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In this paper we propose using a nonparametric model specification test for parametric time series with long-
range dependence (LRD). To establish asymptotic distributions of the proposed test statistic, we develop
new central limit theorems for certain weighted quadratic forms of stationary time series with LRD. To
implement our proposed test in practice, we develop a computer-intensive parametric bootstrap simulation
procedure for finding simulated critical values. As a result, our finite-sample studies demonstrate that both
the proposed theory and the simulation procedure work well, and that the proposed test has little size
distortion and reasonable power.
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1. Introduction

Starting approximately two decades ago, model specification testing of short-range dependent
stationary time series has become a very active research field in both econometrics and statistics.
In the meantime, estimation of long-range dependent stationary time series models has also been
quite active. To the best of our knowledge, however, model specification of stationary time series
with long-range dependence (LRD) has not been discussed in the literature. This is probably
related to the unavailability of certain central limit theorems for weighted quadratic forms of
stationary time series with LRD.

Specification test statistics based on nonparametric and semi-parametric techniques for both
independent and short-range dependent cases have been proposed and studied extensively over
the last two decades. Recent studies have shown that some data sets may display LRD (see,
e.g., Beran [5]; Cheng and Robinson [10]; Robinson [41]; Baillie and King [4]; Anh and Heyde
[1]; Robinson [44]; Gao [16]). In addition, existing studies (e.g., Hidalgo [29]; Robinson [43];
Csörgó and Mielniczuk [11]; Mielniczuk and Wu [37]) have examined nonparametric regression
analysis of data with LRD.

Recent studies (Cheng and Robinson [10]; Anh et al. [2]; Mikosch and Starica [38]; Gao and
Hawthorne [18]) have shown that some real data in economics, environment, and finance appli-
cations with both LRD and nonlinearities may be modeled by Yt = m(Xt)+ et ,1 ≤ t ≤ n, where
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the regressors Xt are either fixed designs or stationary short-range dependent variables, m(·) is
an unknown and probably nonlinear trend function, and the errors et are strictly stationary long-
range dependent. In addition, the errors may be allowed for a more general dependent structure
of the form et = G(Xt ,Zt ) as proposed by Cheng and Robinson [10] and discussed by others,
including Mielniczuk and Wu [37], where G(·, ·) is a suitable function and {Zt } is a possibly
long-range dependent process.

The key findings of these previous studies suggest that to avoid misrepresenting the mean func-
tion or the conditional mean function of long-range dependent data, we should let the data speak
for themselves in terms of specifying the true form of the mean function or the conditional mean
function. This is particularly important for data with LRD, because unnecessary nonlinearity or
complexity in mean functions may cause erroneous LRD.

To address these issues, we propose to model data with possible LRD, nonlinearity, and non-
stationary using a general nonparametric trend model. Thus, one of the objectives of the present
work is to specify the trend by constructing a nonparametric kernel-based test. Consider a non-
linear time series model of the form

Yt = m(Xt) + et , t = 1,2, . . . , n, (1.1)

where n is the number of observations, {Xt } is either a sequence of fixed designs of Xt = t
n

or
random regressors, m(·) is an unknown function, and {et } is a stationary long-range dependent
linear process with E[e1] = 0 and 0 < E[e2

1] = σ 2 < ∞. In addition, {Xs} and {et } are assumed
to be independent for all s, t ≥ 1 when {Xt } is a sequence of random regressors. We develop a
kernel-based test for the hypotheses

H0: m(x) = mθ0(x) versus H1: m(x) = mθ1(x) + cn�(x) (1.2)

for all x ∈ R = (−∞,∞), where θ0 and θ1 are vectors of unknown parameters, mθ(x) is a known
parametric function of x indexed by a vector of unknown parameters, θ , �(x) is some smooth
function, and {cn} is a sequence of real numbers tending to 0 when n → ∞. To ensure that the
true model is identifiable, we also require that for all θ1 �= θ2, there is a positive constant δ1 > 0
such that E[mθ1(X1) − mθ2(X1)]2 ≥ δ1 > 0 in the random design case and inf0≤x≤1 |mθ1(x) −
mθ2(x)| ≥ δ1 > 0 in the fixed design case.

Note that under H0, model (1.1) becomes a parametric model of the form

Yt = mθ0(Xt ) + et , (1.3)

which covers many important cases. For example, model (1.3) becomes a simple linear model
with LRD as in (1.1) of Robinson and Hidalgo [45] when mθ0(Xt ) = α0 + β0Xt . For a given set
of long-range dependent data, the acceptance of H0 suggested by a test statistic may indicate that
the mean function of the LRD data should be specified parametrically. In the case of the Nile
river data as analyzed by Anh et al. [2], we would consider using a linear mean function of the
form m( t

n
) = α0 + β0 · t

n
if a suitable test suggested the acceptance of H0: m(x) = α0 + β0x.

Similarly, if a proper test suggested accepting a second-order polynomial function of the form
m( t

n
) = α0 + β0(

t
n
) + γ0(

t
n
)2 as the true trend of a financial data set {Yt }, then we would need

only to difference {Yt } twice to generate a stationary set of the data.
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Although there is a long and rich literature in the field of model specification for time series
models with stationarity (see, e.g., Gao [16]; Li and Racine [35]), little work has been reported
on parametric specification testing of m(·) for the case where Xt , et , or both may be strictly
stationary and long-range dependent time series. To the best of our knowledge, Gao, Wang and
Yin [21] may be among the first to consider a parametric specification of m(·) for the case where
{Xt } is a sequence of stationary Gaussian time series regressors with possible LRD and {et } is a
sequence of i.i.d. random errors.

This paper is organized as follows. We present our proposed test for the hypothesis (1.2) in
Section 2.1. To investigate the proposed specification test, we investigate the limiting theorems
for the leading term Mn(h) of our test in Section 2.2, where

Mn(h) =
n∑

s=1

n∑
t=1,�=s

esan(Xs,Xt )et , (1.4)

with an(Xs,Xt ) = K(Xs−Xt

h
), in which K(·) is a probability kernel function and h is a band-

width parameter. We mention that for the case where {Xt } is a sequence of either fixed or ran-
dom regressors but {et } is a sequence of long-range dependent errors, the problem of establishing
limiting distributions for Mn(h) is difficult. Because there is an involvement of h → 0 into the
inside of K(·), existing central limit theorems for U-statistics of long-range dependent processes
(see Hsing and Wu [33]) are not applicable. Thus, the limit theorems presented in Section 2.2 are
interesting and useful in and of themselves. In Section 3 we discuss some important extensions
and applications of the theory established in Section 2. We present a parametric bootstrap simu-
lation procedure as well as some resulting properties for the fixed design situation in Section 4.
In Section 4 we also provide an example to demonstrate how to implement the proposed test and
the bootstrap simulation procedure in practice. In Section 5 we conclude the paper with some
remarks on extensions. Mathematical details are relegated to Appendices A and B. Additional
details are available in Appendix C of Gao and Wang [20]. Throughout the paper, we use let
an ∼ bn denote limn→∞ an/bn = 1.

2. Asymptotic theory

We propose a test statistic for the hypothesis (1.2) in Section 2.1. To investigate the proposed
test statistic, we develop some new limiting distributions of weighted quadratic forms of depen-
dent processes with LRD in Section 2.2. Their proofs, along with other proofs, are relegated to
Appendix A.

2.1. Model specification test

Let K be a one-dimensional bounded probability density function and h be a smoothing band-
width. When {Yt } is a sequence of long-range dependent random variables, the conventional
kernel estimator of m(·) is defined by

m̂(x) = (1/nh)
∑n

t=1 K((x − Xt)/h)Yt

f̂ (x)
, (2.1)
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where f̂ (x) = 1
nh

∑n
t=1 K(x−Xt

h
) is the density estimate of the marginal density function, f (x),

of {Xt } when {Xt } is a sequence of stationary random regressors. When Xt = t
n

, f̂ (x) =
1
nh

∑n
t=1 K(nx−t

nh
) is a sequence of functions of x. Various asymptotic properties for m̂(x) have

been studied in the literature (see, e.g., Cheng and Robinson [9]; Robinson [43]; Anh et al. [2]).
The nonparametric test statistic for the hypothesis (1.2) might be expected to be related to m̂(x).
However, as demonstrated in the model specification literature for both the independent and
short-range dependent stationary time series cases (see, e.g., Li and Wang [36]; Gao [16]; Li and
Racine [35]), some classes of nonparametric test statistics have little involvement with nonpara-
metric estimation. One of the advantages of such test statistics is that both their large-sample and
finite-sample properties are much less sensitive to the use of individual nonparametric estima-
tion as well as the resulting estimation biases. To test the hypothesis (1.2), we therefore propose
a kernel-based test statistic of the form

M̂n(h) =
n∑

t=1

n∑
s=1,�=t

êsan(Xs,Xt )̂et (2.2)

for the case where {Xt } is a sequence of stationary random regressors, with an(Xs,Xt ) =
K(Xs−Xt

h
) and êt = Yt − mθ̃(Xt ), in which θ̃ is a consistent estimator of θ0 under H0. For the

case of fixed-design mean with LRD errors, we also suggest the same form of (2.2) with Xt = t
n

.
As pointed out earlier, we chose (2.2) over those related to m̂(x) mainly because our experience
shows that such a form does not involve biases caused by nonparametric estimation and thus
works well both theoretically and practically.

We need the following assumptions on the error process {et }, the kernel function K(·), the
regressor {Xt }, and the regression function mθ(x) for the main results of this paper.

Assumption 2.1. (i) {et } is a sequence of strictly stationary error processes defined by et =∑∞
j=−∞ ψjηt−j , where the innovations {ηj } is a sequence of i.i.d. random variables with

E[η1] = 0, E[η2
1] = 1 and E[η6

1] < ∞, and the covariance γ (k) = E[et ek+t ] =∑∞
j=−∞ ψjψj+k

satisfies that γ (0) = ∑∞
j=−∞ ψ2

j < ∞ and γ (k) ∼ η|k|−α as k → ∞, where λ = (α, η) with
0 < α < 1 and 0 < η < ∞ is a vector of unknown parameters.

(ii) In addition, let ψj ≥ 0 when {Xt } is a sequence of fixed designs.

Assumption 2.2. When {Xt } is a sequence of i.i.d. random regressors, {Xt } and {es} are assumed
to be independent for all s ≥ 1 and t ≥ 1, and the density function f (x) of {Xt } is bounded and
uniformly continuous.

Assumption 2.3. Let λ = (α, η) be defined as in Assumption 2.1. There exist some λ̃ = (̃α, η̃)

such that ‖̃λ − λ‖ = OP (w−1
n ), where {wn} is a sequence of positive numbers satisfying

limn→∞ wn

logn
= ∞, where ‖ · ‖ denotes the Euclidean norm.

Assumption 2.4. (i) K(·) is a bounded and symmetric probability kernel function over the real
line R. (ii) Given 1

2 < α < 1, there exists some 0 < β < α − 1
2 such that K(x) = O( 1

1+|x|1−β ).
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Assumption 2.5 (Random design). (i) Under the null hypothesis H0, ‖θ̃ − θ0‖ = OP (n−1/2).

