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Markov processes are used in a wide range of disciplines, including finance. The transition densities of
these processes are often unknown. However, the conditional characteristic functions are more likely to
be available, especially for Lévy-driven processes. We propose an empirical likelihood approach, for both
parameter estimation and model specification testing, based on the conditional characteristic function for
processes with either continuous or discontinuous sample paths. Theoretical properties of the empirical
likelihood estimator for parameters and a smoothed empirical likelihood ratio test for a parametric speci-
fication of the process are provided. Simulations and empirical case studies are carried out to confirm the
effectiveness of the proposed estimator and test.
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1. Introduction

Let {Xt(θ)}t∈T be a parametric d-dimensional Markov process defined by

dXt = μ(Xt ; θ)dt + σ(Xt ; θ)dLt;θ , (1.1)

where μ(·) is a d-dimensional drift function, σ(·) is a d × d matrix-valued function of Xt , Lt;θ
is a Lévy process in Rd and θ ∈ � ⊂ Rp . When Lt is a standard Brownian motion, (1.1) is a
diffusion process having a continuous sample path. When Lt contains the Brownian motion and
a compound Poisson process, (1.1) becomes the jump diffusion process. A stochastic process
of form (1.1) has long been used to model stochastic systems arising in physics, biology and
other natural sciences. It has also been the fundamental tool in financial modeling. We refer
to Sundaresan [35] and Fan [16] for overviews, Barndorff-Nielsen, Mikosch and Resnick [5]
for recent developments on Lévy-driven processes and Sørensen [33] for statistical inference.
Important subclasses of (1.1) include (i) the multivariate diffusion process defined by

dXt = μ(Xt ; θ)dt + σ(Xt ; θ)dBt , (1.2)
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where Bt is the standard Brownian motion in Rd (Stroock and Varadhan [34] and Øksendal [29]);
(ii) the Vasicek with Merton Jump model (VSK-MJ) defined by

dXt = κ(α − Xt)dt + σ dBt + Jt dNt, (1.3)

where κ , α and σ are unknown parameters and represent the mean reverting rate, long-run mean
and volatility of the process, respectively, Nt is a Poisson process with intensity λ and Jt is the
random jump size independent of the filtration Ft up to time t and has a normal density N(0, η2)

(Merton [28]); (iii) Lévy driven Ornstein–Uhlenbeck process defined by

dXt = −λXt dt + dLλt , X0 > 0, (1.4)

where Lt is a Lévy process with no Brownian part, a non-negative drift and a Lévy measure
which is zero on the negative half line, and the parameter λ is positive (see Barndorff-Nielsen
and Shephard [6]).

Often a closed form expression for the transition density of process (1.1) is not available ex-
cept for some special processes, even if the transition density exists and is unique. This fact pre-
vents the use of the maximum likelihood estimation (MLE) and the specification tests based on
the exact transition density. Recently Aït-Sahalia [2,3] established expansions for the transition
densities so that parameter estimation could be based on the approximate likelihood functions.
Testing may be also formulated via the approximate density; see Chen, Gao and Tang [10] and
Aït-Sahalia, Fan and Peng [4] for such tests. The conditional characteristic functions (CCF) are
more likely available than the transition densities for the continuous-time models, especially for
the Lévy-driven processes through the celebrated Lévy–Khintchine representation. For instance,
Duffie, Pan and Singleton [15] derived the explicit form of the CCF for multivariate affine jump
processes, which include the Vasicek with Merton jump process given in (1.3). The CCF for the
Lévy-driven Ornstein–Uhlenbeck process (1.4) is established in Barndorff-Nielsen and Shep-
hard [6].

Statistical inference based on the characteristic functions was proposed by Feuerverger
and Mureika [20], Feuerverger and McDunnough [19] for independent observations and
Feuerverger [18] for discrete time series. Singleton [32] introduced the approach to inference
for parametric continuous-time Markov processes and showed that estimation can be carried out
based on the CCF without having to carry out the the Fourier inversion. Chacko and Viceira [8]
proposed a generalized method of moment estimator (GMM) for parameters at a finite number
of frequencies of the CCF. Carrasco et al. [7] carried out GMM estimation on a slowly diverging
number of frequencies of the CCF to achieve the optimal estimation efficiency offered by the
MLE. Jiang and Knight [24] proposed GMM estimators based on the joint characteristic func-
tion of the observed state variables. Chen and Hong [9] proposed a test for multivariate processes
based on the CCF via a generalized spectral density approach.

In this paper, we first propose an empirical likelihood (Owen [30]) approach for parameter
estimation and model specification testing of a parametric Markov process via the CCF. An em-
pirical likelihood ratio is formulated for the unknown parameters assuming specification (1.1),
which leads to a non-parametric maximum likelihood estimator. The proposed estimator may be
viewed as a compromise between Chacko and Viceira’s [8] GMM, based on a finite number of
frequencies, and that of Carrasco et al. [7], of a high-dimensional GMM. The high-dimensional
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GMM approach requires ridging a high-dimensional weighting matrix in order to avoid its singu-
larity, and the selecting the ridging parameter can be computationally expensive. The proposed
estimation utilizes a wide range of frequency information in the parametric CCF, while having
the computation easily managed.

We then formulate an empirical likelihood CCF-based model specification test for the para-
metric process (1.1) via kernel smoothing. The proposed test extends the transition density based
tests of Qin and Lawless [31], Chen, Gao and Tang [10] and Aït-Sahalia, Fan and Peng [4] to
the CCF based. This largely increases the range of the continuous-time Markov processes which
can be tested directly without replying on the transition density approximation. The proposed
test provides an alternative formulation of the CCF-based test of Chen and Hong [9], which is
based on an explicit L2 measure between an kernel estimator of the CCF and its parametric
counter-part. It is largely distinct from the above mentioned tests, except Chen and Hong [9],
by targeting directly on CCF, which is more readily available for continuous-time models than
the transition density functions. Another advantage of the proposed test is the empirical likeli-
hood (EL) formulation, which can produce an integrated likelihood ratio test in a nonparametric
setting. The proposed test utilizes some of the attractive properties of the EL, like internal stu-
dentizing without an explicit variance estimation and good power performance. How to extend
the proposed methods to the case of latent variables is quite challenging and will be a part of our
future research.

The paper is organized as follows. In Section 2, we introduce and evaluate the CCF-based em-
pirical likelihood estimator. The model specification test is given in Section 3. Section 4 reports
results from simulation studies. An empirical study for a set of 3-month treasury bill rate data is
analyzed in Section 5. All technical details are reported in the Appendix.

2. Parameter estimation

Let {Xtδ}nt=1 be n discretely sampled observations of (1.1). For notation simplification, we denote

Xtδ as Xt , where the sampling interval δ is any fixed quantity. Let ψt(u; θ) = Eθ(eiuT Xt+1 |Xt),
for u ∈ Rd , be the conditional characteristic function. We use ā and A� to denote the conjugate
of a complex number a and the conjugate transpose of the complex matrix A, respectively.

