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This paper develops an empirical likelihood approach to testing for the presence of stochastic ordering
among univariate distributions based on independent random samples from each distribution. The proposed
test statistic is formed by integrating a localized empirical likelihood statistic with respect to the empirical
distribution of the pooled sample. The asymptotic null distribution of this test statistic is found to have
a simple distribution-free representation in terms of standard Brownian bridge processes. The approach
is used to compare the lengths of rule of Roman Emperors over various historical periods, including the
“decline and fall” phase of the empire. In a simulation study, the power of the proposed test is found to
improve substantially upon that of a competing test due to El Barmi and Mukerjee.
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1. Introduction

Comparing random variables in terms of their distributions can provide an understanding of un-
derlying causal mechanisms and risks. In addition, knowledge of an ordering of distributions
can be useful for increasing the efficiency of estimation procedures, as is well documented in
the literature on order restricted inference; see, for example, the comprehensive monograph of
Silvapulle and Sen [20]. There are many types of ordering for the comparison of univariate distri-
butions. These include, with increasing generality, likelihood ratio ordering, uniform stochastic
ordering (equivalent to hazard rate ordering), stochastic ordering, and increasing convex order-
ing (of interest in economics and actuarial science); see Shaked and Shanthikumar [19] for an
overview.

The aim of this paper is to develop an empirical likelihood approach to testing for the presence
of the classical type of stochastic ordering. Such ordering often arises in the biomedical sciences
and reliability engineering, for example, with lifetime distributions of human populations ex-
posed to higher risk, or of engineering systems under greater stress. The notion of stochastic
ordering is due to Lehmann [11] who defined a random variable X1 to be stochastically larger
than a random variable X2 if F1(x) ≤ F2(x) for all x (with strict inequality for some x), where
F1 and F2 are the corresponding cdfs; we write this as F1 � F2. For a stochastic ordering of k

distributions, we write F1 � F2 � · · · � Fk if Fj (x) ≤ Fj+1(x) for all x and j = 1, . . . , k − 1,
with strict inequality for some x and some j .
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There is an extensive literature on the problem of testing for equality of two distributions
against the alternative that they are stochastically ordered. Lee and Wolf [10] proposed a Mann–
Whitney–Wilcoxon-type test. Robertson and Wright [17] studied the corresponding likelihood
test (LRT) in the one- and two-sample cases when the distributions are discrete. They showed
that the limiting distributions are chi-bar square. Their results indicate that, in the two-sample
case, the LRT is not asymptotically distribution free. They also obtained the least favorable dis-
tribution in this case. Other tests are discussed in Dykstra, Madsen and Fairbanks [3], Franck [7]
and Mau [12]. For more than two populations, Wang [21] discussed the LRT in the multinomial
case; El Barmi and Johnson [5] showed that the limiting distribution of his test statistic is of
chi-bar square type and gave the expression of the weighting values. Also in the k-sample case
(k ≥ 2), El Barmi and Mukerjee [6] provided an asymptotically distribution-free test based on
the sequential testing procedure originally introduced by Hogg [8]. This test is applicable in both
the multinomial and the continuous cases, with or without censoring. Recently, Baringhaus and
Grübel [1] introduced a nonparametric two-sample test for the more general hypothesis of in-
creasing convex ordering; their test is not asymptotically distribution-free, however, and requires
the critical values to be obtained via a bootstrap procedure.

The contribution of the present paper is to provide empirical likelihood based k-sample tests
for alternatives that are stochastically ordered. The empirical likelihood (EL) method was orig-
inally introduced by Owen [15,16] for the purpose of finding confidence regions for parameters
defined by general classes of estimating equations. It combines the flexibility of nonparametric
methods with the efficiency of likelihood-ratio-based inference. Inference based on EL has many
attractive properties: estimation of variance is typically not required, the range of the parameter
space is automatically respected and confidence regions have greater accuracy than those based
on the Wald approach. Einmahl and McKeague [4] developed a localized version of EL, to al-
low nonparametric hypothesis testing, and showed via simulation studies that it outperforms (in
terms of power) the corresponding Cramér–von Mises statistics for a variety of classical testing
problems. Their approach is restricted to omnibus alternatives, whereas ordered alternatives are
often more useful because they can provide a more direct interpretation of the result of the test.