(ii) There exists some ε0 > 0 such that ∂2mθ (x)

∂θ2 is continuous in both x ∈ R and θ ∈ �0, where
�0 = {θ : ‖θ − θ0‖ ≤ ε0}. In addition,

0 < E

[∥∥∥∥∂mθ (X1)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥2]
< ∞ and 0 < E

[∥∥∥∥∂2mθ(X1)

∂θ2

∣∣∣∣
θ=θ0

∥∥∥∥2]
< ∞.

Assumption 2.6 (Fixed design). (i) Under the null hypothesis H0, ‖θ̃ − θ0‖ = OP (n−1/2).

(ii) There exists some ε0 > 0 such that ∂mθ (x)
∂θ

and ∂2mθ (x)

∂θ2 both are bounded and continuous
in 0 ≤ x ≤ 1 and θ ∈ �0, where �0 = {θ : ‖θ − θ0‖ ≤ ε0}.

Assumption 2.1(i) is quite standard and covers some important cases. For instance, the case
where {et } is a sequence of Gaussian errors is included. Assumption 2.1(ii) is required to estab-
lish Theorems 2.2 and 2.4 below. The positivity of ψj in Assumption 2.1(ii) may be replaced by
less restrictive conditions, such as that ψj are eventually positive. Also note that it is possible to
involve a slowly varying function into the form of γ (k); however, because this is not essential to
either our theory or practice, we use the current Assumption 2.1 throughout this paper. For alter-
native conditions on {et } in this kind of study, we refer to Cheng and Robinson [10], Robinson
[43], and Robinson and Hidalgo [45].

Assumption 2.2 may be relaxed to include the case where {Xt } is a sequence of strictly sta-
tionary and β-mixing random variables. The corresponding results and their proofs are given in
Section 5 and Appendix C of Gao and Wang [20].

Assumption 2.3 may be justified for certain wn, like wn = n2/5/ logn; see the discussion for
the construction of λ̂ and Theorem 4.2 in Section 4. Assumption 2.4(i) is a standard condition on
the kernel function. To establish Theorems 2.2 and 2.4, we also need Assumption 2.4(ii). This
imposes some restrictions on α and K(·), but these restrictions are easily verifiable. For instance,
Assumption 2.4(ii) is satisfied when K(·) is the standard normal density function or belongs to a
class of probability kernel functions with compact support. Also note that under Assumption 2.4,
Aα < ∞, where

Aα =
∫ ∞

0

∫ ∞

0

∫ ∞

0
x−αy−α[K(z)K(x + y − z)

(2.3)
+ K(z − x)K(z − y)]dx dy dz,

as shown in Lemma A.6.
The conventional

√
n rate of convergence assumed in Assumptions 2.5(i) and 2.6(i) is achiev-

able even in this kind of long-range dependent case (see, e.g., Robinson and Hidalgo [45]; Beran
and Ghosh [6]). It is obvious that Assumptions 2.5(i) and 2.6(i) imply that ‖θ̃ −θ0‖ = oP (n−α/2),
which is crucial and is used in the proofs of Theorems 2.1 and 2.2. Assumption 2.5(ii) imposes
certain moment and smoothing conditions on both the form mθ0(·) and the design {Xt }. Assump-
tion 2.6 is used only for the fixed-design case in Theorem 2.2.

We now state the main results of this paper. Theorem 2.1 considers the case where {Xt } is a
sequence of stationary random regressors. The case where Xt = t

n
is discussed in Theorem 2.2.

All notation is as before. The proofs of these results are given in Appendix A.



LRD time series specification 1719

Theorem 2.1. Suppose that Assumptions 2.1(i), 2.2, 2.3, 2.4(i) and 2.5 hold.

(i) If limn→∞ n2(1−α)h = 0 and limn→∞ nh = ∞, then, under H0,

L̂1n(h) ≡ M̂n(h)

σ̂1n(h)
→D N(0,1) as n → ∞, (2.4)

where σ̂ 2
1n(h) = 2n2h

∫
K2(x)dx( 1

n

∑n
t=1 f̂ (Xt ))(

1
n

∑n
t=1 ê2

t )
2.

(ii) If limn→∞ h = 0 and limn→∞ n2(1−α)h = ∞, then, under H0,

L̂2n(h) ≡ M̂n(h)

σ̂2n(h)
→D χ2(1) as n → ∞, (2.5)

where χ2(1) is the chi-squared distribution with 1 degree of freedom, and

σ̂2n(h) = 2n2−α̃hη̃

(1 − α̃)(2 − α̃)
I(0<α̃<1)

1

n

n∑
t=1

f̂ (Xt ).

Theorem 2.2. Suppose that Assumptions 2.1, 2.3, 2.4 and 2.6 hold. If limn→∞ h = 0,
limn→∞ wnh

1/2/ logn = ∞ and nh → ∞ hold, then, under H0,

L̂3n(h) ≡
∑n

t=1
∑n

s=1,�=t bn(s, t)(̂es êt − γ̂ (s − t))

σ̂3n(h)
→D N(0,1) (2.6)

as n → ∞, where σ̂ 2
3n(h) = 8η̃2n(nh)3−2α̃A∗̃

α with

A∗̃
α =

∫ n

1/n

∫ n

1/n

∫ n

1/n

x−α̃y−α̃[K(z)K(x + y − z)

+ K(z − x)K(z − y)]dx dy dz,

bn(s, t) = K(s−t
nh

) and

γ̂ (k) =

⎧⎪⎨⎪⎩
1

n

n−|k|∑
i=1

êi êi+|k| for |k| ≤ (nh)1/3,

η̃|k|−α̃ for (nh)1/3 < |k| ≤ n − 1.

Remark 2.1. (i) As expected, the limiting distributions of the test statistic M̂n(h) (under cer-
tain normalization) for the hypothesis (1.2) depend on the value of α and the choice of the
bandwidth h. We require 1/2 < α < 1, together with h−1 = o(n) and h = o(n−2(1−α)), in The-
orem 2.1(i). In contrast, Theorem 2.1(ii) allows 0 < α < 1, but we have to restrict h = o(1)

and h−1 = o(n2(1−α)). These facts imply that to make the limiting distribution of M̂n(h) (under
certain normalization) normal, the conditions 1/2 < α < 1 and h = o(n−2(1−α)) are essentially
necessary for the case where {Xt } is a sequence of stationary random regressors.
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(ii) For the fixed-design case of Xt = t
n

, we also require 1/2 < α < 1 for the asymptotical
normality of M̂n(h) (under certain normalization) in Theorem 2.2. Furthermore, the range of the
bandwidth h depends on the accuracy of ‖̃λ − λ‖ = OP (w−1

n ). Because it may be justified that
wn = n2/5/ logn (see Theorem 4.2), the optimal bandwidth h ∼ Cn−1/(4+α) in theory is included
in Theorem 2.2. We also mention that the γ̂ (k) defined in Theorem 2.2 provides a consistent
estimate of γ (k) for each fixed k, but it is not possible to replace γ̂ (k) = η̃|k|−α̃ by γ̂ (k) =
1
n

∑n−|k|
i=1 êi êi+|k| when (nh)1/3 < k ≤ n − 1, because (A.54) in the proof of Theorem 2.2 below

is not true in the latter case. The limiting distribution of M̂n(h) (under certain normalization) for
the case of 0 < α ≤ 1/2 in the fixed-design case is an open problem.

(iii) Our experience suggests that it should be possible to establish some corresponding results
of Theorem 2.1 for the case where both {Xt } and {et } exhibit LRD. In the general case, existing
studies (Hidalgo [29]; Csörgó and Mielniczuk [11]; Mielniczuk and Wu [37]; Guo and Koul [24,
25]; Zhao and Wu [47]; Kulik and Wichelhaus [34]) in nonparametric estimation have already
shown that although similar techniques may be used to establish and prove such corresponding
results, the corresponding conditions and proofs are much more technical than those involved
in the present work. Our preliminary studies show that we may establish some corresponding
results as in Theorem 2.1 for the case where et = σ(Xt )εt , in which {Xt } is a sequence of strictly
stationary regressors with LRD and {εt } is a sequence of strictly stationary short-range dependent
errors. To present the key ideas, we focus on the main cases in Theorems 2.1 and 2.2. Other cases
are left for future research.

To motivate the need to establish some limit theorems for general quadratic forms of dependent
processes with LRD, we observe that

M̂n(h) =
n∑

t=1

n∑
s=1,�=t

êsan(Xs,Xt )̂et = Mn(h) + 2R1n(h) + R2n(h), (2.7)

where Mn(h) =∑n
t=1

∑n
s=1,�=t esan(Xs,Xt )et ,

R1n(h) =
n∑

t=1

n∑
s=1,�=t

an(Xs,Xt )es

(
m(Xt) − mθ̃(Xt )

)
,

R2n(h) =
n∑

t=1

n∑
s=1,�=t

an(Xs,Xt )
(
m(Xs) − mθ̃(Xs)

)(
m(Xt) − mθ̃(Xt )

)
.

We show in Appendix A that 2R1n(h)+R2n(h) = oP (σin(h)), where σ1n(h) and σ2n(h) are as
defined in Theorem 2.3 below. Thus, to prove Theorem 2.1, we need to establish limit theorems
for Mn(h), which is a weighted quadratic form of {et }. Similar arguments also apply for Theo-
rem 2.2. Because existing results are not directly applicable to proving Theorems 2.1 and 2.2, we
establish our own results the the next section.
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2.2. Limit theorems for quadratic forms

Because both the conditions and results for random designs differ from those for fixed designs,
we establish the following two theorems separately. Their proofs are given in Appendix A.

Theorem 2.3. Suppose that Assumptions 2.1(i) and 2.2–2.4 hold.

(i) If limn→∞ n2(1−α)h = 0 and limn→∞ nh = ∞ hold, then∑n
t=1

∑n
s=1,�=t esan(Xs,Xt )et

σ1n(h)
→D N(0,1) as n → ∞, (2.8)

where σ 2
1n(h) = n2hA2

1α , in which A2
1α = 2γ 2(0)

∫
K2(x)dx

∫
f 2(y)dy, where f (·) denotes the

marginal density of {Xt }.
(ii) If limn→∞ h = 0 and limn→∞ n2(1−α)h = ∞ hold, then∑n

t=1
∑n

s=1,�=t esan(Xs,Xt )et

σ2n(h)
→D χ2(1) as n → ∞, (2.9)

where σ2n(h) = n2−αhA2α , in which A2α = 2η
(1−α)(2−α)

(
∫

f 2(y)dy).

Theorem 2.4. Suppose that Assumptions 2.1, 2.3 and 2.4 hold. If in addition both limn→∞ h = 0
and limn→∞ nh = ∞ hold, then∑n

t=1
∑n

s=1,�=t bn(s, t)(eset − γ (s − t))

σ3n(h)
→D N(0,1) as n → ∞, (2.10)

where σ 2
3n(h) = 8η2n(nh)3−2αAα , with Aα defined as in (2.3).

