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We consider the problem of testing the parametric form of the volatility for high frequency data. It is
demonstrated that in the presence of microstructure noise commonly used tests do not keep the preassigned
level and are inconsistent. The concept of preaveraging is used to construct new tests, which do not suffer
from these drawbacks. These tests are based on a Kolmogorov–Smirnov or Cramér–von-Mises functional
of an integrated stochastic process, for which weak convergence to a (conditional) Gaussian process is
established. The finite sample properties of a bootstrap version of the test are illustrated by means of a
simulation study.
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1. Introduction

The volatility is a popular measure of risk in finance with numerous applications including the
construction of optimal portfolios, hedging and pricing of options. Therefore, estimating and
investigating the volatility and its dynamics is of particular importance in applications and nu-
merous models have been proposed for this purpose (see, e.g., Black and Scholes [6], Vasicek
[25], Cox et al. [9], Hull and White [17] and Heston [16] among many others). Because the mis-
specification of the form of the volatility can lead to serious consequences in the subsequent data
analysis numerous authors recommend to use goodness-of-fit tests for the postulated model (see,
e.g., Ait-Sahalia [3], Corradi and White [8], Dette et al. [11], Dette and Podolskij [10] among
others).

In the present paper, we consider statistical inference in the case of high frequency data, where
for an increasing sample size information about the whole path of the volatility is in principle
available. However, in concrete applications the situation is more complicated because of the
presence of microstructure noise, which is usually persistent in such data. This additional noise
is caused by many sources of the trading process such as discreteness of observations (see, e.g.,
Harris [14], [15]), bid-ask bounces or special properties of the trading mechanism (see, e.g.,
Black [5] or Amihud and Mendelson [4]). While microstructure noise has been taken into account
for the construction of estimators of the integrated volatility and other related quantities (see, e.g.,
Zhang et al. [26], Jacod et al. [19] or Podolskij and Vetter [22], [21]), properties of goodness-of-
fit tests in this context have not been investigated so far in the literature.

Consider for example the problem, where the process {Zt }t∈[0,1] is observed at the n time
points 0,1/n, . . . ,1. Under the assumption that Zt = Xt = σt dWt , Dette and Podolskij [10]
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Table 1. Simulated level of the test (1.1) for various choices of ω and θ , where the true volatility function
is σ 2(t, x) = θ + (1 − θ)x2 and the noise terms U are normally distributed with mean zero and variance
ω2. In all cases, the sample size is given by n = 16 384

ω 0.01 0.0025 0.000625

θ /α 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

1 0.01 0.02 0.038 0.023 0.058 0.104 0.024 0.047 0.101
0.75 0.004 0.01 0.02 0.004 0.009 0.022 0.003 0.007 0.015
0.5 0.003 0.006 0.013 0.002 0.004 0.014 0.000 0.000 0.002
0.25 0.002 0.004 0.015 0.001 0.002 0.003 0.001 0.003 0.004
0 0.000 0.005 0.019 0.003 0.006 0.015 0.004 0.007 0.016

propose to reject the hypothesis of a constant diffusion coefficient, that is, H0: σ 2
t = σ 2(t,Xt ) =

σ 2, whenever

Tn(Z1, . . . ,Zn) = √
n sup

t∈[0,1]

∣∣∣∣
∑�nt�

k=1 |Zk/n − Z(k−1)/n|2 − t
∑n

k=1 |Zk/n − Z(k−1)/n|2√
2
∑n

k=1 |Zk/n − Z(k−1)/n|2
∣∣∣∣

(1.1)
> c1−α,

where c1−α denotes the (1 − α)-quantile of the supremum of a Brownian Bridge. Now consider
the situation, where microstructure noise is present, which is usually modeled by an additional
additive component, that is

