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On the rate of convergence in the martingale
central limit theorem
JEAN-CHRISTOPHE MOURRAT

Ecole polytechnique fédérale de Lausanne, institut de mathématiques, station 8, 1015 Lausanne, Switzer-
land

Consider a discrete-time martingale, and let V 2 be its normalized quadratic variation. As V 2 approaches 1,
and provided that some Lindeberg condition is satisfied, the distribution of the rescaled martingale ap-
proaches the Gaussian distribution. For any p ≥ 1, (Ann. Probab. 16 (1988) 275–299) gave a bound on the
rate of convergence in this central limit theorem that is the sum of two terms, say Ap + Bp , where up to a

constant, Ap = ‖V 2 − 1‖p/(2p+1)
p . Here we discuss the optimality of this term, focusing on the restricted

class of martingales with bounded increments. In this context, (Ann. Probab. 10 (1982) 672–688) sketched a
strategy to prove optimality for p = 1. Here we extend this strategy to any p ≥ 1, thereby justifying the op-
timality of the term Ap . As a necessary step, we also provide a new bound on the rate of convergence in the
central limit theorem for martingales with bounded increments that improves on the term Bp , generalizing
another result of (Ann. Probab. 10 (1982) 672–688).
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1. Introduction

Let X = (X1, . . . ,Xn) be a sequence of square-integrable random variables such that for any i,
Xi satisfies E[Xi |Fi−1] = 0, where Fi is the σ -algebra generated by (X1, . . . ,Xi). In other
words, X is a square-integrable martingale difference sequence. Following the notation of [1],
we write Mn for the set of all such sequences of length n, and introduce

s2(X) =
n∑

i=1

E[X2
i ],

V 2(X) = s−2(X)

n∑
i=1

E[X2
i |Fi−1],

S(X) =
n∑

i=1

Xi.

V 2(X) can be called the normalized quadratic variation of X. Let (Xn)n∈N be such that for any
n, Xn ∈ Mn. It is well known (see, e.g., [2], Section 7.7.a) that if

V 2(Xn)
(prob.)−−−−→
n→+∞ 1 (1.1)
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and some Lindeberg condition is satisfied, then the rescaled sum S(Xn)/s(Xn) converges in
distribution to a standard Gaussian random variable, that is,

∀t ∈ R, P[S(Xn)/s(Xn) ≤ t]−−−−→
n→+∞ �(t), (1.2)

where �(t) = (2π)−1/2
∫ t

−∞ e−x2/2 dx.
We are interested in bounds on the speed of convergence in this central limit theorem. Sev-

eral results have been obtained under a variety of additional assumptions. One natural way to
strengthen the convergence in probability (1.1) is to change it for a convergence in Lp for some
p ∈ [1,+∞]. Indeed, quantitative estimates in terms of ‖V 2 − 1‖p seem particularly convenient
when the aim is to apply the result to practical situations. We write

D(X) = sup
t∈R

|P[S(X)/s(X) ≤ t] − �(t)|

and

‖X‖p = max
1≤i≤n

‖Xi‖p (p ∈ [1,+∞]).
[4] proved the following result.

Theorem 1.1 ([4]). Let p ∈ [1,+∞). There exists a constant Cp > 0 such that for any n ≥ 1
and any X ∈ Mn,

D(X) ≤ Cp

(
‖V 2(X) − 1‖p

p + s−2p(X)

n∑
i=1

‖Xi‖2p

2p

)1/(2p+1)

. (1.3)

In [7], Theorem 1.1 is generalized to the following.

Theorem 1.2 ([7]). Let p ∈ [1,+∞] and p′ ∈ [1,+∞). There exists Cp,p′ > 0 such that for any
n ≥ 1 and any X ∈ Mn,

D(X) ≤ Cp,p′

[
‖V 2(X) − 1‖p/(2p+1)

p +
(

s−2p′
(X)

n∑
i=1

‖Xi‖2p′
2p′

)1/(2p′+1)]
. (1.4)

Here p/(2p + 1) = 1/2 for p = +∞. In fact, a stronger, nonuniform bound is given; see [7],
Theorem 2.2 (or, equivalently, [8]), for details.