The development of the proposed test statistic and results on its asymptotic null distribution
are given in Section 2. First we consider the special case of testing whether a distribution function
is stochastically larger than a specified distribution function, based on a single sample. Once the
theory has been developed in this one-sample case, it is relatively straightforward to extend the
approach to the general k-sample setting in which all the distribution functions are unknown.
Section 3 presents the results of a simulation study in which we find that the proposed test has
superior power to the test of El Barmi and Mukerjee [6], which is the only previous test to have
been developed for ordered alternatives in this setting. Section 3 also contains an application
of the proposed test to a comparison of the lengths of rule of Roman Emperors over various
historical periods. Some concluding remarks are given in Section 4. Proofs of the main results
are collected in Section 5.
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2. Empirical likelihood approach

2.1. Stochastic ordering relative to a specified distribution

Suppose we are given a random sample X1,X2, . . . ,Xn from the cdf F , and we want to test the
null hypothesis H0: F = F0 versus H1: F � F0, where F0 is a specified cdf.

Adapting the approach of Einmahl and McKeague [4] to the present setting, we first need
to consider testing the “local” null hypothesis Hx

0 : F(x) = F0(x) versus the alternative
Hx

1 : F(x) < F0(x), where x is fixed. The empirical likelihood procedure in this case rejects
Hx

0 for small values of

R(x) = sup{L(F): F(x) = F0(x)}
sup{L(F): F(x) ≤ F0(x)} , (1)

where the suprema are over cdfs F that are supported by the data points, L(F) is the nonpara-
metric likelihood function and, by convention, sup∅ = 0 and 0/0 = 1. For F having point mass
pi at Xi , define the new parameters θi = pi/φ and ψi = pi/(1 − φ), where 0 < φ = F(x) < 1.
In terms of this new parameterization, with F̂ denoting the empirical cdf, we need to maximize

L(F) =
n∏

i=1

pi =
{ ∏

i : Xi≤x

θi

}{ ∏
i : Xi>x

ψi

}
φnF̂ (x)[1 − φ]n(1−F̂ (x)), (2)

subject to the constraint ∑
i : Xi≤x

θi =
∑

i : Xi>x

ψi = 1,

with either φ = F0(x) under Hx
0 , or φ < F0(x) under Hx

1 . Note that the three terms in the right-
hand side of (2) can be maximized separately. As the constraints for the first two terms of (2)
are the same for both the numerator and the denominator of (1), these terms cancel and make
no contribution to R(x). The third term of (2) is maximized by φ = F0(x) under Hx

0 , or φ =
F0(x) ∧ F̂ (x) under Hx

1 . Consequently,

R(x) =

⎧⎪⎨
⎪⎩

1, if F̂ (x) > F0(x),[
F0(x)

F̂ (x)

]nF̂ (x)[1 − F0(x)

1 − F̂ (x)

]n(1−F̂ (x))

, if F̂ (x) ≤ F0(x),

with the convention that any term raised to a zero power is set to 1. Using a second-order Taylor
expansion of log(1 + y) about y = 0, it can be shown (see the proof of the theorem below) that,
for a given x, such that 0 < F0(x) < 1, under Hx

0 ,

−2 log R(x) = n
(
F̂ (x) − F0(x)

)2
[

1

F̂ (x)
+ 1

1 − F̂ (x)

]
I [0 < F̂ (x) ≤ F0(x)] + op(1)

d→ Z2I (Z ≥ 0),
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using the CLT and the continuous mapping theorem, where Z ∼ N(0,1). That is, the asymptotic
null distribution of −2 log R(x) is chi-bar square.

To test H0 against H1, we introduce the integral-type test statistic

Tn = −2
∫ ∞

−∞
log(R(x))dF0(x).