Remark 2.2. (i) Theorem 2.3 extends existing limit theorems for both i.i.d. and short-range de-
pendent cases (see, e.g., Gao [16], Chapter 3) to the situation where {et } is a long-range de-
pendent linear process. Unlike the previously reported results, Theorem 2.3 shows that when
{an(Xs,Xt )} is a sequence of random functions, the limiting distribution of the random weighted
quadratic form can be either a standard normal distribution or a chi-squared distribution.

(ii) In the situation where {an(Xs,Xt )} is a sequence of non-random functions, related results
on quadratic forms of long-range dependent time series have been given by Davydov [12], Fox
and Taqqu [13,14], Avram [3], Giraitis and Surgailis [22], Giraitis and Taqqu [23], Ho and Hsing
[30–32], Hsing and Wu [33], and others. Because the weighted coefficients in those results (see,
e.g., Hsing and Wu [33]) are non-random and independent of n, they are not applicable for the
establishment of Theorems 2.3 and 2.4. Thus, both Theorems 2.3 and 2.4 extend and complement
various existing results.

3. Extensions and applications

In this section we show that each of the leading terms of many existing kernel-based test statistics
may be represented by a quadratic form similar to (1.4). Theorems 2.1–2.4 show that it is possible
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to establish corresponding results based on the long-range dependent errors for these existing
test statistics. To avoid some repetitious arguments, here we only state some main steps; further
details are available in Section 3 of Gao and Wang [20].

3.1. Existing kernel-based tests for conditional mean

A very simple idea for constructing a kernel test for H0 is to compare the L2 distance between a
nonparametric kernel estimator of m(·) and a parametric counterpart. Denote the nonparametric
estimator of m(·) by m̂(·) as in (2.1) and the parametric estimator of mθ0(·) by m̃θ̃ (·) given by

m̃θ̃ (x) =
∑n

t=1 Kh(x − Xt)mθ̃ (Xi)∑n
t=1 Kh(x − Xt)

, (3.1)

where θ̃ is a consistent estimator of θ0 as defined before and Kh(·) = 1
h
K( ·

h
). Härdle and Mam-

men [27] proposed a test statistic of the form

Ln1(h) = nh

∫
{m̂(x) − m̃θ̃ (x)}2w(x)dx, (3.2)

where w(x) is a non-negative weight function. Recall the model (1.3). Under H0, it is readily
seen that

Ln1(h) = nh

∫ ( [∑n
t=1 Kh(x − Xt)(et + mθ0(Xt ) − mθ̃(Xt ))]2

n2f̂ 2(x)

)
w(x)dx

= nh

n∑
s=1

n∑
t=1

(∫
Kh(x − Xs)Kh(x − Xt)

n2f̂ 2(x)
w(x)dx

)
eset (3.3)

+ remainder term,

where the leading term is similar to (1.4). In a closely related study, Chen and Gao [8] constructed
a test statistic based on empirical likelihood ideas. As they showed, the first-order approximation
of their test is asymptotically equivalent to

Ln2(h) = nh

∫
[m̂(x) − m̃θ̃ (x)]2w(x)dx. (3.4)

It can be easily shown that the test statistic Ln2(h) has a similar decomposition to (3.3), in which
the leading term is similar to (1.4).

3.2. Testing conditional mean with conditional variance

Because the main objective of this paper is to specify the form of m(·) parametrically, we have
assumed that the variance or conditional variance σ 2 is an unknown parameter. As can be seen
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from (1.4), we can replace et by et = σ(Xt )εt , where {εt } is a sequence of long-range dependent
linear processes. In this case, the leading term of M̂n(h) in (2.2) becomes

Ln3(h) =
n∑

s=1

n∑
t=1,�=s

εsσ (Xs)K

(
Xs − Xt

h

)
σ(Xt )εt , (3.5)

which is also a quadratic form of (Xt , εt ).

3.3. Testing conditional mean in additive form

When Xt = (Xt1, . . . ,Xtd) in (1.1) is a vector of d-dimensional designs, we may consider a
hypothetical problem of the form

H ′
0: m(x) =

d∑
i=1

miθ0(xi) versus H ′
1: m(x) =

d∑
i=1

miθ1(xi) + cn

d∑
i=1

�i(xi), (3.6)

where each miθ0(·) is a known function indexed by θ0 and �i(·) is also a known function over R.
Various additive models have been discussed in the literature (see, e.g., Sperlich, Tjøstheim and
Yang [46]; Gao, Lu and Tjøstheim [19]; Gao [16]). The construction of M̂n(h) suggests a test
statistic of the form

Ln4(h) =
n∑

j=1

n∑
i=1

Ỹi

d∏
k=1

K

(
Xik − Xjk

h

)
Ỹj (3.7)

for the hypothesis (3.6), where Ỹi = (Yi −∑d
k=1 mkθ̃0

(Xik)). Clearly, Ln4(h) also has a leading
term similar to (1.4).

As mentioned earlier, some corresponding results of Theorems 2.1–2.4 may be established
accordingly for Lni(h), 1 ≤ i ≤ 4.

4. Simulation procedure and an example of implementation

In this section we focus on an implementation procedure for L̂3n(h) in the fixed design case.
Implementation of L̂1n(h) and L̂2n(h) in the random design case requires a different asymp-
totic theory, which involves developing a different bootstrap simulation procedure. We leave a
discussion of this for future research. Before we implement L̂3n(h), we develop a simulation
procedure for the choice of a simulated critical value and then propose an estimation procedure
for λ involved in the proposed test.

Explicitly, Section 4.1 establishes a simulation procedure for the implementation of the test
statistic L̂3n(h). An estimation procedure for λ is briefly mentioned in Section 4.2. Section 4.3
presents an example of implementation to check whether the theory works in practice.
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4.1. Simulation scheme and asymptotic properties

When constructing the simulation, the covariance structure γλ(k) = E[etet+k] must be replaced
by an estimated version, γ̃λ(k), with λ̃ = (̃α, η̃) as consistent estimators of λ = (α, η). We assume
the existence of λ̃ at the moment, and describe its construction in Section 4.2.

Simulation Procedure 4.1. Let lr (0 < r < 1) be the 1 − r quantile of the exact finite-sample
distribution of L̂3n(h). Because lr might not be evaluated in practice, we suggest replacing it
with an approximate r-level critical value l∗r , using the following bootstrap procedure:

1. Generate Y ∗
t from Y ∗

t = mθ̃(Xt ) + e∗
t for 1 ≤ t ≤ n, where Xt = t

n
and {e∗

t } is a sequence
of stationary LRD errors generated from e∗

t = ∑∞
j=−∞ ψ∗

j η∗
t−j , with {ψ∗

j } chosen as

ψ∗
j = c(̃α)|j |−(1+α̃)/2 such that γ̃λ(k) = E[e∗

t e
∗
k+t |Wn] =∑∞

j=−∞ ψ∗
j ψ∗

j+k ∼ η̃|k|−α̃ as k

large enough and c(̃α) also chosen such that
∑∞

j=−∞ ψ∗2 = σ̃ 2 = 1
n

∑n
t=1(Yt −mθ̃(Xt ))

2,
where {η∗

s } is a sequence of independent and identically random variables with E[η∗
1] = 0,

E[η∗2
1 ] = 1, E[η∗6

1 ] < ∞, and Wn = (Y1, . . . , Yn).
2. Use the data set {Y ∗

t : 1 ≤ t ≤ n} to obtain an estimator θ̃∗ of θ̃ , and construct a correspond-
ing version, L̂∗

3n(h), of L̂3n(h) under H0; that is, L̂∗
3n(h) is computed according to the same

formula as L̂3n(h) but with {Yt : 1 ≤ t ≤ n} and (θ0, θ̃ ) replaced by {Y ∗
t : 1 ≤ t ≤ n} and

(θ̃ , θ̃∗), respectively.
3. Repeat the foregoing step M times and produce M versions of L̂∗

3n(h), denoted by L̂∗
3n,m(h)

for m = 1,2, . . . ,M . Use the M values of L̂∗
3n,m(h) to construct their empirical distribution

function. Define P ∗(·) as the bootstrap distribution of L̂∗
3n(h) given Wn by P ∗(L̂∗

3n(h) ≤
x) = P(L̂∗

3n(h) ≤ x|Wn). Let l∗r (0 < r < 1) satisfy P ∗(L̂∗
3n(h) ≥ l∗r ) = r , and estimate lr

by l∗r .

Remark 4.1. Note that {η∗
i } is a sequence of independent random variables generated from a

prespecified distribution, and that its choice has little effect on the finite-sample performance of
the bootstrap simulation method. In Example 4.1 we generate a sequence of {η∗

i } from a sequence

of the normalized χ2
2 random variables of the form

χ2
2 −2
2 even when {ηi} is actually a sequence

of standard normal random variables. As discussed by Li and Wang [36], Bühlmann [7], Franke,
Kreiss and Mammen [15], Chen and Gao [8], and others, in general we may use a wild bootstrap
method to generate a sequence of resamples for {e∗

t }.
As suggested by the referee, in Section 4.3 we propose using a block bootstrap method (see,

e.g., Hall, Horowitz and Jing [26]) to compare the finite-sample performance of the proposed
test.

To investigate asymptotic properties of l∗r and L̂∗
3n(h), we need the following additional as-

sumptions. Assumption 4.1 ensures that L̂3n(h) has some power under the alternative hypothesis.
Assumption 4.2 is a bootstrap version of Assumption 2.6(i).

Assumption 4.1. Let H0 be false. (i) Assumption 2.6 holds, with θ0 replaced by θ1. (ii)
limn→∞ nαhα−1/2c2

n = ∞ for 1
2 < α < 1 and 0 <

∫ 1
0 �2(x)dx < ∞, where cn and �(x) are

as defined in (1.2).
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Assumption 4.2. Under H0, ‖θ̃∗ − θ̃‖ = OP ∗(n−1/2).

We now have the following theorem. Its proof is similar to that of Theorems 2.1 and 2.2 and
is provided in Appendix B.

Theorem 4.1. (i) If, in addition to the conditions of Theorem 2.2, Assumption 4.2 holds, then,
under H0,

sup
x∈R

∣∣P ∗(L̂∗
3n(h) ≤ x

)− P
(
L̂3n(h) ≤ x

)∣∣= oP (1), (4.1)

and limn→∞ P(L̂3n(h) > l∗r ) = r .
(ii) If, in addition to the conditions of Theorem 2.2, Assumptions 4.1 and 4.2 hold, then, under

H1, limn→∞ P(L̂3n(h) > l∗r ) = 1.

Theorem 4.1 shows that the bootstrap approximation works well asymptotically. For both the
independent and short-range dependent stationary cases, a discussion of existing results is avail-
able in Chapter 3 of Gao [16]. To the best of our knowledge, Theorem 4.1 is a new result in this
kind of long-range dependent time series specification.