The main question addressed here concerns the optimality of the term ‖V 2(X) − 1‖p/(2p+1)

p

appearing in the right-hand side of (1.3) or (1.4). About this, [4] constructed a sequence of ele-
ments Xn ∈ Mn such that

• s(Xn) 
 √
n,

• D(Xn) 
 log−1/2(n),
• ‖V 2(X) − 1‖p

p 
 s−2p(X)‖X‖2p

2p 
 s−2p(X)
∑n

i=1 ‖Xi‖2p

2p 
 log−(2p+1)/2(n),
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where we write an 
 bn if there exists C > 0, such that an/C ≤ bn ≤ Can for all sufficiently
large n. This example demonstrates that the exponent 1/(2p + 1) appearing on the outer bracket
of the right-hand side of (1.3) cannot be improved. But because the two terms of the right-hand
side of (1.3) are of the same order, no conclusions can be drawn about the optimality of the term

‖V 2(X) − 1‖p/(2p+1)

p alone. Most importantly, it is rather disappointing that in the example,

‖X‖2p

2p and
∑n

i=1 ‖Xi‖2p

2p are of the same order, if the typical martingales that one is interested
in have increments of roughly the same order.

Using a similar construction, but also imposing the condition that V 2(X) = 1 a.s., [7], Exam-
ple 2.4, proved the optimality of the exponent 1/(2p′ + 1) appearing in the second term of the
sum in the right-hand side of (1.4). However, the author did not discuss the optimality of the first

term ‖V 2(X) − 1‖p/(2p+1)

p .
For 1 ≤ p ≤ 2, Theorem 1.1 was in fact already proved by [6]. In [5], Section 3.6, the authors

could show only that the bound on D(X) can be no better than ‖V 2(X) − 1‖1/2
1 .

The proof of Theorem 1.1 given by [4] is inspired by a method introduced by [1], who proved
the following results.

Theorem 1.3 ([1]). Let γ ∈ (0,+∞). There exists a constant Cγ > 0 such that for any n ≥ 2
and any X ∈ Mn satisfying ‖X‖∞ ≤ γ and V 2(X) = 1 a.s.,

D(X) ≤ Cγ

n log(n)

s3(X)
.

Typically, s(X) is of order
√

n when X ∈ Mn. Under such circumstances, Theorem 1.3 thus
gives a bound of order log(n)/

√
n. Moreover, [1] provided an example of a sequence of elements

Xn ∈ Mn satisfying the conditions of Theorem 1.3, such that s2(Xn) = n and for which

lim sup
n→+∞

√
n log−1(n)D(Xn) > 0,

and so the result is optimal.
Relaxing the condition that V 2(X) = 1 a.s., [1] then showed the following result.

Corollary 1.4 ([1]). Let γ ∈ (0,+∞). There exists a constant Cγ > 0 such that for any n ≥ 2
and any X ∈ Mn satisfying ‖X‖∞ ≤ γ ,

D(X) ≤ Cγ

[
n log(n)

s3(X)
+ min

(‖V 2(X) − 1‖1/3
1 ,‖V 2(X) − 1‖1/2

∞
)]

. (1.5)

See [7], Theorem 3.2, for a nonuniform version of this result. A strategy was sketched by [1]
to prove that the bound ‖V 2(X)−1‖1/3

1 is indeed optimal, even on the restricted class considered
by Corollary 1.4 of martingales with bounded increments. This example provides a satisfactory
answer to our question of optimality for p = 1. The aim of the present paper is to generalize
Corollary 1.4 and the optimality result to any p ∈ [1,+∞). We begin by proving the following
general result.
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Theorem 1.5. Let p ∈ [1,+∞) and γ ∈ (0,+∞). There exists a constant Cp,γ > 0 such that
for any n ≥ 2 and any X ∈ Mn satisfying ‖X‖∞ ≤ γ ,

D(X) ≤ Cp,γ

[
n log(n)

s3(X)
+ (‖V 2(X) − 1‖p

p + s−2p(X)
)1/(2p+1)

]
. (1.6)

Note that, somewhat surprisingly, the term s−2p(X)
∑n

i=1 ‖Xi‖2p

2p appearing in inequality (1.3)

is no longer present in (1.5), and is changed for the smaller s−2p(X) in (1.6).