Zi/n = Xi/n + Ui/n, i = 1, . . . , n, (1.2)

where {Ui/n | i = 1, . . . , n} denotes a triangular array of independent random variables with
mean 0 and variance ω2. In Table 1, we show the finite sample behaviour of the test (1.1)
for the hypothesis of a constant volatility if σ 2

t = σ 2(t, x) = θ + (1 − θ)x2 (note that the
case θ = 1 corresponds to the null hypothesis). We observe that the test keeps its preassigned
level only in the case where ω is rather small. In most cases, the nominal level is clearly un-
derestimated. On the other hand, the test is not able to detect any alternative. An intuitive
explanation for this behaviour is that in the presence of microstructure noise the increments
Zi/n − Z(i−1)/n = Ui/n − U(i−1)/n + Op(1/n) are dominated by the noise variables. This
leads to inconsistent estimates of the integrated volatility as pointed out in Zhang et al. [26].
More precisely, a straightforward calculation shows that under microstructure noise the statis-
tic Tn(Z1, . . . ,Zn) shows the same asymptotic behavior as the statistic Tn(U1, . . . ,Un), which
converges weakly to

√
λ/2 supt∈[0,1] |Bt |, no matter if the null hypothesis is valid or not. Here

Bt denotes a Brownian bridge and λ = E[(Uk/n/ω)4]. This means that in the presence of mi-
crostructure noise the test (1.1) has asymptotic level α if and only if λ = 2. In all other cases, the
test does not keep its preassigned level. Moreover, because the asymptotic properties under null
hypothesis and alternative are the same, the test is not consistent.

The present paper is devoted to the problem of constructing a consistent asymptotic level
α test for a general parametric form of the volatility in the presence of microstructure noise.
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In Sections 2 and 3, we present the basic model and introduce a stochastic process which can
be used to test parametric hypotheses about the form of the volatility in a noisy framework. Our
main results are presented in Section 4, where we prove stable convergence of two such processes
which form the basis of the proposed goodness-of-fit tests. Section 5 deals with the problem of
testing nonlinear hypotheses for the volatility, whereas in Section 6 the finite sample properties
of a bootstrap version of the new tests are investigated. All proofs of the results are presented in
the Appendix.

2. Testing parametric hypotheses for the volatility

Suppose that the process X = (Xt )t admits the representation

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs, (2.1)

where W = (Wt )t is a standard Brownian motion and the drift process a and the volatility process
σ satisfy some weak regularity conditions, which will be specified later. Furthermore, we assume
that the process can be observed at discrete points on a fixed time interval, say [0,1].

Various assumptions on the structure of the volatility process have been proposed in the lit-
erature. Among such models, a large class involves the case where σ is defined to be a local
volatility process, thus merely a function of time and state (see, e.g., Black and Scholes [6], Va-
sicek [25], Cox et al. [9], Chan et al. [7], Ait-Sahalia [3] or Ahn and Gao [2] among many others).
Because an appropriate modeling of the volatility is of particular importance for the construction
of portfolios, hedging and pricing, many authors point out that the postulated model should be
validated by an appropriate goodness-of-fit test (see, e.g., Ait-Sahalia [3] or Corradi and White
[8]). In several cases, the hypothesis for the parametric form of the volatility is linear and one
has to consider the following two situations:

H0: σ 2
t = σ 2(t,Xt ) =

d∑
i=1

θiσ
2
i (t,Xt ) ∀t a.s. or

(2.2)

H̄0: σt = σ(t,Xt ) =
d∑

i=1

θ̄i σ̄i (t,Xt ) ∀t a.s.,

where the functions σ1, . . . , σd (or σ̄1, . . . , σ̄d ) are known and the parameters θ1, . . . , θd (or
θ̄1, . . . , θ̄d ) are unknown, but assumed to ensure σ 2(t,Xt ) ≥ 0 (or σ(t,Xt ) ≥ 0) almost surely.
Other models involve volatility functions, where the parameters enter nonlinearly (see Ait-
Sahalia [3]) and the corresponding hypotheses will be considered later in Section 5, because
the basic concepts are easier to explain in the linear context.