Note that l∗r is a function of h. A natural problem raised in simulation is the choice of a suitable
bandwidth h. To examine how to address this issue, define the size and power functions of L̂3n(h)

as

γn(h) = P
(
L̂∗

3n(h) > l∗r |H0
)

and βn(h) = P
(
L̂∗

3n(h) > l∗r |H1
)
. (4.2)

Clearly, a reasonable selection procedure for a suitable bandwidth is such that the size function
γn(h) is controlled by a significance level, but the power function βn(h) is maximized over such
bandwidths that make γn(h) is controllable. In this paper we propose choosing

ĥtest = arg max
h∈Hn

βn(h) with Hn = {h: r − ε < γn(h) < r + ε}, (4.3)

where 0 < ε < r . Theoretically, we have not been able to study ĥtest asymptotically. In Exam-
ple 4.1 below, we instead combine our proposed Simulation Procedure 4.1 and Implementation
Procedure 4.1 to numerically approximate ĥtest.

Implementation Procedure 4.1. Use l̂∗r = l∗r (̂htest) as the simulated critical value to compute the
sizes and power values of L̂3n(̂htest).

4.2. LRD parameter estimation

As mentioned at the beginning of Section 4, we need to estimate λ = (α, η) when λ is unknown.
Let ut ≡ êt = Yt − mθ̃(Xt ) and Iu(ω) = 1

2πn
|∑n

s=1 useisω|2.
Concerning the estimation of λ for the case where the errors are not necessarily Gaussian,

several methods are available in the literature. Giraitis and Surgailis [22] established an asymp-
totic theory for a Whittle estimation method. Heyde and Gay [28] considered a multivariate case
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and established several asymptotic results. Robinson [42] proposed an efficient Gaussian semi-
parametric estimation method for the long-range dependence parameter, which is equivalent to α

in the present paper. Ideally, we would adopt the estimation method proposed by Robinson [42]
for our case. But because that method does not directly imply asymptotic normality for η̃ to meet
our Assumption 2.3, we modified the method of Heyde and Gay [28] for our case.

Define the following Gauss–Whittle objective function:

�u(λ) = 1

4π

∫ π

−π

(
log(ψu(ω;λ)) + Iu(ω)

ψu(ω;λ)

)
dω, (4.4)

where ψu(ω;λ) is the spectral density function of {ut }.
Let λ̃ minimize �u(λ) over �0, a compact subset of � = {λ: λ = (α, η): 1

2 < α < 1,0 < η <

∞}. Define Li((−π,π]) = {ψ :
∫ π
−π |ψ(ω)|i dω < ∞} for i = 1,2.

We introduce the following assumption:

Assumption 4.3. (i) Let {et } satisfy Assumption 2.1 and let ψe(ω,λ) be its spectral density func-
tion.

(ii) Let λ = (λ1, λ2) = (α, η). The functions ψe(ω;λ) and pi(ω,λ) = − ∂ψ−1
e (ω,θ)

∂λi
for i = 1,2

satisfy the following conditions:

• ∫ π
−π log(ψe(ω,λ))dω is twice differentiable in λ under the integral sign. In addition,

ψe(ω,λ) is continuous at all ω �= 0 and λ ∈ �, and ψ−1
e (ω,λ) is continuous at all (ω,λ).

• ψ−1
e (ω,λ), ω ∈ (−π,π] and λ ∈ �, is twice differentiable with respect to λ, and the func-

tions ∂ψ−1
e (ω,λ)

∂λi
and ∂2ψ−1

e (ω,λ)

∂λi ∂λj
are continuous at all (ω,λ),ω �= 0 for all 1 ≤ i, j ≤ 2.

• For all 1 ≤ i ≤ 2, pi(ω,λ) are symmetric about ω = 0 and pi(ω,λ) ∈ L1((−π,π]) for any
λ ∈ �.

• ψe(ω,λ)pi(ω,λ) for i = 1,2 are in L2((−π,π]) for any λ ∈ �. In addition, there exists a
constant 0 < q ≤ 1 such that |ω|qψe(ω,λ) is bounded and |ω|−qpi(ω,λ) for i = 1,2 are
in L2((−π,π]) for any λ ∈ �.

• The matrix (
∂ log(ψe(ω,λ))

∂λ
)(

∂ log(ψe(ω,λ))
∂λ

)τ is in L1((−π,π]) for any λ ∈ � and �(λ) =
1

4π

∫ π
−π(

∂ log(ψe(ω,λ))
∂λ

)(
∂ log(ψe(ω,λ))

∂λ
)τ dω is positive definite for all λ ∈ �.

Assumption 4.3 is equivalent to Conditions (A1)–(A3) of Heyde and Gay [28]. Assump-
tion 4.3(ii) is satisfied in many cases. Using existing results (see, e.g., Beran [5]), we can
verified that Assumption 4.3(ii) is satisfied when the spectral density function is of the form
ψe(ω,λ) = d(ω,λ)(sin(ω

2 ))−(1−α), where d(ω,λ) > 0 satisfies certain conditions.
Theorem 4.2 establishes an asymptotic consistency result for λ̃. Its proof is given in Ap-

pendix B.

Theorem 4.2. Let the conditions of Theorem 2.2, except Assumption 2.1, hold. If in addition
Assumption 4.3 holds, then, for n large enough,

‖̃λ − λ‖ = oP (logn/n2/5), (4.5)

where λ̃ = (̃α, η̃). Theorem 4.2 shows that Assumption 2.3 can be justified for wn = n2/5

log(n)
.
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4.3. An example of implementation

In this section we implement our proposed simulation procedure to show how to assess the finite-
sample properties of the proposed test L̂3n(h) by using a simulated example.

Before we examine the finite-sample performance of the size and power functions of our pro-
posed test, we briefly state the following simulation procedure as an alternative to the proposed
Simulation Procedure 4.1.

Simulation Procedure 4.2. Let lr (0 < r < 1) be the 1 − r quantile of the exact finite-sample
distribution of L̂3n(h). Because lr might not be evaluated in practice, we suggest an approximate
r-level critical value, l∗r , to replace it, using the following bootstrap procedure:

1. Generate {̃et } by ẽt = ∑∞
j=1 ψ̃j ηt−j , in which {ηk} is a sequence of independent ob-

servations drawn from N(0,1), and ψ̃j = c(̃α)j−(1+α̃)/2, in which c(̃α) = √
α̃. Let l =

[n1/3], and choose b such that bl = n. Generate e∗
1l (j ) = (̃e1(j), . . . , ẽl(j)), . . . , and

e∗
Nl(j) = (̃e(b−1)l+1(j), . . . , ẽbl(j)) in step j for N = n − l + 1. Replicate the resampling

J = 250 times and obtain J bootstrap resamples {e∗
sl(j): 1 ≤ s ≤ N;1 ≤ j ≤ J }. Then

take the average e∗
sl = 1

J

∑J
j=1 e∗

sl(j) to obtain a block bootstrap version of et of the form
(e∗

1, . . . , e∗
n) = (e∗

1l , . . . , e
∗
Nl). Then generate Y ∗

t from Y ∗
t = mθ̃(Xt ) + e∗

t for 1 ≤ t ≤ n,
where Xt = t

n
for 1 ≤ t ≤ n.

2. Use the data set {Y ∗
t : 1 ≤ t ≤ n} to obtain an estimator θ̃∗ of θ̃ , and construct a correspond-

ing version L̂∗
1n(h) of L̂1n(h) under H0; that is, compute L̂∗

1n(h) according to the same
formula as for L̂1n(h), but with {Yt : 1 ≤ t ≤ n} and (θ0, θ̃ ) replaced by {Y ∗

t : 1 ≤ t ≤ n}
and (θ̃ , θ̃∗), respectively.

3. Repeat the foregoing step M times and produce M versions of L̂∗
3n(h), denoted by L̂∗

3n,m(h)

for m = 1,2, . . . ,M . Use the M values of L̂∗
1n,m(h) to construct the empirical distribution

function. Define P ∗(·) as the bootstrap distribution of L̂∗
1n(h) given Wn by P ∗(L̂∗

1n(h) ≤
x) = P(L̂∗

1n(h) ≤ x|Wn). Let l∗r (0 < r < 1) satisfy P ∗(L̂∗
1n(h) ≥ l∗r ) = r , and estimate lr

by l∗r .

Example 4.1. Consider a linear model of the form

Yt = α0 + β0Xt + et , t = 1, . . . , n, (4.6)

where (α0, β0) is a pair of unknown parameters, Xt = t
n

for 1 ≤ t ≤ n, and {et } is a sequence of
dependent errors given by et =∑∞

j=1 ψjηt−j , where {ηk} is a sequence of independent observa-

tions drawn from N(0,1) and ψj = c(α)j−(1+α)/2 for 1
2 < α < 1, with c(α) = √

α. We choose
α = 3

4 in our simulation. Throughout this section, we use the standard normal kernel function

K(x) = 1√
2π

e−x2/2.

To compute the sizes and power values of L̂3n(h), we generate {Yt } from

H0: Yt = α0 + β0Xt + et or H1: Yt = α1 + β1Xt + γ1X
2
t + et , (4.7)
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Table 1. Sizes and power values based on simulated critical values

Null hypothesis is true

r = 1% r = 5% r = 10%

Observation T : f0cv f0test f0cv f0test f0cv f0test

250 0.004 0.011 0.026 0.064 0.061 0.086
500 0.006 0.009 0.031 0.060 0.058 0.082
750 0.003 0.012 0.028 0.042 0.049 0.122

Null hypothesis is false

r = 1% r = 5% r = 10%

Observation T : f1cv f1test f1cv f1test f1cv f1test

250 0.084 0.160 0.121 0.242 0.181 0.366
500 0.076 0.144 0.153 0.296 0.179 0.304
750 0.104 0.216 0.142 0.320 0.234 0.426

where the parameters (α0, β0) are estimated by (̃α0, β̃0) under H0 and the parameters (α1, β1, γ1)

are estimated by the ordinary least squares estimators (̃α1, β̃1, γ̃1) under H1. When we generate

{Yt }, the initial values are αi = βi ≡ 1 for i = 0,1, and we use γ1 = n− 1
2
√

loglog(n) to compute
the power values in both Tables 1 and 2.