Here the range of integration is actually restricted to the interval [X(1),X(n)], where X(1) and
X(n) are the smallest and largest order statistics in the sample, because the integrand vanishes
outside this interval. The following result gives the asymptotic null distribution of Tn.

Theorem 1. If F0 is continuous, then under H0,

Tn
d→

∫ 1

0

B2(t)

t (1 − t)
I
(
B(t) ≥ 0

)
dt,

where B is a standard Brownian bridge.

Remark 1. An alternative test statistic is obtained by integrating with respect to the empirical
cdf (instead of F0),

T ∗
n = −2

∫ ∞

−∞
log(R(x))dF̂ (x).

It can be shown using a martingale argument (see Section 5), that T ∗
n has the same asymptotic

null distribution as Tn.

2.2. Stochastic ordering among k distributions

Suppose now that we are given a random sample of size nj from the cdf Fj , for j = 1, . . . , k,
the k samples are independent and we want to test the null hypothesis H0: F1 = · · · = Fk versus
H1: F1 � · · · � Fk . We assume that the proportion wj = nj/n of observations in the j th sample
remains fixed as the total sample size n → ∞, with 0 < wj < 1 for all j = 1, . . . , k.

Adapting the approach of Section 2.1, we now consider the localized empirical likelihood
function

R(x) = sup{∏k
j=1 L(Fj ): Fj (x) = Fj+1(x), j = 1, . . . , k − 1}

sup{∏k
j=1 L(Fj ): Fj (x) ≤ Fj+1(x), j = 1, . . . , k − 1} , (3)

where, in each supremum, Fj is supported by the observations in the j th sample. Applying the
same parameterization used in (2), separately for each Fj , and making the same cancelation in
the numerator and denominator, it suffices to maximize

k∏
j=1

φ
nj F̂j (x)

j [1 − φj ]nj (1−F̂j (x)) (4)
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subject to the constraint 0 < φ1 = · · · = φk < 1, or 0 < φ1 ≤ · · · ≤ φk < 1, depending on whether
it is the numerator or the denominator of (3). Here F̂j is the empirical cdf based on the j th
sample. Under the first of these constraints, (4) is maximized by φj = F̂ (x), where F̂ is the
empirical cdf of the pooled sample. Under the second constraint, this is the classical bioassay
problem, as discussed in Robertson et al. [18], page 32, and it follows that (4) is maximized by

φj = Ew(φ̂|I)j ≡ F̃j (x),

where Ew(φ̂|I) is the weighted least squares projection of φ̂ = (F̂1(x), . . . , F̂k(x))T onto
I = {z ∈ R

k: z1 ≤ z2 ≤ · · · ≤ zk}, with weights wj . In passing, we mention that several algo-
rithms have been developed for computing this projection, including the pool-adjacent-violators
algorithm, see Robertson et al. [18]. We now have

R(x) =
k∏

j=1

[
F̂ (x)

F̃j (x)

]nj F̂j (x)[ 1 − F̂ (x)

1 − F̃j (x)

]nj (1−F̂j (x))

(5)

under the convention that any term raised to a zero power is set to 1.
To test H0 against H1, we propose the test statistic

Tn = −2
∫ ∞

−∞
log R(x)dF̂ (x). (6)

The following theorem gives the asymptotic null distribution of Tn.

Theorem 2. Under H0 and assuming that the common distribution function F is continuous,

Tn
d→

k∑
j=1

wj

∫ 1

0

(Ew[B(t)|I]j − B(t))2

t (1 − t)
dt, (7)

where B = (B1/
√

w1,B2/
√

w2, . . . ,Bk/
√

wk)
T , the processes B1,B2, . . . ,Bk are independent

standard Brownian bridges, and B = ∑k
j=1

√
wjBj .

Remark 2. For the two-sample case, it can be shown that the limiting distribution in the above
result coincides with that in the one-sample case (Theorem 1); the equivalence arises from the
fact that B = √

w2B1 − √
w1B2 is a standard Brownian bridge. Moreover, when testing against

the unrestricted alternative F1 �= F2, the limiting distribution of the corresponding test statistic
(see Einmahl and McKeague [4], Theorem 2a) is the same apart from the presence of the indicator
I (B(t) ≥ 0) in the integrand.