Finally, we justify the optimality of the term ‖V 2(X) − 1‖p/(2p+1)

p appearing in the right-hand
side of (1.6).

Theorem 1.6. Let p ∈ [1,+∞) and α ∈ (1/2,1). There exists a sequence of elements Xn ∈ Mn

such that

• ‖Xn‖∞ ≤ 2,
• s(Xn) 
 √

n,

• ‖V 2(Xn) − 1‖p/(2p+1)

p = O(n(α−1)/2),

• lim supn→+∞ n(1−α)/2D(Xn) > 0.

Our strategy for proving Theorem 1.6 builds on the approach sketched by [1] for the case
where p = 1. Interestingly, Theorem 1.5 is used in the proof of Theorem 1.6.

The question of optimality of the term ‖V 2(X) − 1‖p/(2p+1)

p , now settled by Theorem 1.6,
arises naturally in the problem of showing a quantitative central limit theorem for the random
walk among random conductances on Z

d [9]. There, the random walk is approximated by a
martingale. The martingale increments are stationary and almost bounded for d ≥ 3, in the sense
that they have bounded Lp norm for every p < +∞. Roughly speaking, for d ≥ 3, the variance
of the rescaled quadratic variation up to time t decays as t−1. This bound is optimal and leads to
a Berry–Esseen bound of order t−1/5. Thus Theorem 1.6 demonstrates that a better exponent of
decay than 1/5 cannot be obtained when relying solely on information about the variance of the
quadratic variation.

Theorem 1.5 is proved in Section 2, and Theorem 1.6 is proved in Section 3.

2. Proof of Theorem 1.5

The proof of Theorem 1.5 is essentially similar to the proof of Corollary 1.4 given by [1], with
the additional ingredient of a Burkholder inequality. Let X = (X1, . . . ,Xn) ∈ Mn be such that
‖X‖∞ ≤ γ . The idea (probably first suggested by [3]) is to augment the sequence to some
X̂ ∈ M2n such that V 2(X̂) = 1 a.s., while preserving the property that ‖X̂‖∞ ≤ γ , and apply
Theorem 1.3 to this enlarged sequence. Let

τ = sup

{
k ≤ n:

k∑
i=1

E[X2
i |Fi−1] ≤ s2(X)

}
.
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For i ≤ τ , we define X̂i = Xi . Let r be the largest integer not exceeding

s2(X) − ∑τ
i=1 E[X2

i |Fi−1]
γ 2

.

As ‖X‖∞ ≤ γ , clearly r ≤ n. Conditional on Fτ and for 1 ≤ i ≤ r , we let X̂i be independent
random variables such that P[X̂τ+i = ±γ ] = 1/2. If τ + r < 2n, then we let X̂τ+r+1 be such that

P

[
X̂τ+r+1 = ±

(
s2(X) −

τ∑
i=1

E[X2
i |Fi−1] − rγ 2

)1/2]
= 1

2
,

with the sign determined independent of everything else. Finally, if τ + r + 1 < 2n, then we let
X̂τ+r+i = 0 for i ≥ 2.

Possibly enlarging the σ -fields, we can assume that X̂i is Fi -measurable for i ≤ n, and define
Fi to be the σ -field generated by Fn and X̂n+1, . . . , X̂n+i if i > n. By construction, we have

2n∑
i=τ+1

E[X̂2
i |Fi−1] = s2(X) −

τ∑
i=1

E[X2
i |Fi−1],

which can be rewritten as
2n∑
i=1

E[X̂2
i |Fi−1] = s2(X).