Let us focus on the problem involving H0 for the moment, as the other testing problem can
be treated in the same way. Dette and Podolskij [10] propose to construct a test statistic using an
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empirical version of the stochastic process

Nt =
∫ t

0

{
σ 2

s −
d∑

j=1

θmin
j σ 2

j (s,Xs)

}
ds, θmin = arg min

θ∈Rd

∫ 1

0

{
σ 2

s −
d∑

j=1

θjσ
2
j (s,Xs)

}2

ds.

Thus, one uses the L2 distance to determine the best approximation to the unknown volatility
process σ 2 by a linear combination of the given functions σ 2

1 , . . . , σ 2
d . It can easily be seen

that H0 is equivalent to Nt = 0 ∀t a.s., and a well-known result from Hilbert space theory (see
Achieser [1]) implies

θmin = D−1C, thus Nt = B0
t − BT

t D−1C, (2.3)

where

B0
t =

∫ t

0
σ 2

s ds and Bi
t =

∫ t

0
σ 2

i (s,Xs)ds for i = 1, . . . , d,

and D and C denote a d × d-matrix and a d-dimensional vector, respectively, with

Dij =
∫ 1

0
σ 2

i (s,Xs)σ
2
j (s,Xs)ds and Ci =

∫ 1

0
σ 2

s σ 2
i (s,Xs)ds.

In practice, one does not observe the entire path of the diffusion process X = (Xt )t and it
is therefore necessary to define an empirical version based on appropriate estimators for the
quantities in (2.3). Let us briefly discuss the solution to the problem in the case, where X can
be observed without further restrictions. Based on the decomposition above, Dette and Podolskij
[10] propose to define an empirical version Ñt = B̃0

t − B̃T
t D̃−1C̃, where one uses a Riemann

approximation of each integral, choosing n|Xk/n − X(k−1)/n|2 as a local estimate for σ 2
(k−1)/n.

Thus,

D̃ij = 1

n

n∑
k=1

σ 2
i

(
k

n
,Xk/n

)
σ 2

j

(
k

n
,Xk/n

)
for i, j = 1, . . . , d, (2.4)

C̃i =
n∑

k=1

σ 2
i

(
k − 1

n
,X(k−1)/n

)
|Xk/n − X(k−1)/n|2 for i = 1, . . . , d,

and the quantities B̃0
t and B̃t = (B̃1

t , . . . , B̃d
t )T are given by

B̃0
t =

�nt�∑
k=1

|Xk/n − X(k−1)/n|2, B̃i
t = 1

n

�nt�∑
k=1

σ 2
i

(
k

n
,Xk/n

)
for i = 1, . . . , d. (2.5)

In this context, one can prove a (stable) central limit theorem for the process (Ñt − Nt)t with
the optimal rate of convergence n−1/2, from which one may assess the distribution of suitable
test statistics. For example, if d = 1, σ 2

1 (t,Xt ) = 1, the hypothesis H0 reduces to the hypothesis



Model checks for the volatility 1425

of constant volatility considered in the introduction, and the Kolmogorov–Smirnov statistic (1.1)
converges to the supremum of a Brownian bridge.

3. Assumptions and definitions

Since we are dealing with microstructure noise, we have to define a process Z = (Zt )t which
represents the noisy observations. Typically one relates Z to the underlying Ito semimartingale
X through the equation Zt = Xt +Ut for some noise process U . We restrict ourselves to the case
of i.i.d. noise, in which the process U = (Ut )t is independent of X and satisfies

E[Ut ] = 0, E[U2
t ] = ω2, E[U4

t ] < ∞ (3.1)

with a density having compact support. A precise definition of a proper probability space that
accommodates Z can be found in Jacod et al. [19]. We assume further that Z is observed at
times 0,1/n, . . . ,1. As pointed out in the introduction, the corresponding test based on Ñt is
not consistent for the hypothesis H0 in the presence of such microstructure noise. Thus, our aim
is to define appropriate estimators for the unknown quantities in (2.3) in this noisy framework,
from which a more adequate statistic N̂t can be constructed. Note that in contrast to the previous
setting we do not only need a local estimator for the unknown volatility function σ 2, but also for
the (unobservable) path of X itself.