3. Numerical examples

In this section we discuss some numerical examples illustrating the proposed test for a compari-
son of two or more distributions developed in Section 2.2.
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Table 1. Selected critical points of Tn

Significance level α

k 0.01 0.05 0.10

2 3.185 1.821 1.288
3 4.128 2.613 1.943
4 4.663 3.107 2.404
5 5.144 3.470 2.701

To implement the proposed test we first need to obtain critical values for Tn. The null distribu-
tion of Tn is not tractable, even asymptotically, but it is asymptotically distribution free. We use
simulation to approximate selected critical values as provided in Table 1. These critical values
are based on 100 000 data sets distributed as N(0,1), with sample sizes of ni = 100, i = 1, . . . , k,
in each case. The (Fortran) program used to compute the critical values in Table 1 is available
online in the supplemental files.

3.1. Simulation study

Here we present the results of a simulation study designed to compare the performance of Tn

with the test statistic Sn of El Barmi and Mukerjee [6], which is defined as the maximum of a
sequence of (one-sided) two-sample Kolmogorov–Smirnov test statistics. As far as we know, Sn

is the only previously developed test statistic when k ≥ 3.
Tables 2 and 3 give the results for a variety of distributions and sample sizes, for k = 2 and

k = 3, respectively. In each case, 10 000 data sets were used to approximate the power at a
nominal level of α = 0.05, with critical values for Tn taken from Table 1; critical values for Sn

are obtained from its asymptotic distribution, which is available in a closed form. In all cases, Tn

has greater power than Sn and has better agreement with the nominal level of the test.

3.2. Lengths of rule of Roman Emperors

A recent article of Khmaladze, Brownrigg and Haywood [9] reached the interesting conclusion
that the lengths of rule of Roman Emperors were exponentially distributed, implying that their
reigns ceased unexpectedly (“brittle power”). It is also of interest to examine whether there were
changes in the distribution of rule lengths, especially during the “decline and fall” phase of the
empire. We use the list of n = 70 Roman Emperors from Augustus to Theodossius, covering
27 BC to 395 AD. Our analysis is based on the chronology of Parkin (see Khmaladze et al. [9]
for further details). The (Fortran) programs used for the two analyzes are available online in the
supplemental files.

First we consider whether there is an effect on duration of rule due to the Crisis of the Third
Century (235–284 AD), when the Roman Empire nearly collapsed under the pressure of civil
war (among other things!). Figure 1 shows the empirical survival function of durations of rule
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Table 2. Power comparison of tests for stochastic ordering of k = 2 distributions at level α = 0.05

Distributions n1 = 50, n2 = 30 n1 = 30, n2 = 50 n1 = 50, n2 = 50

F1 F2 Tn Sn Tn Sn Tn Sn

Uni(0,1) Uni(0,1) 0.064 0.038 0.051 0.045 0.051 0.036
Uni(0,1.1) Uni(0,1) 0.143 0.104 0.162 0.111 0.199 0.125
Uni(0,2) Uni(0,1) 0.911 0.816 0.912 0.818 0.908 0.815
Uni(0.1,1.1) Uni(0,1) 0.377 0.244 0.357 0.246 0.468 0.287

Exp(1) Exp(1) 0.063 0.037 0.048 0.041 0.047 0.036
Exp(1) Exp(1.1) 0.123 0.076 0.091 0.068 0.108 0.076
Exp(1) Exp(2) 0.782 0.716 0.813 0.718 0.909 0.815
0.1 + Exp(1) Exp(1) 0.207 0.118 0.137 0.105 0.195 0.127