Let εt (τ ; θ) = w(u, r;Xt){eiuT Xt+1 −ψt(u; θ)} for τ = (uT , rT )T ∈ R2d , where w(u, r;Xt) is
a weight factor. Here εt (τ ; θ) can be regarded as “residuals” between eiuT Xt+1 and the parametric
CCF ψt(u; θ). The complex weight factor w(u, r;Xt) satisfies w̄(u, r;Xt) = w(−u,−r;Xt)

and |w(u, r;Xt)| = 1 for any u, r ∈ Rd , whose use is aimed to utilize more model information.
Let θ0 be the true parameter and the unique solution of

E{eiuT Xt+1 − ψt(u; θ)|Xt } = 0 for all u ∈ Rd. (2.1)

From the Markov property and (2.1), for any τ = (uT , rT )T ∈ R2d ,

E{εt (τ ; θ0)} = 0 and Cov{εt1(τ ; θ0), εt2(τ ; θ0)} = 0 if t1 �= t2. (2.2)

Let εR
t (τ ; θ) and εI

t (τ ; θ) be the real and imaginary parts of εt (τ ; θ) respectively, and
�εt (τ ; θ) = (εR

t (τ ; θ), εI
t (τ ; θ))T be the real bivariate vector corresponding to εt (τ ; θ).
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We now formulate an empirical likelihood for θ based on the CCF ψt(u; θ). The empiri-
cal likelihood (EL) introduced in Owen [30] is a technique that allows construction of a non-
parametric likelihood for parameters of interest. Despite that the EL method is intrinsically non-
parametric, it possesses two important properties of a parametric likelihood, the Wilks theorem
and the Bartlett correction; see Chen and Van Keilegom [13] for a latest overview and Kitamura,
Tripathi and Ahn [27] for a formulation with conditional moments.

Let p1(τ ), . . . , pn(τ ) be probability weights allocated to the “residuals” {�εt (τ ; θ)}nt=1. A local
EL for θ at τ is

Ln(τ, θ) = max
n∏

t=1

pt(τ ), (2.3)

subject to
∑n

t=1 pt (τ ) = 1 and
∑n

t=1 pt (τ )�εt (τ ; θ) = 0. Here the second constraint reflects (2.1).
The maximum empirical likelihood is attained at pt (τ ) ≡ n−1 for all t such that the maximum
likelihood Ln(τ ; θ) = n−n. Let �n(τ ; θ) = −2 log{Ln(τ ; θ)/n−n} be the local log-EL ratio of θ

at τ .
Employing the EL algorithm (Owen [30]), the optimal pt(τ ) of the above optimization prob-

lem (2.3) is

pt(τ ) = 1

n

1

1 + λ(τ ; θ)T �εt (τ ; θ)
,

where λ(τ ; θ) is a Lagrange multiplier in R2 that satisfies

Q1n(τ ; θ,λ) =: 1

n

n∑
t=1

�εt (τ ; θ)

1 + λ(τ ; θ)T �εt (τ ; θ)
= 0. (2.4)

Hence, the local EL ratio becomes

�n(τ ; θ) = 2
n∑

t=1

log{1 + λ(τ ; θ)T �εt (τ ; θ)}. (2.5)

Integrating �n(τ ; θ) against a probability weight π(τ), which is supported on a compact set S in
R2d , an integrated empirical likelihood ratio for θ is

�n(θ) =
∫

τ∈R2d

�n(τ ; θ)π(τ)dτ. (2.6)

The maximum EL estimator (MELE) for θ is defined as

θ̂n = arg min
θ

�n(θ),

by noting that −2 has been multiplied in the EL ratio �n(τ ; θ).
Like Qin and Lawless [31], we first show that there exists a consistent estimator θ̂n with a

certain rate of convergence as follows.
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Lemma 1. Under Conditions C1–C4 given in the Appendix, with probability one, �n(θ) attains
its minimum at θ̂n in the interior of the ball ‖θ − θ0‖ ≤ O(n−1/3), and θ̂n and λ(τ ; θ̂n) satisfy⎧⎨

⎩
Q1n(τ ; θ̂n, λ(τ ; θ̂n)) = 0 for all τ ∈ S and∫

Q2n(τ ; θ̂n, λ(τ ; θ̂n))π(τ)dτ = 0,
(2.7)

where Q1n is defined in (2.4) and

Q2n(τ ; θ,λ) = 1

n

n∑
t=1

1

1 + λ(τ ; θ)T �εt (τ ; θ)

∂�εT
t (τ ; θ)

∂θ
λ. (2.8)

Before deriving the asymptotic normality of the θ̂n, we define

M0 = 1

2

(
1 1

i−1 −i−1

)
, ε̃t (τ ; θ) = (εt (τ ; θ), εt (−τ ; θ))T ,

A(τ1, τ2; θ0, θ) = Cov{ε̃1(τ1; θ), ε̃1(τ2; θ)},

�(θ0) =:
∫

E

(
∂ε̃�

1(τ ; θ0)

∂θ

)
A−1(τ, τ ; θ0, θ0)E

(
∂ε̃1(τ ; θ0)

∂θ

)
π(τ)dτ (2.9)

and

V (θ0) =
∫ ∫

E

(
∂ε̃�

1(τ1; θ0)

∂θ

)
A−1(τ1, τ1; θ0, θ0)A(τ1, τ2; θ0, θ0)

× A�−1(τ2, τ2; θ0, θ0)E

(
∂ε̃1(τ2; θ0)

∂θ

)
π(τ1)π(τ2)dτ1 dτ2.

Theorem 1. Under Conditions C1–C4 given in the Appendix, for the estimator θ̂n in Lemma 1,

we have
√

n(θ̂n − θ0)
d→ N(0,�) where � = �−1(θ0)V (θ0)�

−1(θ0).

The proposed estimator attains the
√

n-rate of convergence. It is computationally stable be-
cause computing �n(τ ; θ) for one τ at a time is essentially one-dimensional problem. Note that
Carrasco et al. [7] considered CCF-based generalized method of moment estimation by consid-
ering a continuum of τ s in a functional space via covariance operator, but the covariance operator
may not be invertible due to zero eigenvalues. Hence, Carrasco et al. [7] needed ridging to avoid
the invertible issue, which makes the computation quite involved.

3. Test for model specification

In this section we consider testing for the validity of (1.1) via testing for the parametric specifi-
cation of the CCF ψt(u; θ). Tests for model specification of a continuous-time Markov process
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have been proposed by Chen, Gao and Tang [10] and Aït-Sahalia, Fan and Peng [4]. Despite
the fact that parameter estimation based on the transition density is asymptotically efficient, it is
unclear if a test based on the transition density is more powerful than one based on the CCF. The
choice is clearer when the transition density does not admit a closed form while the CCF does,
since the latter is a test valid at any level of the sampling interval δ.

Let the underlying process that generates the observed sample path {Xt }nt=1 be

dXt = μ(Xt)dt + σ(Xt )dLt , (3.1)

whose CCF is ψ(u;Xt). The process (1.1) is a parametric specification of (3.1). To emphasize the
dependence of the CCF on Xt , we write in this section ψt(u) as ψ(u,Xt ), ψt(u; θ) as ψ(u,Xt ; θ)

and other quantities in a similar fashion. We consider testing

H0: P {ψt(u) = ψt(u; θ0)} = 1 for all u ∈ Rd and some θ0 ∈ �,

against a sequence of local alternative hypotheses

H1: P {ψt(u) = ψt(u; θ0) + cn�n(u;Xt)} = 1 for all u ∈ Rd,

where {cn} is a sequence of non-random real constants converging to zero at a certain rate, and
{�n(u;Xt)} is a sequence of bounded complex functions which are continuous at u = 0 and
�n(0;Xt) ≡ 0; see Condition C6 in the Appendix for extra restrictions.