The natural approach in order to construct estimators for the volatility is to use increments of
Z as in the no-noise case, even though a single increment does not provide sufficient information
about σ 2. This problem can be overcome by applying the idea of pre-averaging, which was
invented in Podolskij and Vetter [22] and is based on moving averages of Z. To this end, we
choose first a sequence mn, such that

mn√
n

= κ + o(n−1/4) (3.2)

for some κ > 0, and a nonzero real-valued function g : R → R, which vanishes outside of the
interval (0,1), is continuous and piecewise C1 and has a piecewise Lipschitz derivative g′. We
associate with g (and n) the following real valued numbers and functions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gn
j = g

(
j

mn

)
, g′n

j = gn
j − gn

j+1, ψ1 =
∫ 1

0
(g′(s))2 ds, ψ2 =

∫ 1

0
(g(s))2 ds,

s ∈ [0,1] �→ φ1(s) =
∫ 1

s

g′(u)g′(u − s)du, φ2(s) =
∫ 1

s

g(u)g(u − s)du,

i, j = 1,2: 
ij =
∫ 1

0
φi(s)φj (s)ds.

(3.3)
Finally, we define for an arbitrary process V the preaveraged statistic

V
n

k =
mn∑
j=1

gn
j �n

k+jV , (3.4)
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where �n
jV = Vj/n − V(j−1)/n. Due to the assumptions on g the pre-averaged statistic Z

n

k re-
duces the impact of the noise, but still provides information about the increments of X (and thus
locally about σ ). Precisely, we have

X
n

k = Op

(√
mn

n

)
and U

n

k = Op

(√
1

mn

)
, (3.5)

and by definition of mn both terms are of the same order. This means in particular that statistics
based on Z

n

k are in general biased when used for volatility estimation, but it turns out that a larger
choice of mn results in a worse rate of convergence. See Podolskij and Vetter [22] for details.

An estimator for Xk/n can be constructed in a similar way: We set

X̂k/n = 1

mn

mn∑
j=1

Z(k+j)/n, (3.6)

and it is easy to see that this procedure reduces the impact of the noise variables around time k
n

,
but still provides information about the latent price Xk/n, since the path of X is Hölder continuous
of any order α < 1/2. Also one observes essentially from (3.5) that the auxiliary sequence mn is
chosen in the optimal way, giving the smallest possible size for the approximation error.

As pointed out before, we need additional assumptions on the process X as well as on the
given basis functions in H0 and H̄0, respectively. Since the conditions on σ 2

i and σ̄i are similar,
we will restrict ourselves to the first case only.

It is required that the functions σ 2
1 , . . . , σ 2

d are linearly independent and that each σ 2
i is twice

continuously differentiable. Moreover, we assume that E[|det(D)|−β ] < ∞ for some β > 0.
Regarding the various processes in X, the assumptions are as weak as possible when testing

for H0. We simply have to ensure that the process in (2.1) is well defined, which follows if we
assume that a is locally bounded and predictable and that σ is càdlàg (see Jacod and Shiryaev [20]
or Revuz and Yor [23]). When working with H̄0 we propose additionally that the true volatility
process σ is almost surely positive and that is has a representation of the form (2.1) as well,
namely that it satisfies

σt = σ0 +
∫ t

0
a′
s ds +

∫ t

0
σ ′

s dWs +
∫ t

0
v′
s dVs,

where a′, σ ′ and v′ are adapted càdlàg processes, with a′ also being predictable and locally
bounded, and V is a second Brownian motion, independent of W . Moreover, a is supposed to be
càglàg.