Table 2. Sizes and power values based on simulated critical values

Null hypothesis is true

r = 1% r = 5% r = 10%

Observation T : f0cv f0test f0cv f0test f0cv f0test

250 0.004 0.010 0.016 0.060 0.050 0.136
500 0.002 0.012 0.016 0.062 0.034 0.113
750 0.006 0.010 0.018 0.051 0.036 0.102

Null hypothesis is false

r = 1% r = 5% r = 10%

Observation T : f1cv f1test f1cv f1test f1cv f1test

250 0.080 0.168 0.130 0.324 0.190 0.422
500 0.070 0.332 0.164 0.526 0.224 0.628
750 0.114 0.334 0.180 0.544 0.246 0.654
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We first apply Implementation Procedure 4.1 for the case where {η∗
i } is a sequence of the

normalized χ2
2 random variable of the form

χ2
2 −2
2 . When using Simulation Procedure 4.2,

we start with the case where {ηi} is a sequence of i.i.d. observations drawn from N(0,1).
We then apply either Implementation Procedure 4.1 or Simulation Procedure 4.2 to find ĥtest.
To assess whether the use of ĥtest associated with the proposed bootstrap method could im-
prove the finite-sample performance of L̂3n, we also consider using an estimation-based opti-
mal bandwidth of the form ĥcv = arg minh∈Hcv

1
n

∑n
t=1(Yt − m̂−t (Xt , h))2, where m̂−t (Xt , h) =∑n

s=1,�=t K(Xt−Xs

h
)Ys/

∑n
u=1,�=t K(Xt−Xu

h
) and Hcv = [c1n

−1, c2n
−(1−c0)] for some 0 < c1 <

c2 < ∞ and 0 < c0 < 1.
In the implementation of Simulation Procedure 4.1, we consider the case with M = 500 repli-

cations, each with B = 250 bootstrapping resamples. When implementing Simulation Proce-
dure 4.2, we use the same number of replications M = 500, each with J = 250 block boot-
strapping resamples (n = bl). All of these simulations were done for data sets of size n = 250,
500 and 750. Let ĥitest and ĥicv denote the corresponding versions of ĥtest and ĥcv under Hi for
i = 0,1. Let fitest denote the frequency of L̂3n(̂hitest) > l∗r (̂hitest) (note that we repeat the test 10
times to compute l∗r (̂hitest)), and let ficv be the frequency of L̂3n(̂hicv) > zr under Hi for each
of i = 0,1, where z0.01 = 2.33 at the 1% level, z0.05 = 1.645 at the 5% level, and z0.10 = 1.28 at
the 10% level.

Tables 1 and 2 present the simulated sizes and power values based on Simulation Proce-
dures 4.1 and 4.2, respectively.

Tables 1 and 2 show that the simulated power values associated with ĥtest are greater than those
based on ĥcv, and also that L̂1n(̂hcv) has some kind of size distortion when using zr (equivalent
to using the asymptotic normality as the sample distribution) in practice. This finding is not
surprising, given that the the theory demonstrates that each ĥtest is chosen such to maximize the
resulting power function, with the corresponding size function computed using the simulated
critical value l∗r (̂htest) in each case.

Comparing the regression bootstrap method in Table 1 and the block bootstrap method in Ta-
ble 2 shows similar sizes for the two methods. Meanwhile, the power values in columns 3, 5 and 7
in Tables 1 and 2 show that L̂3n(̂htest) associated with the block-bootstrap method is more pow-
erful than L̂3n(̂htest) based on the regression bootstrap method, whereas whether L̂3n(̂hcv) asso-
ciated with the block-bootstrap method or L̂3n(̂hcv) based on the regression bootstrap method
is uniformly more powerful is not so clear. This finding further supports our argument that the
choice of a suitable bootstrap method for selecting an appropriate bandwidth to maximize the
resulting power function is more relevant than the choice of the bootstrap method itself.

5. Conclusion

We have proposed a new nonparametric test for the parametric specification of the mean func-
tion of long-range dependent time series, and have established asymptotic distributions of the
proposed test for both the fixed and random design cases. In addition, we have proposed Simula-
tion Procedure 4.1 and Implementation Procedure 4.1 to implement the proposed test in practice.
Our finite-sample results show that the proposed test, as well as the two procedures, are prac-
tically applicable and implementable. Further topics, including how to extend existing results



1730 J. Gao, Q. Wang and J. Yin

(Nishiyama and Robinson [39,40]; Gao [16]; Gao and Gijbels [17]) for Edgeworth expansions
for the size and power functions of the proposed tests to the long-range dependence case, are left
for future research.

Appendix A: Technical details

This appendix provides technical details for the asymptotic theory in Section 2. Appendix A.1
gives several preliminary lemmas. Appendix A.2 presents the proofs of Theorems 2.3 and 2.4,
and A.3 presents the proofs of Theorems 2.1 and 2.2. Proofs of the lemmas are given in Ap-
pendix A of Gao and Wang [20]. Throughout this section, we denote constants by C,C1, . . . ,
which may take different values at each appearance.

A.1. Technical lemmas

Lemma A.1. Let {et } be a linear process defined by et = ∑∞
j=−∞ ψjηt−j , where {ηj } is a

sequence of i.i.d. random variables with E[η1] = 0, E[η2
1] = 1, E[η4

1] < ∞ and γ (0) < ∞,
where γ (k) = E[et ek+t ] =∑∞

j=−∞ ψjψj+k . Then, for all j, k, s and t ,

E[ej ekeset ] = (E[η4
1] − 3)

∞∑
m=−∞

ψj−mψk−mψs−mψt−m

(A.1)
+ γ (j − k)γ (s − t) + γ (j − s)γ (k − t) + γ (j − t)γ (k − s).

In particular, we have that E[e4
1] < ∞,

|E[e2
j e

2
k] − γ 2(0)| ≤ Cγ 2(j − k) and (A.2)

|E[e2
j ekes]| ≤ C[γ (j − k) + γ (j − s) + γ (k − s)] (A.3)

for all j �= k �= s. If, in addition, ψk ≥ 0, then for all j, k, s and t ,∣∣E[(ej ej+s − γ (s)
)(

ekek+t − γ (t)
)]∣∣

(A.4)
≤ Cγ (j − k)γ (j − k + s − t) + γ (j − k + s)γ (j − k − t).

Lemma A.2. Let 1/2 < α < 1 and 0 < β < α − 1/2. Then, for all k ≥ 3 and as n → ∞,

In = 1

nk/2

∫ n

1

∫ n

1
· · ·

∫ n

1
|x1 − x2|−α|x2 − x3|β−1 · · ·

(A.5)
× |x2k−1 − x2k|−α|x2k − x1|β−1 dx1 dx2 · · · dx2k → 0.
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In Lemma A.3 below, let {Xi, i ≥ 1} be a sequence of i.i.d. random variables with density
function f (x), and set gn(Xi,Xj ) = K(

Xi−Xj

h
) − E[K(

Xi−Xj

h
)],

g1n(Xi) = E[gn(Xi,Xj )|Xi] and
(A.6)

g2n(Xi,Xj ) = gn(Xi,Xj ) − g1n(Xi) − g1n(Xj ).

Lemma A.3. Let K(x) satisfy Assumption 2.4(i). If f (x) is a bounded and uniformly continuous
function on R, then

E
[
K[(X1 − X2)/h]] ∼ c1h, (A.7)

E[g2
2n(X1,X2)] ∼ E

[
K2[(X1 − X2)/h]]∼ c2h, (A.8)

E[g4
2n(X1,X2)] ∼ E

[
K4[(X1 − X2)/h]]∼ c4h, (A.9)

where cj = ∫∞
−∞ Kj(s)ds

∫∞
−∞ f 2(y)dy for j = 1,2,4. Furthermore,

E[g2
1n(X1)] ∼ d1h

2, (A.10)

E[g2n(X1,X3)g2n(X1,X4)g2n(X2,X3)g2n(X2,X4)] ∼ d2h
3, (A.11)

where

d1 =
∫ ∞

−∞

[
f (x) −

∫ ∞

−∞
f 2(y)dy

]2

f (x)dx

and

d2 =
∫ ∫ ∫

K(s)K(t)K(x + s)K(x + t)ds dt dx

∫ ∞

−∞
f 4(y)dy.

Our next lemma establishes a Berry–Esseen type bound for random weighted U statistics. This
lemma is interesting and useful in itself.

Lemma A.4. Let {εk, k ≥ 1} be a sequence of i.i.d. random variables, let {anij } be a sequence
of constants with anij = anji for all n ≥ 1, and let {ϕn(x, y)} be a sequence of symmetric Borel-
measurable functions such that for all n ≥ 1,

E[ϕ2
n(ε1, ε2)] > 0, E[ϕn(ε1, ε2)|ε1] = 0. (A.12)

Then there exists an absolute constant A > 0 such that

sup
x

|P(B−1
n Sn ≤ x) − �(x)| ≤ AB

−4/5
n

(
A1nEϕ4

n(ε1, ε2) + A2nLn

)1/5
, (A.13)

where Sn =∑
1≤i<j≤n anijϕn(εi, εj ), B2

n =∑
1≤i<j≤n a2

nijEϕ2
n(ε1, ε2),

A1n =
n∑

i=2

(
i−1∑
j=1

a2
nij

)2

, A2n =
n−1∑
i=2

n∑
j=i+1

(
i−1∑
k=1

anikanjk

)2

, (A.14)
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Ln = E[ϕn(ε1, ε3)ϕn(ε1, ε4)ϕn(ε2, ε3)ϕn(ε2, ε4)]. (A.15)

Lemma A.5. Let {εk, k ≥ 1} be a sequence of i.i.d. random variables with E[ε1] = 0
and E[ε6

1] < ∞. Let {anij } be a sequence of real numbers with anij = anji and ‖A‖2 ≡∑∞
i,j=−∞ a2

nij < ∞ for all n ≥ 1. If there exists an absolute constant b2
1 > 0 such that

1 − V 2

‖A‖2 ≥ b2
1 with V 2 =∑∞

i=−∞ a2
nii , then

sup
x

|P(Sn/Bn ≤ x) − �(x)| ≤ C
{Tr(A4)}1/4

‖A‖ , (A.16)

where Sn =∑∞
i,j=−∞ anij (εiεj − E[εiεj ]), B2

n = 2(‖A‖2 − V 2)μ2
2 + V 2(μ4 − μ2

2) with μj =
E[|ε1|j ], and A is the infinite matrix with anij as its (i, j)th element.

Lemma A.6. Let K(x) be a non-negative symmetric integrable function satisfying K(x) =
O[(1 + |x|1−β)−1], where 0 < β ≤ α − 1/2 and 1/2 < α < 1. Then

�0 ≡
∫ ∞

0
x−αK(x)dx < ∞, (A.17)

Aα ≡
∫ ∞

0

∫ ∞

0

∫ ∞

0
x−αy−α[I1(x, y,w) + I2(x, y,w)]dx dy dw < ∞, (A.18)

and as h → 0,

�1 ≡
∫ 1/h

0

∫ 1/h

0

∫ 1/h

x

x−αy−α max{w,y}[I1(x, y,w) + I2(x, y,w)]dx dy dw

(A.19)
= o(1/h),

where I1(x, y,w) = K(w)K(x + y − w) and I2(x, y,w) = K(w − x)K(w − y).

A.2. Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. We may write

∑
1≤i �=j≤n

eiej

[
K

(
(Xi − Xj)

h

)]
= Q̃

(1)
2n + Q̃

(2)
2n + Q̃

(3)
2n ,

where

Q̃
(1)
2n =

∑
1≤i �=j≤n

eiejE

[
K

(
(Xi − Xj)

h

)]
, (A.20)
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Q̃
(2)
2n =

∑
1≤i �=j≤n

eiej [g1n(Xi) + g1n(Xj )], (A.21)

Q̃
(3)
2n =

∑
1≤i �=j≤n

eiej g2n(Xi,Xj ), (A.22)

where g1n(Xi) and g2n(Xi,Xj ) are defined as in (A.6). Theorem 2.3 now follows readily if we
prove the following: Whenever h → 0,

(A2αn2−αh)−1Q̃
(1)
2n →D χ2(1), (A.23)

Q̃
(2)
2n = oP

(
max

{
n2−αh,n

√
h
})

, (A.24)

and if in addition, nh → ∞, then(
A1αn

√
h
)−1

Q̃
(3)
2n →D N(0,1). (A.25)

Actually, if h → 0 and
√

hn1−α → ∞, then Q̃
(2)
2n + Q̃

(3)
2n = oP (n2−αh) by virtue of (A.24) and

(A.25). This and (A.23) yield Theorem 2.3(ii). Similarly, if
√

hn1−α → 0 and nh → ∞, then
Q̃

(1)
2n + Q̃

(2)
2n = oP (n

√
h) by virtue of (A.23) and (A.24). This and (A.25), yield Theorem 2.3(i).