Since the target of inference is a conditional quantity, we need to work with a kernel smoothed
version of �n(θ). Let K be a kernel function which is a symmetric probability density in Rd ,
and h be a smoothing bandwidth that tends to 0 as n → ∞. A smoothed version of Ln(τ, θ) is

Lnh(τ, x; θ) = max
n∏

t=1

pt (τ, x), (3.2)

subject to
∑n

t=1 pt(τ, x) = 1 and
∑n

t=1 pt(τ, x)Kh(x − Xt)�ε(τ,Xt ; θ) = 0.
Let �nh(τ, x, θ) = −2 log{Lnh(τ, x, θ)nn} be the log-EL ratio. Then the integrated log-EL

ratio for θ is

�nh(θ) =
∫ ∫

�nh(τ, x, θ)π1(τ )π2(x)dτ dx,

where π1 and π2 are probability weight functions on the frequency space and the state space,
respectively. We can choose π1 to be the same as the π in Section 3.

The test statistic is �nh(θ̂n), where θ̂n is the empirical likelihood estimator proposed in Sec-
tion 3. As a matter of fact, we can employ any estimator with n1/2-rate of convergence. To
appreciate the meaning of the test statistic, let Wh(x −Xt) = Kh(x −Xt)/

∑n
j=1 Kh(x −Xj) be

the Nadaraya–Watson kernel weight, εn,h(τ, x; θ) = ∑n
t=1 Kh(x − Xt)ε(τ,Xt ; θ) be the kernel

smooth of the residuals, ε̃n,h(τ, x; θ) = (εnh(τ, x; θ), εnh(−τ, x; θ))T and R(K) = ∫
K2(t)dt .
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It can be shown by a similar derivation in Chen, Härdle and Li [11] that

�nh(θ) = nhdR−1(K)

∫ ∫
ε̃�
n,h(τ, x; θ)V −1(τ, x; θ0, θ)ε̃n,h(τ, x; θ)

(3.3)

× π1(τ )f (x)π2(x)dτ dx + Op{(nhd)−1/2 log3(n) + h2 log2(n)},

where V (τ, x; θ0, θ) = Var{ε̃(τ,Xt ; θ)|Xt = x}, and f (x) is the density of Xt . So, the test statis-
tic is asymptoticly equivalent to a L2-measure of the averaged “residuals” ε̃�

n,h(τ, x; θ), inversely
weighted by the covariance matrix function V . Hence the proposed test is similar in tune to Fan
and Zhang [17] for testing diffusion processes, and of Härdle and Mammen [23] and Wang and
Van Keilegom [37] for testing regression functions.

We need the following notations to describe the power property. Let V (τ1, τ2, x) = E{ε̃(τ1,Xt ;
θ0)ε̃

�(τ2,Xt ; θ0)|Xt = x}, then V (τ, τ, x; θ0, θ0) = V (τ, x), defined earlier. Express the matrices

V (τ1, τ2, x) = (Vlk(τ1, τ2, x))1≤l,k≤2 and V −1(τ, x) = (νlk(τ, x))1≤l,k≤2.

Furthermore, we choose cn = n−1/2hd/4 and define

ηn(τ,Xt ) = w(τ ;Xt)�n(u,Xt ), η̃n(τ,Xt ) = (ηn(τ,Xt ), ηn(−τ,Xt ))
T ,

μn =
∫ ∫

η̃�
n(τ, x)V −1(τ, x; θ0, θ0)η̃n(τ, x)π1(τ )π2(x)f (x)dτ dx,

σ 2
n = 2R−2(K)h−dγ 2(K,V,π1,π2) where

γ 2(K,V,π1,π2)

= K(4)(0)

∫ ∫ ∫ 2∑
l1,k1,l2,k2

Vl1l2(−τ1, τ2, x)Vk1k2(τ1,−τ2, x)νl1,k1(τ1, x) (3.4)

× νl2,k2(τ2, x)π1(τ1)π1(τ2)π
2
2 (x)dτ1 dτ2 dx,

where K(4) is the 4th convolution of the kernel function K .
The asymptotic normality of �nh(θ̂n) is given in the following theorem.

Theorem 2. Under Conditions C1–C6 given in the Appendix,

h−d/2(�nh(θ̂n) − 2 − hd/2μn

) d→ N(0,2R−2(K)γ 2(K,V,π1,π2)). (3.5)

We note that μn = 2 under H0. Under H1, since �n(u,x) is non-vanishing with respect to u,
η̃n(τ, x) is non-vanishing with respect to u for all x in the support of f , which leads to a positive
quantity μn, due to V −1(τ, x; θ0, θ0) being a Hermitian matrix. Since no restriction has been
imposed on the functional form of �n(u,Xt ), it means that the test is powerful for a wide range
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of local alternatives. Indeed, if γ̂ 2(K,V,π1,π2) is a consistent estimator of γ 2(K,V,π1,π2),
the asymptotic normality-based test for H0 with α-level of significance rejects H0 if

�nh(θ̂n) ≥ 2 + z1−α

√
2hd/2R−1(K)γ̂ (K,V,π1,π2),

where z1−α is the 1 − α quantile of the standard normal distribution. Theorem 2 implies that the
power of the test under H1 is

�

(
−z1−α + R(K)μn√

2γ (K,V,π1,π2)

)
,

where � is the standard normal distribution function.
It is known that the choice of bandwidth is important in any test based on the kernel smoothing

technique. To make the test less sensitive to the choice of smoothing bandwidth, we propose
carrying out the test based on a set of bandwidths, say {h1, . . . , hk}, for a fixed integer k such
that hi = cih for some constants c1 < c2 < · · · < ck . Here h is a reference bandwidth which may
be obtained via the cross-validation method.

This means that we have a set of the EL ratios {�nh1(θ̂n), . . . , �nhk
(θ̂n)} corresponding to the

bandwidth set, and the overall test statistic is

Tn = max
1≤i≤k

{
h

−d/2
i

(
�nhi

(θ̂n) − 2
)}

. (3.6)

To describe the asymptotic distribution of Tn, let K(2)(z, c) = ∫
K(u)K(z + cu)du be a gen-

eralization to the convolution of K , ν(t) = ∫ {K(2)(tu, t)}2 du and

�J = 2

R2(K)

∫ ∫
π1(τ1)π1(τ2)π

2
2 (x)dx dτ1 dτ2

(
(cj /ci)

dν(ci/cj )
)
J×J

.

Theorem 3. Under Conditions C1–C6, Tn
d→ max1≤k≤J Zk as n → ∞, where

(Z1, . . . ,ZJ )T ∼ N(0,�J ).

Let tα be the 1−α quantile of Tn, where α ∈ (0,1) is the nominal size of the test. The following
parametric bootstrap procedure is employed to approximate tα :

Step 1: Simulate a sample path {X∗
t }nt=1 at the same frequency δ according to the model un-

der H0 with the CCF based estimate θ̂n.
Step 2: Let θ̃∗

n be the estimate of θ under H0 using the resample path {X∗
t }nt=1 obtained in

Step 1, and T ∗
n be the version of Tn for the resampled path.