4. Goodness-of-fit tests addressing microstructure noise

We start with the construction of a test for the hypothesis H0 again. Local estimators for the
volatility can now be obtained from |Zn

k |2, but we have seen before that this quantity is not
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an unbiased estimate for σ 2
k/n and that it has a different stochastic order than the increments

Xk/n − X(k−1)/n in the no-noise case. A corrected statistic (see Jacod et al. [19]) is given by

σ̂ 2
k/n = n1/2

κψ2

(
|Zn

k |2 − n−1/2 ψ1

κ
ω̂2

n

)
with ω̂2

n = 1

2n

n∑
i=1

|�n
i Z|2, (4.1)

where the latter term is a consistent estimator for ω2, see Zhang et al. [26]. Mimicking the
procedure from the no-noise case presented in Section 2, we set

D̂ij = 1

n

n−mn∑
k=1

σ 2
i

(
k

n
, X̂k/n

)
σ 2

j

(
k

n
, X̂k/n

)
and Ĉi = 1

n

n−mn∑
k=1

σ 2
i

(
k

n
, X̂k/n

)
σ̂ 2

k/n (4.2)

as well as

B̂0
t = 1

n

�nt�−mn∑
k=1

σ̂ 2
k/n and B̂i

t = 1

n

�nt�−mn∑
k=1

σ 2
i

(
k

n
, X̂k/n

)
(4.3)

for i, j = 1, . . . , d . We define at last the process

N̂t = B̂0
t − B̂T

t D̂−1Ĉ, (4.4)

which turns out to be an appropriate estimate of the process {Nt }t∈[0,1]. Our first result specifies
the asymptotic properties of the process {An(t)}t∈[0,1] with An(t) = n1/4(N̂t − Nt).

Theorem 1. If the assumptions stated in the previous sections are satisfied, the process
(An(t))t∈[0,1] converges weakly in D[0,1] to a mean zero process (A(t))t∈[0,1]. Conditionally
on F the limiting process is Gaussian, and its finite dimensional distributions coincide with the
conditional (with respect to F ) finite dimensional distributions of the process

{
γV

(
I {V ≤ t}−BT

t D−1h(V,XV )
)−(∫ t

0
γs ds−BT

t D−1
∫ 1

0
γsh(s,Xs)ds

)}
t∈[0,1]

, (4.5)

where V ∼ U [0,1], h(s,Xs) = (σ 2
1 (s,Xs), . . . , σ

2
d (s,Xs))

T and

γ 2
s = 4

ψ2
2

(

22κσ 4

s + 2
12
σ 2

s ω2

κ
+ 
11

ω4

κ3

)
. (4.6)

We see from Theorem 3 in the Appendix that the asymptotics is only driven by B̂0
t and Ĉ. The

error due to the estimation of Bt and D is of small order, which explains the particular form of
the limiting distribution. Note also that the rate of convergence n−1/4 is optimal for this problem,
since it is already optimal for the estimation of B0

t even in a parametric setting (cf. Gloter and
Jacod [13]).
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In order to construct a test statistic based on Theorem 1, we have to define an appropriate
estimator for the conditional variance of the process {A(t)}t∈[0,1], which is given by

s2
t =

∫ t

0
γ 2
s ds − 2BT

t D−1
∫ t

0
γ 2
s g(s,Xs)ds + BT

t D−1
∫ 1

0
γ 2
s g(s,Xs)g

T (s,Xs)dsD−1Bt .

Obviously, we use B̂t and D̂ as the empirical counterparts for Bt and D. In order to obtain
estimates for the other random elements of s2

t , note that γ 2
s plays a key role in Jacod et al. [19]

as well, where it is the (local) conditional variance in a central limit theorem for n1/4(B̂0
t − B0