We now prove (A.23)–(A.25), starting with (A.23). By (A.7),

(A2αn2−αh)−1Q̃
(1)
2n = (

1 + oP (1)
)[( 1

dn

n∑
j=1

ej

)2

− 1

d2
n

n∑
j=1

e2
j

]
,

where d2
n = 2η

(1−α)(2−α)
n2−α . It can be readily seen that 1

d2
n

∑n
j=1 e2

j → 0 a.s. by the stationary er-

godic theorem. This, together with (A.2) and the continuous mapping theorem, yield that (A.23)
will follow if we prove

1

dn

n∑
j=1

ej →D N(0,1), (A.26)

which follows from Lemma 1 of Robinson [43]. This proves (A.23).
We next prove (A.24). By (A.10), independence of ei and Xi , and (A.3),

E
(
Q̃

(2)
2n

)2 = E

(
n∑

i=1

g1n(Xi)ei

∑
1≤j �=i≤n

ej

)2

= [d1h
2 + o(h2)]

( ∑
1≤i �=j≤n

E[e2
i e

2
j ] +

∑
1≤i �=k �=j≤n

E[e2
i ej ek]

)

≤ Ch2

[
n2Ee4

1 + n

n∑
i,j=1

γ (i − j)

]
≤ Ch2(n2 + n3−α).
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Thus, equation (A.24) follows immediately from the Markov inequality.
Finally, we prove (A.25). Write

B2
n =

∑
1≤i<j≤n

e2
i e

2
jE[g2

2n(Xi,Xj )] = 1

2
E[g2

2n(X1,X2)] ·
[(

n∑
i=1

e2
i

)2

−
n∑

i=1

e4
i

]
.

By (A.8) and the stationary ergodic theorem, which yields that 1
n

∑n
i=1 e2

i → E[e2
1] = γ (0) a.s.

and 1
n

∑n
i=1 e4

i → E[e4
1] < ∞ a.s., it can be readily seen that as n → ∞

4A−2
1α n−2h−1B2

n → 1 a.s., (A.27)

where A1α is defined as in Theorem 2.3. Thus, to prove (A.25), it suffices to show that

Q̃
(3)
2n /(2Bn) →D N(0,1). (A.28)

Lemma A.4 is used to establish (A.28). In fact, noting that

Q̃
(3)
2n = 2

∑
1≤i<j≤n

eiej g2n(Xi,Xj )

and E[g2n(Xi,Xj )|ei] = 0 for all i �= j , it follows from the independence of ei and Xi ,
Lemma A.4, (A.9) and (A.11) that

sup
x

∣∣P (Q̃(3)
2n /2Bn ≤ x|e1, . . . , en

)− �(x)
∣∣≤ AB

−4/5
n (c4hA1n + d2h

3A2n)
1/5, (A.29)

where A is an absolute constant, c4 and d2 are defined as in (A.9) and (A.11), and

A1n =
n∑

i=2

(
i−1∑
j=1

(eiej )
2

)2

≤
n∑

i=2

e4
i

(
n∑

j=1

e2
j

)2

,

A2n =
n−1∑
i=2

n∑
j=i+1

(
i−1∑
k=1

eiej e
2
k

)2

≤
( ∑

1≤i<j≤n

e2
i e

2
j

)2

.

Again by the stationary ergodic theorem, for n large enough,

1

n3
A1n ≤ 2E[e4

1] · (E[e2
1])2 a.s. and

1

n4
A2n ≤ 2(E[e2

1])4 a.s.

This, together with (A.27) and (A.29), implies that for n large enough,

sup
x

∣∣P (Q̃(3)
2n /(2Bn) ≤ x|e1, . . . , en

)− �(x)
∣∣≤ C

(
1

nh
+ h

)1/5

a.s.
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Now if h → 0 and nh → ∞, then

lim
n→∞ sup

x

∣∣P (Q̃(3)
2n /(2Bn) ≤ x

)− �(x)
∣∣

≤ E
[

lim
n→∞ sup

x

∣∣P (Q̃(3)
2n /(2Bn) ≤ x|e1, . . . , en

)− �(x)
∣∣]= 0.

This proves (A.28), and also completes the proof of Theorem 2.3. �

Proof of Theorem 2.4. Let

Q̃1n = K(0)

n∑
i=1

e2
i and Q1n =

n∑
i=1

n∑
j=1,j �=i

eiej bn(i, j).

We have that

Q̃n ≡ Q1n − E[Q1n] + Q̃1n − E[Q̃1n] =
n∑

i,j=1

(
eiej − γ (i − j)

)
bn(i, j)

(A.30)

=
∞∑

k,l=−∞
ankl(ηkηl − E[ηkηl]),

where ankl =∑n
i,j=1 ψi−kψj−lbn(i, j), based on the fact that E[ηkηl] = 0 for k �= l, E[η2

k] = 1,
and

∞∑
k=−∞

ankk =
n∑

i,j=1

K

(
i − j

nh

) ∞∑
k=−∞

ψi−kψj−k =
n∑

i,j=1

γ (i − j)bn(i, j).

By Lemma A.5, to prove Theorem 2.4, it suffices to show that as n → ∞,

(Q̃1n − EQ̃1n)

τn

→P 0, (A.31)

2‖A‖2 ≡ 2
∞∑

k,l=−∞
a2
nkl ∼ A2

0τ
2
n , (A.32)

V 2 =
∞∑

k=−∞
a2
nkk = o(τ 2

n ), (A.33)

Tr(A4) = o(τ 4
n ), (A.34)

where τn = n2−αh3/2−α , and A2
0 = 8η2Aα with Aα as defined in (2.3). Indeed, by virtue of

(A.32)–(A.34), it follows from Lemma A.5 that

(Q̃n − E[Q̃n])/τn →D A0N(0,1).
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This, together with (A.31), yields Theorem 2.4.
In what follows, we give the proofs of (A.31)–(A.34). We start with (A.31). Recall that 1/2 <

α < 1 and γ (k) ∼ η|k|−α . By virtue of (A.2), it can be readily seen that

E[(Q̃1n − EQ̃1n)
2] = K2(0)E

[
n∑

k=1

(e2
k − Ee2

k)

]2

≤ C

n∑
j,k=1

γ 2(j − k) ≤ C

n∑
k=1

(n − k)γ 2(k) ≤ Cn.

This, together with the Markov inequality and nh → ∞, yields (A.31).
We next prove (A.32). We have

‖A‖2 =
∞∑

k,l=−∞

(
n∑

i,j=1

ψi−kψj−lK

(
i − j

nh

))2

=
n∑

i,j,s,t=1

∞∑
k,l=−∞

ψi−kψj−lψs−kψt−lK

(
i − j

nh

)
K

(
s − t

nh

)

=
n∑

i,j,s,t=1

K

(
i − j

nh

)
K

(
s − t

nh

)
γ (i − s)γ (t − j).

Write fn(x, y; z,w) = K(x−z
nh

)K(
y−w
nh

) + K(
y−z
nh

)K(x−w
nh

). Clearly, fn(·, ·; ·, ·) has the follow-
ing symmetry in its indexes:

fn(x, y; z,w) = fn(y, x; z,w) = fn(x, y;w,z) = fn(y, x;w,z).

Also fn(x, y; z,w) = fn(z,w;x, y). Noting that for any function g(x, y) and symmetric func-
tion b(x),

n∑
i,j=1

b(i − j)g(i, j) = b(0)

n∑
i=1

g(i, i) +
n−1∑
i=1

n−i∑
j=1

b(i)[g(j, j + i) + g(j + i, j)],

some algebra shows that (noting that γ (k) = γ (−k))

2‖A‖2 =
n∑

i1,i2,j1,j2=1

γ (i1 − i2)γ (j1 − j2)fn(i1, i2; ji, j2)

= γ 2(0)

n∑
i,j=1

fn(i, i; j, j) + 4γ (0)

n∑
i=1

n−1∑
j=1

n−j∑
k=1

γ (i)fn(i, i; k, j + k) (A.35)
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+ 4
n−1∑
i1=1

n−i1∑
i2=1

n−1∑
j1=1

n−j1∑
j2=1

γ (i1)γ (j1)fn(i2, i1 + i2; j2, j1 + j2)

≡ �1n + 4�2n + 4�3n.

Recalling that K(x) is a probability density function and γ (x) ∼ ηx−α for 0 < α < 1 and
x > 0, we have that

�3n ∼
∫ n−1

1

∫ n−1

1

∫ n−x

1

∫ n−y

1
γ (x)γ (y)fn(z, x + z;w,y + w)dx dy dz dw. (A.36)

Write gn(x, y) = ∫ n−x

1

∫ n−y

1 fn(z, x + z;w,y + w)dz dw. By Fubini’s theorem,

gn(x, y) =
∫ n−x

1

∫ n−y−z

1−z

fn(z, x + z;w + z, y + w + z)dw dz

=
∫ n−y−1

−(n−x−1)

∫ min{n−x,n−y−w}

max{1,1−w}
fn(0, x;w,y + w)dz dw

=
∫ n−y−1

0
(n − 1 − max{x, y + w})fn(0, x;w,y + w)dw

+
∫ n−x−1

0
(n − 1 − max{x + w,y})fn(0, x;−w,y − w)dw

=
∫ n−1

y

(n − 1 − max{x,w})fn(0, x;w − y,w)dw

+
∫ n−1

x

(n − 1 − max{w,y})fn(0, x;x − w,x + y − w)dw.

Substituting this into (A.36), simple calculations show that if h → 0 and nh → ∞, then

�3n ∼
∫ n−1

1

∫ n−1

1
γ (x)γ (y)gn(x, y)dx dy

∼ 2
∫ n−1

1

∫ n−1

1

∫ n−1

x

γ (x)γ (y)(n − 1 − max{w,y})

×
[
K

(
w

nh

)
K

(
x + y − w

nh

)
+ K

(
w − x

nh

)
K

(
w − y

nh

)]
dx dy dw

∼ 2n(nh)3−2αη2
∫ 1/h

0

∫ 1/h

0

∫ 1/h

x

x−αy−α(1 − hmax{w,y})
× [K(w)K(x + y − w)

+ K(w − x)K(w − y)]dx dy dw (A.37)
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∼ 2n(nh)3−2αη2
∫ ∞

0

∫ ∞

0

∫ ∞

x

x−αy−α

× [K(w)K(x + y − w) + K(w − x)K(w − y)]dx dy dw

= 2n(nh)3−2αη2Aα = n(nh)3−2αA2
0/4,

based on the fact that K(x) is symmetric, A2
α < ∞, and (A.19).