Step 3: For a large positive integer B , repeat Steps 1 and 2 B times and obtain, after ranking,
T

(1)∗
n ≤ T

(2)∗
n ≤ · · · ≤ T

(B)∗
n .

Then, the Monte Carlo approximation of tα is T
([B(1−α)]+1)∗
n . The proposed test rejects H0 if

Tn(θ̂n) ≥ T
([B(1−α)]+1)∗
n . The justification of the above bootstrap procedure can be made based

on Theorem 3 via the standard techniques for instance those given in Chen, Gao and Tang [10].
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4. Simulation study

We report in this section the results from our simulation studies which are designed to verify
the proposed parameter estimator and model testing procedure. To evaluate the quality of the
proposed EL estimator, we first chose two univariate diffusion processes with known transition
densities, so that the MLEs can be compared with the proposed EL estimates. The two processes
are the Vasicek model (Vasicek [36]) (VSK),

dXt = κ(α − Xt)dt + σ dBt , (4.1)

and the Cox–Ingersoll–Ross model (Cox, Ingersoll and Ross [14]) (CIR),

dXt = κ(α − Xt)dt + σ
√

Xt dBt , (4.2)

where κ , α and σ are unknown parameters which represent the mean reverting rate, long-run
mean and volatility of the process, respectively. Both processes are widely used in interest rate
modeling and various option price formulation. For the Vasicek model, the transition distribution
of Xt+1|Xt is a normal distribution N(α + (Xt − α) exp(−κδ), σ 2(1 − exp(−2κδ))/(2κ)). For
the CIR model, when 2κα/σ 2 > 1, Xt+1|Xt is a multiple of a non-central Chi-square random
variable with degrees of freedom 4κα/σ 2 and non-centrality parameter cXt exp(−κδ), where the
multiplier is 1/c with c = 4κ/(σ 2(1 − exp(−κδ))). The CCFs of these two models can easily be
derived from their known transitional densities.

We then considered estimation for the jump diffusion model VSK-MJ as given in (1.3) based
on its CCF function

ψt(u; θ) = exp

{
σ 2u2

4κ
(e−2κδ − 1) − λδ + γ + i

(
αu(1 − e−κδ) + ue−κδXt

)}
, (4.3)

where γ = λ/(2κ)
∫ 1

e−2κδ exp(−η2u2y/2)/y dy. For comparison, we approximated its transition
density by a mixture of normal distributions, (1 − λδ)N(μδ,σ

2
δ ) + λδN(μδ,σ

2
δ + η2), which is

a first order approximation proposed in Aït-Sahalia, Fan and Peng [4]. Here, μδ = α + (Xt −
α) exp(−κδ), and σ 2

δ = σ 2(1 − exp(−2κδ))/(2κ). The approximate MLEs were obtained based
on the mixture approximation given above.

We also consider the Inverse Gaussian OU process (IG-OU) in (1.4), that is, the process Xt

follows the inverse Gaussian law IG(a, b), for every t when X0 is generated from IG(a, b). The
CCF of this process is

ψt(u; θ) = exp
{−a

(√−2iu + b2 −
√

−2iue−λδ + b2
) + iue−λδXt

}
. (4.4)

Since neither the exact transition density nor its approximation is available, we were content with
carrying out estimation with the proposed methods.

The last simulation model considered for the estimation is a bivariate extension of the univari-
ate Ornstein–Uhlenbeck process (BI-OU),

dXt = κ(α − Xt)dt + σ dBt , (4.5)
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where Xt = (X1t ,X2t ), κ = (
κ11 0

κ21 κ22
),α = (

α1
α2

) and σ = (
σ11
0

0
σ22

). Under the condition that the
eigenvalues of the matrix κ have positive real parts, the process is stationary with transition
distribution being a bivariate normal N(m(δ,Xt ),�(δ)), where m(δ,Xt ) = α + exp(−κδ)(Xt −
α), �(δ) = � − exp(−κδ)� exp(−κT δ) and

� = 1

2 tr(κ)Det(κ)

{
Det(κ)σσT + {κ − tr(κ)}σσT {κ − tr(κ)}T }

.

The CCF of the process is known to be ψt(u1, u2; θ) = exp{iuT m(δ,Xt ) − uT �(δ)u/2} for
u = (u1, u2)

T .
We then carried out simulations to evaluate the ability of the proposed tests in detecting model

deviations. When we chose the simulation models, we had in mind two issues in finance that have
drawn considerable research attention recently. The first issue is whether the process is subject to
jumps, and the second is whether we could differentiate two processes with different jump rates.
Our simulation study formulated two settings of hypotheses to address these two issues. In the
first setting, we tested

H0: The process is the VSK model.

In the second setting, we tested

H0: The process is the jump diffusion model VSK-MJ.

For computing the powers, in the first setting we used the data simulated from H1: the jump
diffusion model VSK-MJ to test the null model which does not have jumps; in the second setting,
we used the data simulated from H1: the inverse Gaussian OU model which has infinite-activity
jumps to test the null hypothesis that prescribes a finite-activity jump process.

For each model, we simulated 500 sample paths which were observed at monthly observations
(δ = 1/12) for n = 125,250,500, respectively. The choices of parameter values were motivated
by Chen, Gao and Tang [10] and Ait-Sahalia, Fan and Peng [4].

In parameter estimation, we discovered that for both real and imaginary parts of the CCF, their
nonparametric smoothing estimators are wave-like functions and roughly diminish to zero at the
same points, which creates a region denoted as St (here the subscript t indicates that the region
depends on Xt ). In practice, we searched on a couple of grid points in the data range of Xt

and picked the union of St as the support region S for the frequency domain of ψt(u; θ) in the
estimation. We then chose the uniform density as the weight function π over the support region.

In model testing, a similar effort was initially made to obtain the support region of the non-
parametric CCF estimate, denoted as SNP, and the support region of the theoretical CCF under
H0, denoted as SH0 . Here the theoretical CCF under H0 used θ̂n from our EL method. Then the
support region of the frequency domain in testing was taken as the union of SNP and SH0 . We
chose the uniform density as the weight function over this support region for testing. There is
little contribution to the integrated empirical likelihood ratio �nh(θ̂n) from outside the support re-
gion. The biweight Kernel K(u) = 15/16(1 − u2)2I (|u| ≤ 1) was used for smoothing in testing.
The bandwidth selection is described in Section 3. The bandwidth sets were specified in Tables 3
and 4 for the two test settings. It is observed that the values of the bandwidths were quite small,
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which was due to the rapid oscillation of the CCF curves which favored smaller bandwidth in the
curve fitting.

We chose w(u, r;Xt) = eirT Xt throughout our simulation study as it is the optimal instrument
suggested in Carrasco et al. [7]. Some numerical exploration (not reported) indicated the choice
of the function w(·) is not crucial in the context of the paper. For testing, we picked the unit
instrument to reduce computing burden.

