Mα is not even HM when α > 1/2. From (7), page 207 in

[11] one has the asymptotic expansion

Eα(−z) =
N−1∑
n=1

(−1)n+1z−n

	(1 − αn)
+ O(z−N), z → +∞, (4.2)

for any N ≥ 2. Besides, by complete monotonicity, one can differentiate this expansion term by
term. Taking N = 3, one obtains

(
zE′′′

α (−z) − E′′
α(−z)

)
E′

α(−z) − z
(
E′′

α(−z)
)2 = −1

α2z6	(−α)	(−2α)
+ O(z−7)

as z → ∞, and the leading term in the right-hand side is positive when α > 1/2: this shows
that t �→ E′

α(−et ) and, a fortiori, t �→ αe(α−1)tE′
α(−eαt ) are not log-concave, so that Mα is

not HM. �

Remarks 4.1. (a) Since Z−α
α is not ID, the function Eα(−x) = E[e−xZ−α

α ] is CM but never HCM.
However, repeating verbatim the above argument shows that x �→ Eα(−xα) is HCM if and only
if α ≤ 1/2.

(b) From the above proof, one has the equivalence

Mα is HM ⇐⇒ Mα is HCM ⇐⇒ α ≤ 1/2.

The variable L1/α is always HCM, hence HM, and we know that Zα is HM ⇔ α ≤ 1/2. Since
the HM property is closed by independent multiplication, this also proves that Mα is HM as soon
as α ≤ 1/2. On the other hand, the influence of the HM variable L1/α in the product L1/α × Zα

is not important enough to make Mα HM when α > 1/2. From the above equivalence, one can
ask if the general identification

HM∩ GGC = HCM

is true or not, and we could not find any counterexample. Such an identification would show
Bondesson’s conjecture in view of the main result of [22].
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(c) When α ≤ 1/2, the variable Mr
α is clearly HM, hence unimodal, for every r �= 0. On the

other hand, when α > 1/2, it is possible to find some r �= 0 such that Mr
α is not unimodal. Indeed,

it follows easily from the expansion (4.2) that

f
M

−1/α
α

(0+) = −1

α	(−α)
, f ′

M
−1/α
α

(0+) = −1

α	(−2α)
> 0

and fMs
α
(0+) = +∞ ∀s < −1/α. By continuity of s �→ fMs

α
(x) for every x > 0, this shows

that Ms
α is not unimodal for some s < −1/α close enough to −1/α. Hence, we have shown the

further equivalence

Mα is HM ⇐⇒ Mr
α is unimodal for every r �= 0. (4.3)

The same equivalence holds for Zα as a consequence of the main results of [22,23] and we can
raise the following natural question: For which class of positive random variables with density
does the equivalence (4.3) hold true? It is easy to see that if X is such that Xr is unimodal for
every r �= 0, then X is absolutely continuous.

(d) Reasoning exactly as at the beginning of Paragraph 2.2 in [23], the decomposition

Ms
α = (L × Lα−1)s/α × b−s/α

α (U)

and the concavity of bα show that Ms
α is unimodal as soon as s ≥ −α, for every α ∈ (0,1).

One might ask whether Ms
a is also unimodal for every −1/α ≤ s < −α. Notice that the above

reasoning is not valid anymore, at least for α = 1/2 because br
1/2(U) = 2r (cos(U/2))r is bimodal

as soon as r > 1.

(e) Both random variables Yα and Mα appear as special instances of the Lamperti-type laws
which were introduced in [13], to which we refer for a thorough study. See also the numerous
references therein.
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