Consequently, s2(X̂) = s2(X) and V 2(X̂) = 1 a.s. The sequence X̂ thus satisfies the assumptions
of Theorem 1.3, so

D(X̂) ≤ 4Cγ

n log(n)

s3(X)
. (2.1)

For any x > 0, we have

P

[
S(X)

s(X)
≤ t

]
≤ P

[
S(X)

s(X)
≤ t,

|S(X) − S(X̂)|
s(X)

≤ x

]
+ P

[ |S(X) − S(X̂)|
s(X)

≥ x

]
(2.2)

≤ P

[
S(X̂)

s(X)
≤ t + x

]
+ 1

x2p
E

[∣∣∣∣S(X) − S(X̂)

s(X)

∣∣∣∣2p]
.

Due to (2.1), the first term in the right-hand side of (2.2) is smaller than

�(t + x) + 4Cγ

n log(n)

s3(X)
≤ �(t) + x√

2π
+ 4Cγ

n log(n)

s3(X)
. (2.3)

To control the second term, first note that

S(X) − S(X̂) =
2n∑

i=τ+1

(Xi − X̂i), (2.4)
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where we put Xi = 0 for i > n. Given that τ + 1 is a stopping time, conditional on τ , the
(Xi − X̂i)i≥τ+2 still forms a martingale difference sequence. Thus we can use Burkholder’s
inequality (see, e.g., [5], Theorem 2.11), which states that

1

C
E

[∣∣∣∣∣
2n∑

i=τ+2

(Xi − X̂i)

∣∣∣∣∣
2p]

(2.5)

≤ E

[(
2n∑

i=τ+2

E[(Xi − X̂i)
2|Fi−1]

)p]
+ E

[
max

τ+2≤i≤2n
|Xi − X̂i |2p

]
,

and we can safely discard the summand indexed by τ + 1 appearing in (2.4), which is uniformly
bounded. The maximum on the right-hand side of (2.5) is also bounded by 2γ 2p . As for the other
term, with Xi and X̂i as orthogonal random variables, we have

2n∑
i=τ+1

E[(Xi − X̂i)
2|Fi−1] =

2n∑
i=τ+1

E[X2
i |Fi−1] +

2n∑
i=τ+1

E[X̂2
i |Fi−1]

(2.6)

= s2(X)V 2(X) + s2(X) − 2
τ∑

i=1

E[X2
i |Fi−1]︸ ︷︷ ︸

.

Now, if τ = n, then by definition the sum underbraced above is s2(X)V 2(X). Otherwise,∑τ+1
i=1 E[X2

i |Fi−1] exceeds s2(X), but as the increments are bounded, the sum underbraced is
necessarily larger than s2(X) − γ 2. In any case, we thus have

τ∑
i=1

E[X2
i |Fi−1] ≥ min

(
s2(X)V 2(X), s2(X) − γ 2).

Consequently, from (2.6), we obtain that

2n∑
i=τ+1

E[(Xi − X̂i)
2|Fi−1] ≤ |s2(X)V 2(X) − s2(X)| + 2γ 2.

Combining this with equations (2.5), (2.4), (2.3) and (2.2), we finally obtain that

P

[
S(X)

s(X)
≤ t

]
− �(t) ≤ 4Cγ

n log(n)

s3(X)
+ x√

2π
+ C

x2p

(
‖V 2(X) − 1‖p

p + γ 2p

s2p(X)

)
.

Optimizing this over x > 0 leads to the correct estimate. The lower bound is obtained in the same
way.
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3. Proof of Theorem 1.6

Let p ≥ 1 and α ∈ (1/2,1) be fixed. We let (Xni)1≤i≤n−nα be independent random variables with
P[Xni = ±1] = 1/2. The subsequent (Xni)n−nα<i≤n are defined recursively. Let

λni =
√

n − i + κ2
n,

where κn = n1/4 (in fact, any nβ with 1 − α < 2β < α would be fine). Assuming that
Xn,1, . . . ,Xn,i−1 have been defined, we write Fn,i−1 for the σ -algebra that they generate, and let

Sn,i−1 =
i−1∑
j=1

Xnj .