Table 1 reports the empirical averages of the parameter estimates and their standard errors as
well as the true parameter values used for simulation. When the sample size increases, standard
errors of all the proposed estimates decrease, indicating the consistency of the estimators. We
observe from Table 1(a)–(b) for the VSK and CIR models where the MLEs are available, the
proposed EL estimates are quite close to the MLEs. Although the EL estimates tend to have
larger standard errors than the MLEs, we do note that under the VSK model in Table 1(a), the
bias of EL estimates for the mean reverting parameter κ are smaller than the corresponding MLEs
for all n = 125, n = 250 and n = 500. For the jump diffusion model VSK-MJ (Table 1(c)), we
see the EL estimates are consistently more efficient than the approximate MLEs in the estimation
of κ and the Poisson intensity λ. For the Inverse Gaussian OU model, which does not have the
MLE to compare with, the proposed estimates as reported in Table 1(d) are close to the true
values, and the standard errors converge as the sample size increases.

Table 2 reports the estimates for the bivariate OU process and shows that the EL estimates are
close to the corresponding MLEs, providing the further evidence of the effectiveness of our EL
estimator for multivariate process estimation. We also found that the EL estimates for the long
run mean α1 and the volatility σ11 of the first process have smaller biases and standard errors
than the MLEs for all n = 125, n = 250 and n = 500.

Tables 3 and 4 report the empirical size and power of the proposed test based on B = 250
bootstrap resampled paths for each simulation. They contain the sizes and powers for the overall
test that is based on the five bandwidth set, and for the tests that only use one bandwidth. We
observe that the tests gave satisfactory sizes under both testing settings. In the first test where
we used the data from the jump diffusion model VSK-MJ to test the continuous diffusion model
VSK, the powers range from 65% to 95% across the different sample sizes and bandwidths. In
the second test where we used data simulated from the infinity-activity jump process (the inverse
Gaussian OU) to test the finite-activity jump process (the jump diffusion VSK-MJ), the powers
range from 71% to 90% across the different sample sizes and bandwidth choices.

We also compared our methods with Carrasco et al. [7] for estimation, and with Chen, Gao
and Tang [10] for testing. To save space, we reported the results in details in the supplemental
article (Chen, Peng and Yu [12]).

5. A case study

In this section, we examine empirically the capability of our testing procedure in detecting jumps
using the secondary market quotes of the 3-month Treasury Bill (T-bill) between January 1, 1965
and February 2, 1999. This bill was sampled at monthly frequency, and in total we had 410 ob-
servations. The mean of these bills is 0.065, the volatility is 0.026, the mean of the differences is
very close to zero (1.5×10−5) and the standard deviation of the differences is 0.005. The sample
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Table 1. Empirical averages and their standard errors (in parentheses) of the maximum (MLE) or approx-
imate maximum (AMLE) likelihood estimates and the proposed empirical likelihood estimates (EL) under
the four univariate models

(a) Vasicek model

n κ = 0.858 α = 0.089 σ = 0.047

125 MLE 1.383 (0.603) 0.090 (0.015) 0.047 (0.003)
EL 1.305 (0.643) 0.090 (0.017) 0.046 (0.004)

250 MLE 1.118 (0.397) 0.090 (0.011) 0.047 (0.002)
EL 1.052 (0.410) 0.089 (0.013) 0.046 (0.002)

500 MLE 0.966 (0.240) 0.089 (0.008) 0.047 (0.002)
EL 0.951 (0.273) 0.089 (0.009) 0.047 (0.002)

(b) CIR model

n κ = 0.892 α = 0.091 σ = 0.181

125 MLE 1.372 (0.644) 0.091 (0.019) 0.183 (0.012)
EL 1.290 (0.719) 0.093 (0.023) 0.178 (0.014)

250 MLE 1.127 (0.374) 0.090 (0.013) 0.182 (0.008)
EL 1.089 (0.435) 0.091 (0.015) 0.179 (0.009)

500 MLE 1.000 (0.245) 0.091 (0.010) 0.182 (0.006)
EL 0.977 (0.290) 0.092 (0.011) 0.180 (0.007)

(c) Jump diffusion VSK-MJ model

n κ = 0.858 α = 0.089 σ = 0.047 λ = 2.0 η = 0.067

125 AMLE 1.056 (0.381) 0.093 (0.020) 0.046 (0.005) 1.770 (0.723) 0.060 (0.016)
EL 1.090 (0.261) 0.084 (0.031) 0.048 (0.009) 1.851 (0.323) 0.066 (0.020)

250 AMLE 0.977 (0.226) 0.093 (0.013) 0.047 (0.003) 1.659 (0.466) 0.059 (0.010)
EL 1.043 (0.201) 0.090 (0.023) 0.048 (0.007) 1.825 (0.236) 0.068 (0.015)

500 AMLE 0.939 (0.145) 0.092 (0.009) 0.047 (0.002) 1.620 (0.311) 0.060 (0.007)
EL 1.018 (0.115) 0.089 (0.018) 0.049 (0.005) 1.801 (0.163) 0.068 (0.012)

(d) Inverse Gaussian OU model

n λ = 10.0 a = 1.0 b = 20.0

125 EL 10.328 (3.665) 1.048 (0.106) 20.722 (2.146)
250 EL 11.154 (1.976) 1.059 (0.043) 21.380 (0.878)
500 EL 11.489 (1.652) 1.031 (0.024) 20.846 (0.461)
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Table 2. Empirical averages and their standard errors (in parentheses) of the maximum (MLE) likelihood
estimates and the proposed empirical likelihood estimates (EL) under the Bivariate OU model

n κ11 = 0.22 κ21 = 0.2 κ22 = 0.5

125 MLE 0.441 (0.197) 0.395 (0.270) 0.607 (0.176)
EL 0.381 (0.208) 0.525 (0.238) 0.594 (0.192)

250 MLE 0.353 (0.165) 0.307 (0.148) 0.563 (0.110)
EL 0.354 (0.178) 0.449 (0.184) 0.564 (0.153)

500 MLE 0.280 (0.118) 0.241 (0.104) 0.526 (0.068)
EL 0.261 (0.168) 0.383 (0.154) 0.487 (0.112)

n α1 = 0.08 α2 = 0.09 σ11 = 0.09 σ22 = 0.17

125 MLE 0.145 (0.166) 0.099 (0.056) 0.167 (0.067) 0.080 (0.079)
EL 0.141 (0.141) 0.117 (0.085) 0.129 (0.044) 0.071 (0.034)

250 MLE 0.141 (0.151) 0.096 (0.036) 0.140 (0.065) 0.116 (0.074)
EL 0.142 (0.129) 0.094 (0.073) 0.095 (0.033) 0.094 (0.028)

500 MLE 0.102 (0.120) 0.092 (0.023) 0.115 (0.051) 0.146 (0.055)
EL 0.099 (0.108) 0.104 (0.064) 0.077 (0.024) 0.105 (0.028)

Table 3. H0: VSK versus H1: the jump diffusion model VSK-MJ

(a) Size evaluation (in percentage)

n = 125 Bandwidth 0.012 0.017 0.021 0.025 0.030 Overall
Size 4.6 5.6 5.4 5.8 5.6 4.8

n = 250 Bandwidth 0.012 0.015 0.018 0.021 0.024 Overall
Size 5.6 6.2 6.2 6.0 5.8 5.4

n = 500 Bandwidth 0.011 0.013 0.015 0.018 0.020 Overall
Size 5.0 5.6 5.6 5.4 5.6 5.0