By a similar argument, if h → 0 and nh → ∞, then

�1n + 4�2n = O(n3−αh2) = o(�3n). (A.38)

By virtue of (A.35), (A.37) and (A.38), we obtain the proof of (A.32).
Third, we prove (A.33). Let

h(i, j, s, t) =
∞∑

k=−∞
ψi−kψj−kψs−kψt−k =

∞∑
k=−∞

ψkψj−i+kψs−i+kψt−i+k.

By ψj ≥ 0 and K(x) ≥ 0, it can be readily seen that for any j ≥ 0, s, and t ,

n∑
i=1

h(i, j + i, s, t) ≤
∞∑

k=−∞
ψkψj+k

n∑
i=1

ψs−i+kψt−i+k ≤ γ (j)γ (t − s).

Therefore, as in (A.35)–(A.37), it follows from (A.17) that

V 2 =
∞∑

k=−∞

(
n∑

i,j=1

ψi−kψj−kK

(
i − j

nh

))2

=
n∑

i,j,s,t=1

K

(
i − j

nh

)
K

(
s − t

nh

)
h(i, j, s, t)

≤ K(0)

n∑
i,s,t=1

K

(
s − t

nh

)
h(i, i, s, t)

+ 2
n∑

j=1

K

(
j

nh

) n∑
i,s,t=1

K

(
s − t

nh

)
h(i, j + i, s, t) (A.39)

≤
[
K(0)γ (0) + 2

n∑
j=1

K

(
j

nh

)
γ (j)

]
n∑

s,t=1

K

(
s − t

nh

)
γ (s − t)

≤ Cn

(
K(0)γ (0) + 2

∫ n

1
x−αK

(
x

nh

)
dx

)∫ n

1
x−αK

(
x

nh

)
dx

≤ Cn3−2αh2−2α = o(τ 2
n )
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because nh → ∞. This proves (A.33).
Finally, we prove (A.34). Tedious calculations show that

Tr(A4) =
∞∑

i,j,l,m=−∞
anij anjlanlmanmi

=
∞∑

i,j,l,m=−∞

n∑
j1,j2,...,j7,j8=1

ψj1−iψj2−jψj3−jψj4−lψj5−lψj6−mψj7−mψj8−i

× K

(
j1 − j2

nh

)
K

(
j3 − j4

nh

)
K

(
j5 − j6

nh

)
K

(
j7 − j8

nh

)

=
n∑

j1,j2,...,j7,j8=1

K

(
j1 − j2

nh

)
γ (j2 − j3) · · ·K

(
j7 − j8

nh

)
γ (j8 − j1).

Recall that K(x) = O[(1+|x|1−β)−1]. Similar to the proof of (A.32), it follows from Lemma A.2
that

Tr(A4) ∼
∫ n

1

∫ n

1
· · ·

∫ n

1
K

(
x1 − x2

nh

)
γ (x2 − x3) · · ·

× K

(
x7 − x8

nh

)
γ (x8 − x1)dx1 dx2 · · · dx7 dx8

∼ η4(nh)4(2−α)

∫ 1/h

0

∫ 1/h

0
· · ·

∫ 1/h

0
K(x1 − x2)|x2 − x3|−α

× K(x7 − x8)|x8 − x1|−α dx1 dx2 · · · dx7 dx8

= O(1)(nh)4(2−α)

∫ 1/h

0

∫ 1/h

0
· · ·

∫ 1/h

0
|x1 − x2|β−1|x2 − x3|−α · · ·

× |x7 − x8|β−1|x8 − x1|−α dx1 dx2 · · · dx7 dx8

= o(1)(nh)4(2−α)(1/h)2 = o(1)τ 4
n .

This yields (A.34) and thus completes the proof of Theorem 2.4. �

A.3. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Note that for any α and α̂,∣∣n(α−α̃) − 1
∣∣≤ |α − α̃| logn · exp{|α − α̃| logn}. (A.40)
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By (2.7), Theorem 2.3, and Assumption 2.2, the proof of Theorem 2.1 follows if we prove

1

n

n∑
t=1

f̂ (Xt ) = 1

n2h

n∑
i,j=1

K

(
Xi − Xj

h

)
→P

∫ ∞

−∞
f 2(x)dx, (A.41)

1

n

n∑
t=1

ê2
t = 1

n

n∑
t=1

(
et + mθ0(Xt ) − mθ̃(Xt )

)2 →P γ (0), (A.42)

and under the relevant conditions of Theorem 2.1,

2R1n(h) + R2n(h) = oP (σin(h)), i = 1,2, (A.43)

where R1n(h) and R2n(h) are defined as in (2.7).
Recall that E[K(X1−X2

h
)] ∼ h

∫∞
−∞ f 2(x)dx by (A.7). The proof of (A.41) follows from

standard methodologym and thus the details are omitted. By the stationary ergodic theorem,
1
n

∑n
t=1 e2

t → γ (0), a.s. This implies that (A.42) will follow if we have

1

n

n∑
t=1

[
2εt

(
mθ0(Xt ) − mθ̃(Xt )

)+ (
mθ0(Xt ) − mθ̃(Xt )

)2]→P 0. (A.44)

Because the proof of (A.44) is similar to that of (A.43), we only prove (A.43) what follows.
For ∀ε > 0, write �n = {θ̃ : ‖θ̃ − θ0‖ ≤ εn−α/2}, and let

J1(s, t) = K

(
Xs − Xt

h

)
∂mθ(Xs)

∂θ

∣∣∣∣
θ=θ0

,

J2(s, t) = K

(
Xs − Xt

h

){
mθ0(Xs) − mθ̃(Xs) + (θ0 − θ̃ )τ

∂mθ (Xs)

∂θ

∣∣∣∣
θ=θ0

}
and

J3(s, t) = K

(
Xs − Xt

h

)(
mθ0(Xs) − mθ̃(Xs)

)(
mθ0(Xt ) − mθ̃(Xt )

)
.

Using this notation, we have R2n(h) =∑n
t=1

∑n
s=1,�=t J3(s, t) and

R1n(h) = (θ0 − θ̃ )

n∑
t=1

et

n∑
s=1,�=t

J1(s, t) +
n∑

t=1

et

n∑
s=1,�=t

J2(s, t).

Recalling Assumptions 2.2, 2.4(i) and 2.5, it is readily apparent that

E|J1(s, t)| ≤ E

[
K

(
Xs − Xt

h

)∥∥∥∥∂mθ (Xs)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥]

≤ ChE

∥∥∥∥∂mθ (Xs)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥≤ C1h,
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E[|J1(s, t)J1(s1, t)|] ≤ E

[
K

(
Xs − Xt

h

)
K

(
Xs1 − Xt

h

)
×
∥∥∥∥∂mθ (Xs)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥∥∥∥∂mθ (Xs1)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥]

≤ Ch2E

[∥∥∥∥∂mθ (X1)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥2]
≤ C1h

2

for all different values of s, s1, and t . These findings imply that for any 1 ≤ t ≤ n,

E

[
n∑

s=1,�=t

J1(s, t)

]2

≤ C(nh + n2h2) ≤ 2C(nh)2,

because nh → ∞. Thus, by the independence of et and Xs ,

E

[
n∑

t=1

et

n∑
s=1,�=t

J1(s, t)

]2

≤ C(nh)2
n∑

t1,t2=1

E[et1et2] ≤ C1n
4−αh2, (A.45)

where we have used the fact that

n∑
t1,t2=1

E[et1et2] = E

(
n∑

t=1

et

)2

≤ Cn2−α,

as seen from (A.1). On the other hand, it follows from Taylor’s expansion of mθ(x) (with respect
to θ ) that under H0, for all s �= s1, s �= t and s1 �= t and for n large enough such that �n ⊆ �0,

E[|et ||J2(s, t)|I (θ̃ ∈ �n)]

≤ Cεn−αE|et |E
[
K

(
Xs − Xt

h

)∥∥∥∥∂2mθ(Xs)

∂θ2

∣∣∣∣
θ=θ0

∥∥∥∥] (A.46)

≤ C1εn
−αhE

[∥∥∥∥∂2mθ(Xs)

∂θ2

∣∣∣∣
θ=θ0

∥∥∥∥2]
≤ C2εn

−αh.

It follows from (A.45) and (A.46) that

E[|R1n(h)|I (θ̃ ∈ �n)] ≤ εn−α/2E

∣∣∣∣∣
n∑

t=1

et

n∑
s=1,�=t

J1(s, t)

∣∣∣∣∣
+

n∑
t=1

n∑
s=1,�=t

E[|et ||J2(s, t)I (θ̃ ∈ �n)] (A.47)

≤ Cεn2−αh.
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This, together with Markov’s inequality, yields the following results for ∀ε > 0 and n sufficiently
large: (i) If nh → ∞ and n2(1−α)h → 0, then

P
(|R1n(h)| ≥ ε1/2σ1n

) ≤ P(‖θ̃ − θ0‖ > εn−α/2)

+ Cε−1/2(n2h)−1/2E[|R1n(h)|I (θ̃ ∈ �n)] (A.48)

≤ P(‖θ̃ − θ0‖ > εn−α/2) + Cn1−αh1/2ε1/2 ≤ C1ε.

(ii) If h → 0 and n2(1−α)h → ∞, then

P
(|R1n(h)| ≥ ε1/2σ2n

) ≤ P(‖θ̃ − θ0‖ > εn−α/2)

+ Cε−1/2(n4−2αh2)−1/2E[|R1n(h)|I (θ̃ ∈ �n)] (A.49)

≤ P(‖θ̃ − θ0‖ > εn−α/2) + Cε1/2 ≤ C1ε
1/2.