For any i such that n − nα < i ≤ n, we construct Xni such that

P[Xni ∈ ·|Fn,i−1] =
∣∣∣∣∣∣
δ−√

3/2 + δ√
3/2 if Sn,i−1 ∈ [λni,2λni],

δ−√
1/2 + δ√

1/2 if Sn,i−1 ∈ [−2λni,−λni],
δ−1 + δ1 otherwise,

(3.1)

where δx is the Dirac mass at point x. Here (Sni)i≤n can be viewed as an inhomogeneous Markov
chain. We write Xn = (Xn1, . . . ,Xnn) and Xni = (Xn1, . . . ,Xni) for any i ≤ n. Let

δ(i) = sup
n≥i

D(Xni). (3.2)

Proposition 3.1. Uniformly over n,

‖V 2(Xni) − 1‖p = O
(
i(α−1)(1+1/2p)

)
(i → +∞) (3.3)

and

δ(i) = O
(
i(α−1)/2) (i → +∞). (3.4)

The proof goes as follows. First, we bound ‖V 2(Xni) − 1‖p in terms of (δ(j))j≤i in
Lemma 3.2. This gives an inequality on the sequence (δ(i))i∈N through Theorem 1.5, from which
we deduce (3.4), and then (3.3).

Lemma 3.2. Let Ki = maxj≤i δ(j)j (1−α)/2. For any n and i, the following inequalities hold:

|E[X2
ni] − 1| ≤

∣∣∣∣0 if i ≤ n − nα,

2δ(i − 1) if n − nα < i ≤ n,
(3.5)

|s2(Xni) − i| ≤
∣∣∣∣0 if i ≤ n − nα,

Ci(3α−1)/2Ki ≤ Ciα if n − nα < i ≤ n,
(3.6)

‖V 2(Xni) − 1‖p ≤
∣∣∣∣0 if i ≤ n − nα,

Ci(α−1)(1+1/2p)(1 + Ki)
1/p + Ci(3α−3)/2Ki otherwise.

(3.7)
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Proof. Inequality (3.5) is obvious for i ≤ n − nα . Otherwise, from the definition (3.1), we know
that

E[X2
ni] = 1 + 1

2P[Sn,i−1 ∈ I+
ni ] − 1

2P[Sn,i−1 ∈ I−
ni ],

where we write

I+
ni = [λni,2λni] and I−

ni = [−2λni,−λni]. (3.8)

The random variable Sn,i−1/s(Xn,i−1) is approximately Gaussian, up to an error controlled by
δ(i − 1). More precisely,∣∣∣∣P[Sn,i−1 ∈ I+

ni ] −
∫

I+
ni /s(Xn,i−1)

d�

∣∣∣∣ ≤ 2δ(i − 1).

We obtain (3.5) using the fact that∫
I+
ni /s(Xn,i−1)

d� =
∫

I−
ni /s(Xn,i−1)

d�.

As a by-product, we also learn that

|s2(Xni) − i| ≤
∣∣∣∣∣∣
0 if i ≤ n − nα,

2
∑

n−nα<j≤i

δ(j − 1) if n − nα < i ≤ n.

Recalling that α < 1, we obtain (3.6), noting that for n − nα < i ≤ n,∑
n−nα<j≤i

δ(j − 1) ≤ nα(n − nα)(α−1)/2Ki.