t ).
Thus, in accordance to that paper we define

�k = 4
22

3κψ4
2

|Zn

k |4 + n−1/2 8

κ2

(

12

ψ3
2

− 
22ψ1

ψ4
2

)
|Zn

k |2ω̂2

+ n−1 4

κ3

(

11

ψ2
2

− 2
12ψ1

ψ3
2

+ 
22ψ
2
1

ψ4
2

)
ω̂4,

which is a local estimator for the process γ 2 after rescaling. Thus, we set

ĝ0(t) =
�nt�−mn∑

k=1

�k
P−→

∫ t

0
γ 2
s ds,

gi(t) =
�nt�−mn∑

k=1

�kσ
2
i

(
k − 1

n
, X̂(k−1)/n

)
P−→

∫ t

0
γ 2
s σ 2

i (s,Xs)ds,

ĝij =
n∑

k=1

�kσ
2
i

(
k − 1

n
, X̂(k−1)/n

)
σ 2

j

(
k − 1

n
, X̂(k−1)/n

)
P−→

∫ 1

0
γ 2
s σ 2

i (s,Xs)σ
2
j (s,Xs)ds.

Inserting these estimators into the corresponding elements of s2
t gives the consistent estimator

ŝ2
t = ĝ0(t) − 2B̂T

t D̂−1ĝ(t) + B̂T
t D̂−1ĜD̂−1B̂t , (4.7)

where ĝ(t) = (ĝ1(t), . . . , ĝd (t))T and Ĝ = (ĝij )
d
i,j=1. A consistent test for the hypothesis H0

is now obtained by rejecting the null hypothesis for large values of Kolmogorov–Smirnov or
Cramér–van-Mises functional of the process {n1/4N̂t /ŝt }t∈[0,1]. Note however that the distribu-
tion of this process is not feasible in general: even though for each fixed t the statistic n1/4N̂t /ŝt
converges weakly to a standard normal distribution, the covariance structure of the process typ-
ically depends on the entire (unobservable) process (Xt )t . For this reason, we will later use a
bootstrap procedure to obtain critical values.

In principle, a similar approach can be used to construct a test for the hypothesis H̄0. However,
in this case things change considerably. Dette and Podolskij [10] restate this hypothesis as Mt = 0
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∀t a.s., where

Mt =
∫ t

0

{
σs −

d∑
j=1

θ̄min
j σ̄j (s,Xs)

}
ds,

(4.8)

θ̄min = arg min
θ̄∈Rd

∫ 1

0

{
σs −

d∑
j=1

θ̄j σ̄j (s,Xs)

}2

ds.

Obviously, we have an analogous representation as in (2.3), namely Mt = R0
t −RT

t Q−1S, where

R0
t =

∫ t

0
σs ds and Ri

t =
∫ t

0
σ̄i (s,Xs)ds for i = 1, . . . , d,

and Q and S are a d × d-matrix and a d-dimensional vector, respectively, with

Qij =
∫ 1

0
σ̄i (s,Xs)σ̄j (s,Xs)ds and Si =

∫ 1

0
σsσ̄i(s,Xs)ds.

However, an appropriate definition of an empirical version of the form M̂t = R̂0
t − R̂T

t Q̂−1Ŝ

requires some less obvious modifications, because local estimators for σs are more difficult to
obtain in this setting. Using a preaveraged estimator of the form |Zn

k | again causes an intrinsic
bias, but due to the absolute value (instead of the square as in the previous setting) its correction
turns out to be impossible at the optimal rate. However, we can see from (3.5) that using in (3.2)
a sequence of a larger magnitude than n1/2 reduces the impact of the noise terms in Z

n

k . This
modification makes inference about σs possible, though resulting in a worse rate of convergence.
To be precise, we fix some δ > 1

6 and choose ln such that

ln

n1/2+δ
= ρ + o

(
n−(1/4+δ/2)

)
for some ρ > 0. Using the sequence ln instead of mn, we define all quantities from (3.3) to (3.6)
in the straightforward way. Next, we set

σ̄k/n = n1/4−δ/2 1√
ρψ2μ1

|Zn

k |

as a local estimator for σk/n, where μ1 denotes the first absolute moment of a standard normal
distribution. In a similar way as before,

Q̂ij = 1

n

n−ln∑
k=1

σ̄i

(
k

n
, X̂k/n

)
σ̄j

(
k

n
, X̂k/n

)
and Ŝi = 1

n

n−ln∑
k=1

σ̄i

(
k

n
, X̂k/n

)
σ̄k/n

as well as

R̂0
t = 1

n

�nt�−ln∑
k=1

σ̄k/n and R̂i
t = 1

n

�nt�−ln∑
k=1

σ̄i

(
k

n
, X̂k/n

)
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for i, j = 1, . . . , d. Finally, we define Bn(t) = n1/4−δ/2(M̂t − Mt) for any t ∈ [0,1] and obtain
the following result.