(b) Power evaluation (in percentage)

n = 125 Bandwidth 0.016 0.021 0.026 0.032 0.037 Overall
Power 72.0 71.6 70.4 69.2 65.8 72.2

n = 250 Bandwidth 0.016 0.019 0.022 0.026 0.029 Overall
Power 82.4 82.4 82.2 82.4 82.2 82.6

n = 500 Bandwidth 0.014 0.017 0.019 0.021 0.024 Overall
Power 95.0 94.8 94.6 94.4 94.2 94.8
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Table 4. H0: the jump diffusion model VSK-MJ versus H1: the inverse Gaussian OU model

(a) Size evaluation (in percentage)

n = 125 Bandwidth 0.017 0.022 0.028 0.034 0.040 Overall
Size 3.4 3.6 4.0 3.6 4.6 4.6

n = 250 Bandwidth 0.017 0.021 0.024 0.028 0.032 Overall
Size 4.6 4.6 4.6 4.6 5.0 4.8

n = 500 Bandwidth 0.016 0.019 0.021 0.024 0.026 Overall
Size 5.0 5.2 5.2 5.0 5.0 5.0

(b) Power evaluation (in percentage)

n = 125 Bandwidth 0.008 0.012 0.017 0.021 0.026 Overall
Power 71.6 73.8 73.2 71.4 71.2 74.4

n = 250 Bandwidth 0.008 0.011 0.014 0.017 0.020 Overall
Power 84.0 84.2 83.4 81.8 81.4 84.4

n = 500 Bandwidth 0.008 0.010 0.012 0.014 0.016 Overall
Power 90.1 88.9 89.5 85.1 85.4 90.2

period contains some large movements that turn out to coincide with arrivals of macroeconomic
news (Johannes [25]). The goal of this empirical study was to test whether the underlying process
is subject to jumps or not.

The proposed parameter estimates under each of the four univariate models considered in the
simulation study are reported in Table 5. For comparison, the MLEs or the approximate MLEs
are also reported except for the Inverse Gaussian OU model. For the univariate diffusion models
VSK and CIR, and the jump diffusion model VSK-MJ, the proposed parameter estimates based
on CCF are very similar to the MLEs or the approximate MLEs. The EL estimates of the long-run
mean α are 0.059 for VSK and 0.064 for CIR, both of which are close to the summary statistic of
mean rates (0.065). In VSK, the average volatility of 3-month T-bill monthly return (difference)
is estimated to be σ

√
δ = 0.018

√
1/12 = 0.005, which is also close to the summary statistic

of volatility for the change (0.005). However the conditional volatility of monthly change in
CIR model is σ

√
δXt , and Xt has a long-run average 0.064 which is less than 1. Therefore, the

process needs to have higher σ (0.057) to bring up the average volatility of monthly change to
the same level reflected by the real data. In the jump diffusion model VSK-MJ, our estimate of
λ suggests on average about 2 jumps per year. Relative to VSK and CIR models, the estimate
for parameter σ in the jump diffusion VSK-MJ model is much smaller (0.008), indicating that
allowing jumps in the process helps to capture large movements in the interest rate, and, as a
result, the continuous part of the process does not have to be as volatile as the one in VSK or CIR
models.

We then applied the proposed test for the validity of each of the four models. The bandwidth
prescribed by the CV was 0.01. By exploring the kernel estimators of the CCF, a reasonable
range for h was from 0.01 to 0.018, that offered smoothness from slightly under-smoothing
to slightly over-smoothing. The bandwidth range used in our empirical study consisted of five
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Table 5. Empirical estimation for the 3-month T-bill Data

(a) VSK model

κ α σ

MLE 0.277 0.065 0.019
(0.1800) (0.0117) (0.0007)

EL 0.274 0.059 0.018
(0.1956) (0.0136) (0.0007)

(b) CIR model

κ α σ

MLE 0.182 0.066 0.061
(0.1697) (0.0179) (0.0021)

EL 0.182 0.064 0.057
(0.1934) (0.0374) (0.0021)

(c) VSK-MJ model

κ α σ λ η

AMLE 0.071 0.077 0.009 1.863 0.012
(0.0170) (0.0129) (0.0004) (0.3282) (0.0015)

EL 0.072 0.076 0.008 1.862 0.013
(0.0143) (0.0136) (0.0008) (0.1569) (0.0021)

(d) Inverse Gaussian OU model

λ a b

EL 0.264 1.139 12.558
(0.0342) (0.1364) (0.8970)

equally spaced bandwidths ranging from 0.01 to 0.018. Table 6 reports p-values of single band-
width and the overall tests for the four models. There is no empirical support for the VSK model.
The CIR model performs a little bit better as the distances between the test statistics and the
critical values decrease, but the model is still rejected at significance level of 0.05 in the overall
test and almost all the single bandwidth tests. We can not reject the jump diffusion model VSK-
MJ in the overall test and the single bandwidth tests except the one with the smallest bandwidth
(p-value = 0.046). This constitutes a strong indication of the presence of jumps and implies that
adding (finite-activity) jumps does help to capture the underlying dynamics of the interest rates.
By allowing the infinite-activity jumps in the models, the p-values of the tests for the inverse
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Table 6. p-values for the 3-month T-bill data

Bandwidth

0.010 0.012 0.014 0.016 0.018 Overall

VSK Test Stats 21.971 19.225 16.145 13.267 10.786 14.828
l∗0.05 3.228 3.123 2.845 2.724 2.647 1.462
p-values 0.0 0.0 0.0 0.0 0.0 0.0

CIR Test Stats 6.015 4.775 3.755 2.954 2.335 3.546
l∗0.05 2.782 2.739 2.825 2.650 2.448 1.229
p-values 0.0 0.01 0.02 0.026 0.054 0.0

VSK-MJ Test Stats 37.204 40.901 45.046 49.878 55.561 25.600
l∗0.05 35.669 43.548 52.247 62.744 74.298 28.751
p-values 0.046 0.074 0.102 0.126 0.148 0.0880

IG-OU Test Stats 10.716 9.374 7.962 6.663 5.528 6.870
l∗0.05 40.463 47.665 46.444 42.396 41.750 27.940
p-values 0.11 0.148 0.124 0.128 0.122 0.162

Gaussian OU model are very supportive, even for the small bandwidths, suggesting that the
infinite-activity jump model might potentially model the dynamics of the 3-month T-bill rates
better. A possible reason for this is that the jump diffusion model VSK-MJ can only generate
small continuous movements from Brownian motion and big spikes from the compound Poisson
component, but it could miss the movements that are between (i.e., the movements with median
sizes). However, the inverse Gaussian OU process is more flexible since it can generate small,
median and big movements with infinite arrival rates; therefore it could fill in a gap in the VSK-
MJ model by capturing movements that are too large for Brownian motion to model but too small
for the compound Poisson process to capture.

Appendix

The following conditions are required in our analysis.

C1. The stochastic processes given in (1.1) and (3.1) admit unique weak solution respec-
tively, which are α-mixing with mixing coefficient α(t) = Ce−λt where α(t) = sup{|P(A∩B)−
P(A)P (B)|: A ∈ �s

1,B ∈ �∞
s+t } for all s, t ≥ 1, where C is a finite positive constant, and �

j
i

denotes the σ -field generated by {Xt : i ≤ t ≤ j}.
C2 (Smoothness). ψt(τ ; θ) =: ψ(τ ; θ,Xt ) and E{εt (τ ; θ)} are third continuous differentiable

with respect to θ within a neighborhood of θ0 which is defined in C3. π(·) is a bounded prob-
ability density supported on a compact set S ⊂ Rd ; and the diffusion function σ(x) is positive
definite.