In particular, it follows that

s2(Xni) = i
(
1 + o(1)

)
. (3.9)

Turning now to (3.7), ‖V 2(Xni) − 1‖p is clearly equal to 0 for i ≤ n − nα , so let us assume the
contrary. We have:

‖V 2(Xni) − 1‖p = s−2(Xni)

∥∥∥∥∥
i∑

j=1

E[X2
nj |Fn,j−1] − s2(Xni)

∥∥∥∥∥
p

≤ 1

s2(Xni)

i∑
j=1

‖E[X2
nj |Fn,j−1] − 1‖p + |s2(Xni) − i|

s2(Xni)
(3.10)

≤ 1

2s2(Xni)

∑
n−nα<j≤i

(P[Sn,j−1 ∈ I+
nj ∪ I−

nj ])1/p + |s2(Xni) − i|
s2(Xni)

.
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We consider the two terms in (3.10) separately. First, by the definition of δ, we know that∣∣∣∣P[Sn,j−1 ∈ I+
nj ∪ I−

nj ] −
∫

(I+
nj ∪I−

nj )/s(Xn,j−1)

d�

∣∣∣∣ ≤ 2δ(j − 1).

Equation (3.9) implies that, uniformly over j > n − nα ,∫
(I+

nj ∪I−
nj )/s(Xn,j−1)

d� = (2π)−1/2 2λnj

s(Xn,j−1)

(
1 + o(1)

) ≤ Cn(α−1)/2,

and so the first term of (3.10) is bounded by

C

i

∑
n−nα<j≤i

(
n(α−1)/2 + 2δ(j − 1)

)1/p

≤ C

i

∑
n−nα<j≤i

(
n(α−1)/2 + 2(n − nα)(α−1)/2Ki

)1/p (3.11)

≤ Ci(α−1)(1+1/2p)(1 + Ki)
1/p.

The second term in (3.10) is controlled by (3.6), and we obtain inequality (3.7). �

Proof of Proposition 3.1. Applying Theorem 1.5 with the information given by Lemma 3.2,
we obtain that, up to a multiplicative constant that does not depend on n and i ≤ n, D(Xni) is
bounded by

log(i)√
i

+ i(α−1)/2(1 + Ki)
1/(2p+1) + i−3(1−α)p/(4p+2)K

p/(2p+1)
i + i−p/(2p+1). (3.12)

The first term can be disregarded, because it is dominated by i−p/(2p+1). Also note that as p ≥ 1,
we have

3(1 − α)p

4p + 2
≥ 1 − α

2
,

and as α > 1/2 > 1/(2p + 1), we also have

p

2p + 1
≥ 1 − α

2
.

Multiplying (3.12) by i(1−α)/2, we thus obtain

Ki ≤ C(1 + Ki)
1/(2p+1) + CK

p/(2p+1)
i ,

where we recall that the constant C does not depend on i. Observing that the set {x ≥ 0: x ≤
C(1 + x)1/(2p+1) + Cxp/(2p+1)} is bounded, we obtain that Ki is a bounded sequence, so (3.4)
is proved. The relation (3.3) then follows from (3.4) and (3.7). �



642 J.-C. Mourrat

Proposition 3.3. We have

lim sup
i→+∞

i(1−α)/2δ(i) > 0.

Proof. Our aim is to contradict, by reductio ad absurdum, the claim that

δ(i) = o
(
i(α−1)/2) (i → +∞). (3.13)

Let Z1, . . . ,Zn be independent standard Gaussian random variables, and let ξn be an independent
centered Gaussian random variable with variance κ2

n , all independent of Xn. Assuming (3.13),
we contradict the fact that

D(Xn) = o
(
n(α−1)/2). (3.14)

Let Wni = ∑n
j=i+1 Zj + ξn. Noting that n−1/2 ∑n

j=1 Zj is a standard Gaussian random variable,
and with the aid of [1], Lemma 1, we learn that∣∣∣∣P[Wn0 ≤ 0] − 1

2

∣∣∣∣ ≤ C
κn√
n

and, similarly, ∣∣∣∣P[Snn + ξn ≤ 0] − 1

2

∣∣∣∣ ≤ C

(
D(Xn) + κn

s(Xn)

)
.