The results (A.48) and (A.49) yield that R1n(h) = o(σjn), 1 ≤ j ≤ 2, under the corresponding
conditions of Theorems 2.1. Similarly, by noting

E[|J3(s, t)|I (θ̃ ∈ �n)] ≤ Cεn−αE

[
K

(
Xs − Xt

h

)∥∥∥∥∂mθ (Xs)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥∥∥∥∂mθ (Xt )

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥]

≤ C1εn
−αhE

[∥∥∥∥∂mθ (X1)

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥2]
≤ C2εn

−αh,

we obtain that for 1 ≤ j ≤ 2 and n sufficiently large,

P
(|R2n(h)| ≥ ε1/2σjn

) ≤ P(‖θ̃ − θ0‖ > εn−α/2)
(A.50)

+ Cε1/2(σjn)
−1n2E[|J3(1,2)|I (θ̃ ∈ �n)] ≤ Cε1/2,

implying that R2n(h) = o(σjn) holds for 1 ≤ j ≤ 2. Combining these findings, we obtain (A.43),
and thus also complete the proof of Theorem 2.1. �

Proof of Theorem 2.2. As in (2.7), under H0, we can write

n∑
t=1

n∑
s=1,�=t

bn(s, t)
(̂
es êt − γ̂ (s − t)

)= M∗
n(h) + 2R∗

1n(h) + R∗
2n(h) + R3n(h), (A.51)

where M∗
n(h) =∑n

t=1
∑n

s=1,�=t bn(s, t)[eset − γ (s − t)],

R∗
1n(h) =

n∑
t=1

n∑
s=1,�=t

bn(s, t)es[mθ0(t/n) − mθ̃(t/n)]

= (θ̃ − θ0)

n∑
t=1

n∑
s=1,�=t

bn(s, t)es

∂mθ (t/n)

∂θ

∣∣∣∣
θ=θ0
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+
n∑

t=1

n∑
s=1,�=t

bn(s, t)es

[
mθ0(t/n) − mθ̃(t/n) + (θ̃ − θ0)

τ ∂mθ (t/n)

∂θ

∣∣∣∣
θ=θ0

]
,

R∗
2n(h) =

n∑
t=1

n∑
s=1,�=t

bn(s, t)[mθ0(s/n) − mθ̃(s/n)][mθ0(t/n) − mθ̃(t/n)],

and by the symmetries of K(x), γ (k), and γ̂ (k),

R3n(h) =
n∑

t=1

n∑
s=1,�=t

bn(s, t)[γ̂ (s − t) − γ (s − t)] = 2
n−1∑
s=1

(n − s)K

(
s

nh

)
[γ̂ (s) − γ (s)]. (A.52)

By (A.51) and Theorem 2.4, Theorem 2.2 will follow if we prove that

2R∗
1n(h) + R∗

2n(h) = oP [σ3n(h)], (A.53)

R3n(h) = oP [σ3n(h)], (A.54)

σ̂3n(h)

σ3n(h)
→P 1. (A.55)

The proofs of (A.53)–(A.55) are quite technical and thus are omitted here, but can be derived
from the rest of the proof of Theorem 2.2 in Gao and Wang [20]. �

Appendix B: Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. We first prove (4.1). In view of Theorem 2.2, it suffices to show that

sup
x∈R

∣∣P ∗(T̂ ∗
n (h) ≤ x

)− �(x)
∣∣= oP (1). (B.1)

As in (A.51), we may rewrite T̂ ∗
n (h) as

T̂ ∗
n (h) = 1

σ̂3n(h)
[M∗∗

n (h) + 2R∗∗
1n(h) + R∗∗

2n(h) + R∗∗
3n(h)], (B.2)

where M∗∗
n (h) =∑n

t=1
∑n

s=1,�=t bn(s, t)[e∗
s e

∗
t − γ̃λ(s − t)],

R∗∗
1n(h) =

n∑
t=1

n∑
s=1,�=t

bn(s, t)e
∗
s [mθ̃ (t/n) − mθ̃∗(t/n)],

= (θ̃ − θ̃∗)
n∑

t=1

n∑
s=1,�=t

bn(s, t)e
∗
s

∂mθ (t/n)

∂θ

∣∣∣∣
θ=θ̃
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+
n∑

t=1

n∑
s=1,�=t

bn(s, t)e
∗
s

[
mθ̃(t/n) − mθ̃∗(t/n) + (θ̃∗ − θ̃ )τ

∂mθ (t/n)

∂θ

∣∣∣∣
θ=θ̃

]
,

R∗∗
2n(h) =

n∑
t=1

n∑
s=1,�=t

bn(s, t)
(
mθ̃∗(s/n) − mθ̃ (s/n)

)(
mθ̃∗(t/n) − mθ̃(t/n)

)
,

R∗∗
3n(h) =

n∑
t=1

n∑
s=1,�=t

bn(s, t)[γ̂ ∗(s − t) − γ̃λ(s − t)],

where ê ∗
s = Y ∗

s − mθ̃∗(Xs) and

γ̂ ∗(k) =

⎧⎪⎨⎪⎩
1

n

n−|k|∑
i=1

ê ∗
i ê ∗

i+|k| for |k| ≤ (nh)1/3,

η̃|k|−α̃ for (nh)1/3 < |k| ≤ n − 1.

The result (B.1) will follow if we prove that

I(α̃∈�n) sup
x∈R

∣∣∣∣P(M∗∗
n (h)

σ̂3n(h)
≤ x

∣∣∣Wn

)
− �(x)

∣∣∣∣= oP (1), (B.3)

and, for any ε > 0,

I{(α̃∈�n,θ̃∈�1n}P
(|2R∗∗

1n(h) + R∗∗
2n(h) + R∗∗

3n(h)| ≥ εσ̂3n(h)|Wn

)= oP (1), (B.4)

where Wn = (Y1, . . . , Yn), �n = {α̃: |α̃ − α| ≤ Cw
−1/2
n } and �1n = {θ̃ : ‖θ̃ − θ0‖ ≤ C0n

−α/2},
with C0 chosen so that P(‖θ̃ − θ0‖ ≥ C0n

−α/2) ≤ ε. Indeed, recalling Assumptions 2.3
and 2.6(ii), we have I (α̃ /∈ �n or θ̃ /∈ �1n) = oP (1). This, together with (B.3) and (B.4), proves
the statement.

We next prove (B.3) and (B.4). We start with (B.3). As constructed in Section 4.1, {e∗
t } is

written as

e∗
t =

∞∑
j=−∞

ψ∗
j η∗

t−j (B.5)

such that E[e∗
t e

∗
t+k|Wn] = γ̃λ(k). Also note that α̂ ∈ �n and 1/2 < α < 1 imply that there exists

a δ0 > 0 such that 1/2 + δ0 < α̃ < 1 − δ0 whenever n is sufficiently large. Based on these facts,
given Wn, M∗∗

n (h) has the same structure as that of Q1n − E[Q1n] defined in the proof of
Theorem 2.4. It follows from the same routine as in the proof of Theorem 2.4 that

I(α̃∈�n) sup
x∈R

∣∣P (M∗∗
n (h) ≤ τ̂nÂ0x|Wn

)− �(x)
∣∣= oP (1), (B.6)
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where τ̂n = n2−α̃h3/2−α̃ and Â2
0 = 8η̃2Aα̃ with

Aα̃ =
∫ ∞

0

∫ ∞

0

∫ ∞

0
x−α̃y−α̃[K(z)K(x + y − z) + K(z − x)K(z − y)]dx dy dz.

Recall that Assumption 2.4(ii) implies that for any u ∈ R,∫ ∞

0
K(w)K(w + u)dw ≤ C/(1 + |u|1−β). (B.7)

It now can be readily seen that whenever 1/2 + δ0 < α̃ < 1 − δ0,

Aα̃ =
∫ n

1/n

∫ n

1/n

∫ n

1/n

x−α̃y−α̃[K(z)K(x + y − z) + K(z − x)K(z − y)]dx dy dz + oP (1)

= A∗
α̃[1 + oP (1)],

that is, τ̂nÂ0 = σ̂3n(h)[1 + oP (1)], where we have used the fact that A∗
α̃

− Aα = oP (1) and
0 < Aα < ∞. Substituting this into (B.6), we get (B.3).

The proof of (B.4) follows from the same arguments as in the proofs of (A.53) and (A.54).
Details are given in the rest of the proof of the first part of Theorem 4.1(i) of Gao and Wang [20].

We next prove the second part of Theorem 4.1(i). In view of Theorem 2.2, it suffices to show
that

l∗r − lr = oP (1). (B.8)

In fact, recalling the definitions of l∗r and lr , it can be readily seen from (B.1) and Theorem 2.2
that �(l∗r ) − �(lr ) = oP (1), which implies (B.8), because �(x) is a bounded continuous func-
tion.

Finally, we prove Theorem 4.1(ii). In view of (B.8), it suffices to show that under H1,

P
(
L̂3n(h) ≥ lr

)= 1, (B.9)

with lr satisfying �(lr ) = 1 − r + o(1) with 0 < r < 1. To prove (B.9), as in (A.51), under H1,
we may rewrite L̂3n(h) as

L̂3n(h) = 1

σ̂3n(h)
[Sn(h) + 2Q1n(h) + Q2n(h) + R3n(h)], (B.10)

where

Sn(h) =
n∑

t=1

n∑
s=1,�=t

bn(s, t)[ζsζt − γ (s − t)],

Q1n(h) = cn

n∑
t=1

n∑
s=1,�=t

bn(s, t)ζs�

(
t

n

)
,
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Q2n(h) = c2
n

n∑
t=1

n∑
s=1,�=t

bn(s, t)�

(
s

n

)
�

(
t

n

)
,

in which ζt = et + [mθ1(
t
n
) − mθ̃(

t
n
)] and R3n(h) is defined as in (A.51). Simple calculations

show that

Q2n(h) ∼ c2
n

∫ n

1

∫ n

1
K

(
x − y

nh

)
�

(
x

n

)
�

(
y

n

)
dx dy

(B.11)
∼ A0[1 + o(1)]c2

n(nh)2 = A0dnσ3n(h),

where dn = c2
nn

αhα−1/2 → ∞ and A0 > 0. Recalling Assumption 4.1(i), the same arguments as
in the proof of Theorem 2.2 yield that

Sn(h)/σ3n(h) →D N(0,1), (B.12)

and Q1n(h) = OP (cnn
−α/2(nh)2) = oP (Q2n(h)). These findings, together with (A.54) and

(A.55) (i.e., R3n = oP (σ3n(h)) and σ̂3n(h)/σ3n(h) →P 1), imply that

L̂3n(h) − A0d
2
n →D N(0,1),

with d2
n → ∞ and A0 > 0. We now have (B.9), because lr is finite for 0 < r < 1. The proof of

Theorem 4.1 is completed. �

Proof of Theorem 4.2. Observe that under H0,

ut ≡ êt = Yt − mθ̃ (Xt ) = et + mθ0(Xt ) − mθ̃(Xt )
(B.13)

= et + (θ0 − θ̃ )τ
∂mθ (Xt )

∂θ

∣∣∣∣
θ=θ0

+ oP (‖θ0 − θ̃‖),

using Assumption 2.6.
By straightforward calculations, we then have, for n large enough,

Iu(ω) = 1

2πn

∣∣∣∣∣
n∑

s=1

useisω

∣∣∣∣∣
2

= 1

2πn

(
n∑

s=1

u2
s + 2

n−1∑
s=1

n−s∑
t=1

cos(ωs)us+t us

)
(B.14)

= 1

2πn

(
n∑

s=1

e2
s + 2

n−1∑
s=1

n−s∑
t=1

cos(ωs)es+t es

)
+ oP (1)

= Ie(ω) + oP (1)

using Assumptions 2.1 and 2.6.
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Thus, for n large enough,

�u(λ) = 1

4π

∫ π

−π

(
log(ψ(ω;λ)) + Iu(ω)

ψ(ω;λ)

)
dω

= 1

4π

∫ π

−π

(
log(ψ(ω;λ)) + Ie(ω)

ψ(ω;λ)

)
dω + oP (1) (B.15)

= �e(λ) + oP (1).

Therefore, by Assumption 4.3 and Theorem 1(ii) of Heyde and Gay [28], we have, as n → ∞,

√
n(̃λ − λ) →D N(0,�−1(λ)), (B.16)

which implies for n large enough,

n2/5

log(n)
(̃λ − λ) ∼ 1

n1/10 log(n)

√
n(̃λ − λ) →P 0. (B.17)

This completes the proof of Theorem 4.2. �
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