C3. The parameter space � is an open subset of Rp , and the true parameter θ0 is the unique
root of E{εt (τ ; θ)} = 0 for all τ ∈ S; and for any θ1 �= θ2, P {ψt(·; θ1) �= ψt(·; θ2,Xt )} > 0.
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C4 (Invertibility). The Hermitian matrix Var{ε̃t (τ ; θ0)} is positive definite almost everywhere
for τ ∈ R2d with respect to the Lebesgue measure in R2d ; �(θ0) defined in (2.9) is invertible.

C5. The kernel K(·) is a r th order symmetric kernel supported on [−1,1]d and has bounded
second derivative. We assume d < 4 and the smoothing bandwidth h = O{n−1/(d+2r)}. The band-
width set {h1, . . . , hk} satisfies hi = cih for constants ci such that c1 < c2 < · · · < ck where k is
an integer not depending on n.

C6. {�n(u;Xt)} is a sequence of complex functions continuous at u = 0 and �n(0;Xt) ≡ 0,
supn |�n(u;Xt)| ≤ M1 almost surely and the Lebesgue measure of {u|�n(u,x) �= 0} is positive
for all x in the support of the marginal density f , and cn = n−1/2h−d/4 which is the order of the
difference between H0 and H1.

We need C1 as the basic condition for the stochastic processes involved. Ait-Sahalia [1] and
Genon-Catalot, Jeantheau and Laredo [22] provide conditions on the underlying processes such
that Assumption C1 held. In particular, Ait-Sahalia [1] provides conditions so that the observed
sequences are β-mixing, which is automatically α-mixing. We require that the rate of decay
is exponentially fast to simplify the technical arguments. C2 consists of smoothness conditions
regarding the CCFs and C3 is for identification of parameters. C4 ensures the covariance matrix
is invertible, which is easier to be justified for our low-dimensional formulation of estimation
and testing approaches. C5 on the kernel and bandwidth are standard in nonparametric curve
estimation. The assumption of d < 4 is to make the bias in the kernel estimation a smaller order
of hd/2 so that the bias is stochastically negligible relative to �nh(θ0). The kernel method will
encounter the curse of dimensionality when d ≥ 4. Also, the commonly used processes in finance
and other stochastic modeling tend to have dimension less than 4. The bandwidth selected by
either cross validation or the plug-in method satisfies the order specified in C5. The first part of
C6 regarding �n(u;Xt) is to qualify ψt(u; θ) under H1 as a bona fide characteristic function,
whereas the part that requires positive measure on the set {u|�n(u,x) �= 0} is to make H1 a
genuine sequence of alternative hypotheses.

Proof of Lemma 1. By combining results in Kitamura [26] and Chen, Härdle and Li [11] for
the empirical likelihood of α-mixing processes, we can show that

λ(τ ; θ) = A−1
n (τ ; θ)

{
1

n

n∑
t=1

�εt (τ ; θ)

}
+ o(n−1/3) = O(n−1/3) (A.1)

almost surely and uniformly in ‖θ −θ0‖ ≤ n−1/3 and τT ∈ S. Denote θ = θ0 +un−1/3. It follows
from (A.1) and Taylor’s expansion that, uniformly in ‖u‖ = 1,

�n(θ)

=
∫ {

2
n∑

t=1

λT (τ ; θ)�εt (τ ; θ) −
n∑

t=1

{λT (τ ; θ)�εt (τ ; θ)}2

}
π(τ)dτ + o(n1/3)

=
∫

n

{
1

n

n∑
t=1

�εT
t (τ ; θ0) + 1

n

n∑
t=1

∂�εT
t (τ ; θ0)

∂θ
un−1/3

}
A−1

n (τ ; θ) (A.2)
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×
{

1

n

n∑
t=1

�εT
t (τ ; θ0) + 1

n

n∑
t=1

∂�εT
t (τ ; θ0)

∂θ
un−1/3

}
π(τ)dτ + o(n1/3)

=
∫

n

{
E

(
∂�εT

1 (τ ; θ0)

∂θ

)
un−1/3(1 + o(1)

)}
A−1(τ, τ ; θ0, θ0)

×
{
E

(
∂�ε1(τ ; θ0)

∂θ

)
un−1/3(1 + o(1)

)}
π(τ)dτ + o(n1/3)

≥ 1

2
cn1/3

almost surely, where c > 0 is the smallest eigenvalue of

sup
τ∈S

E

(
∂�εT

1 (τ ; θ0)

∂θ

)
A−1(τ, τ ; θ0, θ0)E

(
∂�ε1(τ ; θ0)

∂θ

)
.

Similarly,

�n(θ0) =
∫ {

n∑
t=1

�εT
t (τ ; θ0)

}
A−1(τ, τ ; θ0, θ0)

{
1

n

n∑
t=1

�εt (τ ; θ0)

}
π(τ)dτ + o(1)

= o(n1/3),

almost surely. This, together with (A.2), implies that �n(θ) has a minimum value in the interior
of the ball ‖θ − θ0‖ ≤ n−1/3, and this value satisfies ∂

∂θ
�n(θ) = 0, that is, the second equation in

(2.7) by noting (2.4). The first equation follows directly from (2.4). �

Proof of Theorem 1. It follows from limit theorems for martingale difference that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂θ
Q1n(τ ; θ0,0) = 1

n

n∑
t=1

∂

∂θ
�εt (τ ; θ0)

p→ M0E

{
∂

∂θ
ε̃1(τ ; θ0)

}
,

∂

∂λT
Q1n(τ ; θ0,0) = −1

n

n∑
t=1

�εt (τ ; θ0)�εT
t (τ ; θ0)

p→ −M0A(τ, τ ; θ0, θ0)M
�
0 ,

∂

∂θ
Q2n(τ ; θ0,0) = 0,

∂

∂λT
Q2n(τ ; θ0,0) = 1

n

n∑
t=1

∂

∂θ
�εT
t (τ ; θ0)

p→ E

{
∂

∂θ
ε̃�

1(τ ; θ0)

}
M�

0

(A.3)
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uniformly in τT ∈ S. Put δn = ‖θ̂n − θ0‖ + supτT ∈S ‖λ(τ ; θ̂n)‖. Then it follows from Taylor’s
expansion that

0 = Q1n(τ ; θ̂n, λ(τ ; θ̂n))
(A.4)

= Q1n(τ ; θ0,0) + ∂Q1n(τ ; θ0,0)

∂θ
(θ̂n − θ0) + ∂Q1n(τ ; θ0,0)

∂λT
λ(τ ; θ̂n) + op(δn)

uniformly in τT ∈ S, and

0 =
∫

Q2n(τ ; θ̂n, λ(τ ; θ̂n))π(τ)dτ

=
∫ {

Q2n(τ ; θ0,0) + ∂Q2n(τ ; θ0,0)

∂θ
(θ̂n − θ0) + ∂Q2n(τ ; θ0,0)

∂λT
λ(τ ; θ̂n)

}
π(τ)dτ (A.5)

+ op(δn).

By (A.3)–(A.5), we have

θ̂n − θ0
(A.6)

= −�−1(θ0)

∫
E

{
∂

∂θ
ε̃�

1(τ ; θ0)

}
A−1(τ ; θ0, θ0)M

−1
0

1

n

n∑
t=1

�εt (τ ; θ0)π(τ)dτ + op(δn).