Combining these two observations with (3.6), we thus obtain that

P[Snn + ξn ≤ 0] − P[Wn0 ≤ 0] ≤ C

(
D(Xn) + κn√

n

)
. (3.15)

As κn = n1/4 and α > 1/2, we know that κn/
√

n = o(n(α−1)/2). We decompose the left-hand
side of (3.15) as

n∑
i=1

P[Sn,i−1 + Xni + Wni ≤ 0] − P[Sn,i−1 + Zi + Wni ≤ 0].

The random variable Wni is Gaussian with variance λ2
ni = n − i + κ2

n and is independent of Xn;
thus the sum can be rewritten as

n∑
i=1

E

[
�

(
−Sn,i−1 + Xni

λni

)
− �

(
−Sn,i−1 + Zi

λni

)]
. (3.16)

Let ϕ(x) = (2π)−1/2e−x2/2. We can replace

�

(
−Sn,i−1 + Xni

λni

)
(3.17)
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by its Taylor expansion,

�

(
−Sn,i−1

λni

)
− Xni

λni

ϕ

(
−Sn,i−1

λni

)
+ X2

ni

2λ2
ni

ϕ′
(

−Sn,i−1

λni

)
, (3.18)

up to an error bounded by

|Xni |3
6λ3

ni

‖ϕ′′‖∞. (3.19)

Step 1. We show that the error term (3.19), after integration and summation over i, is o(n(α−1)/2).
Because Xni is uniformly bounded, it suffices to show that

n∑
i=1

1

λ3
ni

= o
(
n(α−1)/2). (3.20)

The foregoing sum equals

n∑
i=1

1

(n − i + κ2
n)3/2

≤ n−1/2
∫ (κ2

n+n)/n

(κ2
n−1)/n

x−3/2 dx = O(κ−1
n ).

Because we defined κn to be n1/4 and α > 1/2, equation (3.20) is proved.

Step 2. For the second part of the summands in (3.16), the same holds with Xni replaced by Zi

and, similarly,

n∑
i=1

E[|Zi |3]
λ3

ni

= o
(
n(α−1)/2). (3.21)

Step 3. Combining the results of the two previous steps, we know that up to a term of order
o(n(α−1)/2), the sum in (3.16) can be replaced by

n∑
i=1

E

[
Zi − Xni

λni

ϕ

(
−Sn,i−1

λni

)
+ X2

ni − Z2
i

2λ2
ni

ϕ′
(

−Sn,i−1

λni

)]
.

Conditional on Sn,i−1, both Zi and Xni are centered random variables; thus the first part of the
summands vanishes, and only the following remains:

n∑
i=1

E

[
X2

ni − Z2
i

2λ2
ni

ϕ′
(

−Sn,i−1

λni

)]
=

n∑
i=1

E

[
E[X2

ni − 1|Sn,i−1]
2λ2

ni

ϕ′
(

−Sn,i−1

λni

)]
. (3.22)



644 J.-C. Mourrat

From the definition of Xni , we learn that E[X2
ni − 1|Sn,i−1] is 0 if i ≤ n − nα but otherwise

equals ∣∣∣∣∣∣
1/2 if Sn,i−1 ∈ I+

ni ,−1/2 if Sn,i−1 ∈ I−
ni ,

0 otherwise,

where I+
ni and I−

ni are as defined in (3.8). Consequently, it is clear that the contribution of each
summand in the right-hand side of (3.22) is positive. Moreover, for i > n − nα and in the case
where Sn,i−1 ∈ I−

ni ∪ I+
ni , we have

E[X2
ni − 1|Sn,i−1]ϕ′

(
−Sn,i−1

λni

)
≥ 1

2
inf[1,2] |ϕ

′| > 0.

Let us assume temporarily that, uniformly over n and i such that n − nα < i ≤ n − (nα)/2, we
have

P[Sn,i−1 ∈ I−
ni ∪ I+

ni ] ≥ C
λni√

n
. (3.23)

Then the sum in the right-hand side of (3.22) is, up to a constant, bounded from below by

∑
n−nα<i≤n−(nα)/2

1

λni

√
n

≥ Cnα 1

nα/2
√

n
= Cn(α−1)/2.