N(0,1) N(0,1) 0.063 0.037 0.049 0.040 0.051 0.036
N(0.1,1) N(0,1) 0.132 0.081 0.100 0.079 0.122 0.079
N(0.5,1) N(0,1) 0.646 0.530 0.690 0.540 0.771 0.628
N(1,1) N(0,1) 0.992 0.975 0.991 0.975 0.993 0.976

for the Principate (27 BC–235 AD), which was the relatively stable period preceding the Crisis,
compared with the period after 235 AD; the sample sizes are n1 = 29 and n2 = 41, respectively.
The two distributions appear to be exponential, and the likelihood ratio test of stochastic ordering
under this assumption has p-value 0.195; the corresponding unrestricted likelihood-ratio test has
p-value 0.390. Applying our proposed test (with k = 2) to assess whether the duration of rule is

Table 3. Power comparison of tests for stochastic ordering of k = 3 distributions at level α = 0.05

Distributions n1 = n2 = n3 = 30 n1 = n2 = n3 = 50

F1 F2 F3 Tn Sn Tn Sn

Uni(0,1) Uni(0,1) Uni(0,1) 0.038 0.033 0.045 0.039
Uni(0,1.1) Uni(0,1) Uni(0,1) 0.455 0.370 0.740 0.647
Uni(0,1.1) Uni(0,1.1) Uni(0,1) 0.389 0.319 0.651 0.633
Uni(0.1,1.1) Uni(0,1) Uni(0,1) 0.948 0.884 0.999 0.885

Exp(1) Exp(1) Exp(1) 0.041 0.019 0.049 0.045
Exp(1) Exp(1) Exp(1.1) 0.076 0.033 0.098 0.067
Exp(1) Exp(1.1) Exp(1.1) 0.067 0.029 0.098 0.073
Exp(1) Exp(1.1) Exp(1.2) 0.116 0.046 0.171 0.109
Exp(1) Exp(1.25) Exp(1.5) 0.313 0.121 0.507 0.321

N(0,1) N(0,1) N(0,1) 0.042 0.035 0.049 0.035
N(0.1,1) N(0,1) N(0,1) 0.272 0.183 0.423 0.292
N(0.1,1) N(0.1,1) N(0,1) 0.246 0.151 0.393 0.249
N(0.5,1) N(0.25,1) N(0,1) 1.000 0.993 1.000 1.000
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Figure 1. Empirical survival functions of durations of rule of the first 70 Roman Emperors before 235 AD
(crisis = 0), and after 235 AD (crisis = 1).

stochastically shorter after the Principate, we obtain Tn = 0.3161 with a p-value of 0.424. This
compares with a p-value of 0.575 based on Sn.

The period 285–395 AD forms part of what is known as the Dominate, the despotic later phase
of the empire. Inspection of Figure 2 suggests that the exponential hypothesis is not tenable for
each separate period, so our nonparametric approach is more reasonable. The plot also suggests
that the rule lengths are stochastically ordered as Dominate � Principate � Crisis. Applying
our approach to formally test this hypothesis, we find that Tn has a p-value of 0.0002, compared
with a p-value of 0.0017 for Sn. Under the assumption of exponential distributions, the likelihood
ratio test has p-value less than 0.0007.

4. Discussion

In this paper we have developed a novel empirical likelihood approach to the important prob-
lem of nonparametrically testing for the presence of stochastic ordering based on k independent
samples. The proposed tests are computationally efficient to implement, and could be used with
massive data sets because they do not rely on the bootstrap or any other simulation technique,
and they reduce to a local test for an ordering of binomial probabilities, which only requires a
single sweep through the pooled data in the k groups.

Various extensions of the proposed tests are possible. In change-point problems, for example,
it is of interest to test whether there is a sudden change in the distribution of a sequence of
independent random variables X1, . . . ,Xn. Einmahl and McKeague [4] developed an EL-based
change-point test for the presence of an (unknown) change-point τ ∈ {2, . . . , n} such that

X1, . . . ,Xτ−1 ∼ F1 and Xτ , . . . ,Xn ∼ F2.
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Figure 2. Empirical survival functions of durations of rule during the Principate, 27 BC–235 AD
(period = 1), the Crisis, 235–284 AD (period = 2) and the Dominate, 284–395 AD (period = 3).