Hence the theorem follows from (A.6) and the central limit theorem for Martingale difference. �

Proof of Theorem 2. Define V (τ1, τ2, x; θ0, θ) = E{ε̃(τ1,Xt ; θ)ε̃�(τ2,Xt ; θ)|Xt = x} and
write V (τ, x; θ0, θ) = V (τ, τ, x; θ0, θ). Since θ̂n is

√
n-consistent to θ0, we have

�nh(θ̂n) = �nh,1(θ0) + nhdR−1(K){(θ̂ − θ0)
T Sn,h(θ0) + S�

n,h(θ0)(θ̂n − θ0)

+ (θ̂n − θ0)
T �n,h(θ0)(θ̂n − θ0)} (A.7)

+ Op{(nhd)−1/2 log3(n) + h2 log2(n)},
where

�nh,1(θ0) = nhdR−1(K)

∫ ∫
ε̃�
n,h(τ,Xt ; θ0)V

−1(τ, x; θ0, θ0)

× ε̃n,h(τ, x; θ0)π1(τ )f −1(x)π2(x)dτ dx,

Sn,h(θ0) =
∫ ∫

∂ε̃�
n,h(τ, x; θ0)

∂θ
V −1(τ, x; θ0, θ0)ε̃n,h(τ, x; θ0)

× π1(τ )π2(x)f −1(x)dτ dx,
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�nh(θ0) =
∫ ∫

∂ε̃�
n,h(τ, x; θ0)

∂θ
V −1(τ, x; θ0, θ0)

∂ε̃n,h(τ, x; θ0)

∂θ
(A.8)

× π1(τ )π2(x)f −1(x)dτ dx.

As Sn,h(θ0) = Op(n−1/2),

�nh(θ̂n) = �nh,1(θ0) + Op{(nhd)−1/2 log3(n) + h2 log2(n) + hd}. (A.9)

Note that

�nh,1(θ0)

= nhdR−1(K)

∫ ∫
n−1

n∑
t1=1

Kh(x − Xt1){ε̃�(τ,Xt1) + cnη̃
�
n(τ,Xt1)}

× V −1(τ, x; θ0, θ0)n
−1

n∑
t2=1

Kh(x − Xt2)

(A.10)

× {ε̃(τ,Xt2) + cnη̃n(τ,Xt2)}

× π1(τ )π2(x)f −1(x)dτ dx + op(hd/2)

= R−1(K)(Hn1 + Hn2 + Hn3 + Hn4) + op(hd/2),

where, with the choice of cn = n−1/2h−d/4,

Hn1 = n−1hd
∑
t1 �=t2

∫ ∫
Kh(x − Xt1)Kh(x − Xt2)ε̃

�(τ,Xt1)V
−1(τ, x)

× ε̃(τ,Xt2)π1(τ )π2(x)f −1(x)dτ dx,

Hn2 = n−1hd
n∑

t=1

∫ ∫
K2

h(x − Xt)ε̃
�(τ,Xt )V

−1(τ, x)ε̃(τ,Xt )

× π1(τ )π2(x)f −1(x)dτ dx,

Hn3 = 2n1/2h3d/4
∫ ∫

η̃�
n(τ, x)V −1(τ, x)n−1

n∑
t=1

Kh(x − Xt)ε̃(τ,Xt )

× π1(τ )π2(x)f −1(x)dτ dx,

Hn4 = hd/2
∫ ∫

η̃�
n(τ, x)V −1(τ, x)η̃n(τ, x)π1(τ )π2(x)f −1(x)dτ dx.
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We note that Hn2 = 2R(K) + op(hd) and the integral in Hn3 is Op(n−1/2). Hence, Hn3 =
Op(n3d/4) = op(hd/2).

Now consider Hn1. Clearly, E(Hn1) = 0 and the double summation in Hn1 constitutes a gen-
eralized U -statistic of order two with the kernel

ξt1,t2 =
∫ ∫

Kh(x − Xt1)Kh(x − Xt2)ε̃
�(τ,Xt1)V

−1(τ, x; θ0, θ0)ε̃(τ,Xt2)

× π1(τ )π2(x)f −1(x)dτ dx.

The U -statistic is degenerate, due to {ε̃(τ,Xt2)} being martingale differences.
Let σ 2

n = ∑
1≤t1 �=t2≤n σ 2

t1,t2
where σ 2

t1,t2
= Var(ξt1,t2). Then, applying the central limit theorem

for generalized U -statistics for α-mixing sequences (Gao and King [21]), we have

σ−1
n

∑
t1 �=t2

ξt1,t2

d→ N(0,1). (A.11)

Furthermore, it can be shown, for instance, by following the route of Chen, Gao and Tang [10],
that σ 2

n = 2n2σ 2
n0{1 + o(1)} where σ 2

n0 = Et1Et2(ξ
2
t1,t2

). Here Eti denote marginal expectation
with respect to (Xti ,Xti+1).

It can be shown that

σ 2
n0 =

∫ ∫ ∫ ∫
Et1Et2

{
Kh(x1 − Xt1)Kh(x1 − Xt2)Kh(x2 − Xt1)Kh(x2 − Xt2)

×
2∑

l1,k1,l2,k2

εl1(τ1,Xt1)εk1(τ1,Xt2)εl2(τ2,Xt1)

× εk2(τ2,Xt2)ν
l1,k1(τ1, x1)ν

l2,k2(τ2, x2)

}

× π1(τ1)π1(τ2)f
−1(x1)f

−1(x2)π2(x1)π2(x2)dτ1 dτ2 dx1 dx2

=
∫ ∫ ∫ ∫

Et1Et2

{
Kh(x1 − Xt1)Kh(x1 − Xt2)Kh(x2 − Xt1)Kh(x2 − Xt2) (A.12)

×
2∑

l1,k1,l2,k2

Vl1l2(−τ1, τ2,Xt1)Vk1k2(τ1,−τ2,Xt2)

× νl1,k1(τ1, x1)ν
l2,k2(τ2, x2)

}

× π1(τ1)π1(τ2)f
−1(x1)f

−1(x2)π2(x1)π2(x2)dτ1 dτ2 dx1 dx2

= h−dγ 2(K,V,π1,π2){1 + O(h2)},
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where γ 2(K,V,π1,π2) is defined in (3.4). From (A.11) and (A.12), we have

h−d/2Hn1
d→ N(0,2γ 2(K,V,π1,π2)). (A.13)

This, together with the results on Hn2 and Hn3, leads to

h−d/2(�nh(θ̂) − 2 − μn

) d→ N(0,2R−2(K)γ 2(K,V,π1,π2)), (A.14)

where μn = Hn4. This completes the proof of Theorem 2. �

Proof of Theorem 3. The proof can be made by applying the Cramér–Wold device and the same
technique in the proof of Theorem 2, followed by the mapping theorem. �
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Supplementary Material

Comparisons in estimation and testing with other methods (DOI: 10.3150/11-BEJ400SUPP;
.pdf). We compared our methods with Carrasco et al. [7] for estimation, and with Chen, Gao
and Tang [10] for testing. The supplemental article (Chen, Peng and Yu [12]) provides additional
tables from these comparisons.
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