This contradicts (3.14) via inequality (3.15), and thus completes the proof of the proposition.

Step 4. There remains to show (3.23), for n − nα < i ≤ n − (nα)/2. We have∣∣∣∣P[Sn,i−1 ∈ I+
ni ] −

∫
I+
ni /s(Xn,i−1)

d�

∣∣∣∣ ≤ 2δ(i − 1).

Using inequality (3.6), it follows that∫
I+
ni /s(Xn,i−1)

d� ≥ C
λni√

n
.

Because we choose i inside [n − nα,n − (nα)/2], λni is larger than Cnα/2, whereas δ(i − 1) =
o(i(α−1)/2) by assumption (3.13). This proves (3.23). �

Remark. To match the example proposed by [1], α = 1/3 and κn = 1 should be used in the
definition of the sequences (Xn). In this case, Propositions 3.1 and 3.3 still hold. Although the
proof of Proposition 3.1 can be kept unchanged, Proposition 3.3 requires a more subtle analysis.
First, ξn of variance κ2

n 
= 1 must be chosen, which requires changing the λni appearing in (3.16)

by, say, λni =
√

n − i + κ2
n. The sequence κ2

n should grow to infinity with n, while remaining
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o(nα). In Step 1, bounding the difference between (3.17) and (3.18) by (3.19) is too crude.
Instead, it can be bounded by

C

λ
3
ni




(
−Sn,i−1

λni

)
,

where 
(x) = sup|y|≤1 |ϕ′′(x + y)|. One can then appeal to [1], Lemma 2, and get through
this step, using the fact that κn tends to infinity. Step 2 is similar, but with some additional
care required because Zi is unbounded. The rest of the proof then applies, taking note of the
discrepancy between λni and λni when necessary.

Acknowledgements

I would like to thank an anonymous referee for his careful review, and for his mention of the
reference [7], which I was not aware of.

References

[1] Bolthausen, E. (1982). Exact convergence rates in some martingale central limit theorems. Ann. Probab.
10 672–688. MR0659537

[2] Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Belmont, CA: Duxbury Press.
MR1609153

[3] Dvoretzky, A. (1972). Asymptotic normality for sums of dependent random variables. In Proceedings
of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berke-
ley, Calif., 1970/1971), Vol. II: Probability Theory 513–535. Berkeley, CA: Univ. California Press.
MR0415728

[4] Haeusler, E. (1988). On the rate of convergence in the central limit theorem for martingales with discrete
and continuous time. Ann. Probab. 16 275–299. MR0920271

[5] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application. New York: Academic
Press. MR0624435

[6] Heyde, C.C. and Brown, B.M. (1970). On the departure from normality of a certain class of martingales.
Ann. Math. Statist. 41 2161–2165. MR0293702

[7] Joos, K. (1989). Abschätzungen der Konvergenzgeschwindigkeit in asymptotischen Verteilungsaus-
sagen für Martingale. Ph.D. thesis, Ludwig-Maximilians-Universität München.

[8] Joos, K. (1993). Nonuniform convergence rates in the central limit theorem for martingales. Studia Sci.
Math. Hungar. 28 145–158. MR1250804

[9] Mourrat, J.C. A quantitative central limit theorem for the random walk among random conductances.
Preprint. Available at arXiv:1105.4485v1.

Received June 2011 and revised October 2011

http://www.ams.org/mathscinet-getitem?mr=0659537
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=0415728
http://www.ams.org/mathscinet-getitem?mr=0920271
http://www.ams.org/mathscinet-getitem?mr=0624435
http://www.ams.org/mathscinet-getitem?mr=0293702
http://www.ams.org/mathscinet-getitem?mr=1250804
http://arxiv.org/abs/1105.4485v1

	Introduction
	Proof of Theorem 1.5
	Proof of Theorem 1.6
	Acknowledgements
	References