They only considered the unrestricted alternative F1 �= F2, but it is also of interest to consider
the ordered alternative F1 � F2. This can be done by extending the two-sample case to allow the
sample sizes to depend on an additional local parameter, namely t ∈ [1/n,1), with n1 = �nt�
and n2 = n − �nt�. The resulting test statistic has a limiting distribution of the same form as
in Theorem 2 of Einmahl and McKeague [4], involving the integral of a four-sided tied-down
Wiener process W0(t, y), except that the integrand now includes the indicator I (W0(t, y) ≥ 0).

Our approach also naturally extends to non-monotonic alternatives, namely to testing whether
F1,F2, . . . ,Fk are isotonic with respect to a quasi-order on {1,2, . . . , k}. A relation � on
{1,2, . . . , k} is a quasi-order if it is reflexive and transitive (and a partial order if, in addition,
it is antisymmetric). We say that F1,F2, . . . ,Fk are isotonic with respect to � if Fi � Fj when-
ever i � j . Examples of such ordered alternatives include F1 � Fi , i = 2, . . . , k (tree ordering)
and F1 � F2 � · · · � Fi0 ≺ Fi0+1 ≺ · · · ≺ Fk , where i0 is known (umbrella ordering). The local-
ized empirical likelihood (3) extends naturally to such ordered alternatives, the only difference
being that in φj = Ew(φ̂|I)j the set I is now the isotonic cone corresponding to �. For example,
in the case of tree ordering, the cone becomes I = {z ∈ R

k: z1 ≤ zi, i = 2, . . . , k}. The φj can
be computed using quadratic programming or algorithms described in Robertson, Wright and
Dykstra [18], one of the most general being the lower-sets algorithm. The limiting distribution of
the resulting test statistic is obtained by taking I in (7) as the isotonic cone corresponding to �.

An important and challenging problem for future research in this area would be to develop
EL-based tests for stochastic ordering based on censored data. EL methods are well developed
for the comparison of survival functions from right-censored data, see McKeague and Zhao [13,
14], but these methods only apply to omnibus alternatives. The complication in extending the
present tests to right-censored data arises because the EL ratio would then no longer have such
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an explicit form as in (5), and Lagrange multipliers would be involved. This extension is beyond
the scope of the present paper.

5. Proofs

Proof of Theorem 1. For 0 < ε < 1, let xε, yε be real numbers such that F0(xε) = 1 −F0(yε) =
ε/2. Then decompose the test statistic as Tn = T1n + T2n, where

T1n = −2
∫ yε

xε

log(R(x))dF0(x)

and

T2n = −2
∫

[xε,yε]c
log(R(x))dF0(x).

By appealing to Theorem 4.2 of Billingsley [2], note that, to complete the proof of the theorem,
it suffices to show that for fixed ε,

T1n
d→

∫ 1−ε/2

ε/2

B2(t)

t (1 − t)
I
(
B(t) ≥ 0

)
dt (8)

as n → ∞, and, for each δ > 0, that lim supn→∞ P(|T2n| ≥ δ) → 0 as ε → 0.
First consider T1n. Using the inequality | log(1 + y)− y + y2/2| ≤ |y|3/3 when |y| ≤ 1/2, the

Glivenko–Cantelli theorem and Donsker’s theorem, we have

lim sup
n→∞

sup
x∈[xε,yε]

∣∣∣∣log(R(x)) + n

2

(
F̂ (x) − F0(x)

)2
[

1

F̂ (x)
+ 1

1 − F̂ (x)

]
I [F̂ (x) ≤ F0(x)]

∣∣∣∣
≤ lim sup

n→∞
sup

x∈[xε,yε]
n

3
|F̂ (x) − F0(x)|3

[
1

F̂ (x)
+ 1

1 − F̂ (x)

]
= 0,

almost surely. Then, noting that F̂ (x) = 	̂(F0(x)), where 	̂ is the empirical cdf of Vi =
F0(Xi) ∼ U(0,1), i = 1, . . . , n, and changing variables in the integration to t = F0(x), it fol-
lows that

T1n =
∫ 1−ε/2

ε/2
n
(
	̂(t) − t

)2
[

1

	̂(t)
+ 1

1 − 	̂(t)