Theorem 2. If the assumptions stated in the previous sections are satisfied, the process
(Bn(t))t∈[0,1] converges weakly in D[0,1] to a mean zero process (B(t))t∈[0,1]. Conditionally
on F the limiting process is Gaussian, and its finite dimensional distributions coincide with the
conditional (with respect to F ) finite dimensional distributions of the process

{
γ̄V

(
I {V ≤ t}−RT

t Q−1h̄(V ,XV )
)−(∫ t

0
γ̄s ds−RT

t Q−1
∫ 1

0
γ̄s h̄(s,Xs)ds

)}
t∈[0,1]

, (4.9)

where V ∼ U [0,1], h̄(s,Xs) = (σ̄1(s,Xs), . . . , σ̄d(s,Xs))
T and

γ̄ 2
s = 2ρ�

μ2
1

σ 2
s , � =

∫ 1

0
ξ(s)ds, ξ(s) = f

(
φ2(s)

ψ2

)
,

(4.10)

f (u) = 2

π

(
u arcsin(u) +

√
1 − u2 − 1

)
.

The estimation of the conditional variance of the process {B(t)}t∈[0,1],

r2
t =

∫ t

0
γ̄ 2
s ds − 2RT

t Q−1
∫ t

0
γ̄ 2
s h̄(s,Xs)ds + RT

t Q−1
∫ 1

0
γ̄ 2
s h̄(s,Xs)ḡ

T (s,Xs)dsQ−1Rt,

becomes easier in this context, as the order of ln is chosen in such a way that no characteristics
of U are involved anymore. A natural estimator for σ 2

k/n becomes

�̄k = n−(1/2+δ) 2�

ψ2μ
2
1

|Zn

k |2,

thus

ĥ0(t) =
�nt�−ln∑

k=1

�̄k
P−→

∫ t

0
γ̄ 2
s ds,

ĥi(t) =
�nt�−ln∑

k=1

�̄kσ̄i

(
k − 1

n
, X̂(k−1)/n

)
P−→

∫ t

0
γ̄ 2
s σ̄i (s,Xs)ds,

ĥij =
n∑

k=1

�̄kσ̄i

(
k − 1

n
, X̂(k−1)/n

)
σ̄j

(
k − 1

n
, X̂(k−1)/n

)
P−→

∫ 1

0
γ̄ 2
s σ̄i (s,Xs)σ̄j (s,Xs)ds,

and consequently a consistent estimator r̂2
t for the conditional variance is given by

r̂2
t = ĥ0(t) − 2R̂T

t Q̂−1ĥ(t) + R̂T
t Q̂−1Ĥ Q̂−1R̂t , (4.11)
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where ĥ(t) = (ĥ1(t), . . . , ĥd (t))T and Ĥ = (ĥij )
d
i,j=1. A consistent test for the hypothesis H̄0 is

now obtained by rejecting the null hypothesis for large values of the Kolmogorov–Smirnov or
Cramér–van-Mises functional of the process {n1/4−δ/2M̂t/r̂t }t∈[0,1].

Note that one knows from previous work that it is neither necessary to define X to be an
Ito semimartingale with continuous paths as in (2.1) nor to model the noise terms U as being
independent and identically distributed to obtain similar results as in Theorems 1 and 2. In fact,
for an underlying Ito semimartingale exhibiting jumps one can use bipower-type estimators as
discussed in Podolskij and Vetter [21] in order to define an estimator closely related to B̂0

t .
Moreover, it has been argued in Jacod et al. [19] that even for a noise process with a càdlàg
variance a similar theory as presented in this paper applies.