]
I
[√

n
(
	̂(t) − t

) ≤ 0
]

dt + op(1)

(9)

=
∫ 1−ε/2

ε/2

Û(t)2

t (1 − t)
I [Û (t) ≤ 0]dt + op(1),

where Û (t) = √
n(	̂(t)− t) is the uniform empirical process. Note that (for any fixed 0 < ε < 1)

the functional

f �→
∫ 1−ε/2

ε/2

f (t)2

t (1 − t)
I
(
f (t) ≤ 0

)
dt, f ∈ D[0,1],
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is continuous when the Skorohod space D[0,1] is equipped with the uniform norm. By Donsker’s
theorem, Û converges weakly to B in D[0,1], so applying the continuous mapping theorem to
the leading term in (9) establishes (8).

Finally we need to verify the claim concerning T2n. This follows immediately from a corre-
sponding result in Einmahl and McKeague [4], who considered the test of the null hypothesis
F = F0 versus the (omnibus) alternative F �= F0, with the same integral-type test statistic as Tn

except that the integrand does not vanish when F̂ (x) > F0(x). This completes the proof. �

Proof for Remark 1. The asymptotic distribution of T ∗
n can be obtained following the same

steps as the proof of Theorem 1, except that the leading term in T1n now becomes

∫ 1−ε/2

ε/2

Û(t)2

t (1 − t)
I [Û (t) ≤ 0]d	̂(t) =

∫ 1−ε/2

ε/2
V (t−)d	̂(t) + op(1),

where

V (t) = Û (t)2

t (1 − t)
I [Û (t) ≤ 0, ε/2 < t ≤ 1 − ε/2].

Note that

M(t) = 	̂(t) −
∫ t

0
[1 − 	̂(s−)](1 − s)−1 ds

is a martingale wrt to the natural filtration defined by 	̂, and its predictable quadratic variation
process is 〈M〉(t) = n−1

∫ t

0 [1 − 	̂(s−)](1 − s)−1 ds. Also note that V (t−) is a predictable pro-
cess because it is adapted and left-continuous. Write

∫ 1−ε/2

ε/2
V (t−)d	̂(t)

=
∫ 1−ε/2

ε/2
V (t−)dM(t) +

∫ 1−ε/2

ε/2
V (t−)[1 − 	̂(t−)](1 − t)−1 dt.

Using a basic property of martingale integrals, the second moment of the first term above is

E

∫ 1−ε/2

ε/2
V (t−)2 d〈M〉(t) = O(1/n),

so this term tends in probability to zero. The second term in the above display can be handled in
the same way as the main term T1n in the proof of Theorem 1, and has the same limit distribu-
tion. �

Proof of Theorem 2. The proof is similar to the proof of Theorem 1, so we only indicate the
main steps. Using the Taylor expansion of log(1 + y), as before, and the (uniform) consistency
of F̃j as an estimator of Fj = F (see, e.g., El Barmi and Mukerjee [6], page 253), for each fixed
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x, such that 0 < t = F(x) < 1, we have

−2 log R(x) =
k∑

j=1

nj

(
F̃j (x) − F̂ (x)

)2
[

1

F̃j (x)
+ 1

1 − F̃j (x)

]
+ op(1)

=
k∑

j=1

wj

[√n(F̃j (x) − F(x)) − √
n(F̂ (x) − F(x))]2

F(x)(1 − F(x))
+ op(1)

=
k∑

j=1

wj

(Ew[Û(t)|I]j − U(t))2

t (1 − t)
+ op(1)

d→
k∑

j=1

wj

(Ew[B(t)|I]j − B(t))2

t (1 − t)
,

where Û = (Û1/
√

w1, Û2/
√

w2, . . . , Ûk/
√

wk)
T , Ûj (t) = √

nj (F̂j (x) − F(x)) are independent

uniform empirical processes, and U = ∑k
j=1

√
wj Ûj . Donsker’s theorem and the continuous

mapping theorem have been used as before, but we have also used the fact that Ew(·|I) is a
continuous function on R

k . �
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