5. Nonlinear hypotheses

In this section, we briefly discuss the case of a nonlinear hypothesis

H0: σ 2
t = σ 2(t,Xt ) = σ 2(t,Xt , θ) ∀t a.s., (5.1)

where θ ∈ � ⊂ R
d denotes the unknown parameter and σ 2 satisfies some differentiability as-

sumption. As before, we restate H0 as Nt = 0 ∀t a.s., where Nt is the difference between
the true integrated volatility and its best L2-approximation from the parametric class. There-
fore, we set Nt = B0

t − Bt(θ0) with B0
t from above and Bt(θ) = ∫ t

0 σ 2(s,Xs, θ)ds. We have
θ0 = arg minθ∈� f (θ) with

f (θ) =
∫ t

0
{σ 2

s − σ 2(s,Xs, θ)}2 ds.

In order to obtain some N̂t , we use B̂0
t from (4.3) and need estimates for Bt(θ) and f (θ). We set

B̂t (θ) = 1

n

�nt�−mn∑
k=1

σ 2
(

k

n
, X̂k/n, θ

)
and fn(θ) = 1

n

n−mn∑
k=1

{
σ̂ 2

k/n − σ 2
(

k

n
, X̂k/n, θ

)}2

, (5.2)

and with θ̂ = arg minθ∈� fn(θ) we define N̂t = B̂0
t − B̂t (θ̂ ).

When deriving the asymptotic distribution of n1/4(N̂t − Nt), the difference compared to the
previous section regards only B̂t (θ0) − Bt(θ̂). In the following, we will give some hints that
explain why that discrepancy is actually quite small. In fact, we will show that

B̂t (θ̂ ) − Bt(θ0) = −
∫ t

0

(
∂

∂θ
σ 2(s,Xs, θ)

∣∣∣∣
θ=θ0

)T

ds(f ′′(θ0))
−1f ′

n(θ0) + op(n−1/4) (5.3)

holds. Thus there is a one-to-one correspondence to the linear case, as the first two quantities are
analogues of BT

t and D−1, whereas −f ′
n(θ0) plays the role of Ĉ − C. Consequently, the process

n1/4(N̂t − Nt) exhibits a similar asymptotic behavior as in the linear case.
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In order to prove (5.3), note from similar arguments as in the proof of Theorem 3 that

B̂t (θ̂ ) − Bt(θ0) =
∫ t

0
{σ 2(t,Xt , θ̂ ) − σ 2(t,Xt , θ0)}ds + op(n−1/4). (5.4)

Under common regularity conditions for nonlinear regression (see Gallant [12] or Seber and
Wild [24]), θ0 is the unique minimum of f and attained at an interior point of �. It is easy to see
that θ̂ → θ0 in probability in this case, and thus we can assume that θ̂ satisfies f ′

n(θ̂) = 0. This
implies

0 = f ′
n(θ̂) = f ′

n(θ0) + f ′′
n (θ̃)(θ̂ − θ0) ⇔ θ̂ − θ0 = −(f ′′

n (θ̃))−1f ′
n(θ0)

for an appropriate choice of θ̃ . We have θ̃ → θ0 in probability as well, and therefore it can be
assumed that the d × d-dimensional matrix f ′′

n (θ̃ ) is positive definite and that the difference
‖f ′′

n (θ̃ ) − f ′′
n (θ0)‖ is small. Furthermore, f ′′

n (θ0) takes the form

f ′′
n (θ0) = 2

(
1

n
ST S − 1

n

n−mn∑
k=1

{
σ̂ 2

k/n − σ 2
(

k

n
, X̂k/n, θ0

)}
Hk

)
,

where the (n − mn) × d matrix S and the Hessian Hk are given by

S =
(

∂

∂θ
σ 2

(
k

n
, X̂k/n, θ

)∣∣∣∣
θ=θ0

)
k=1,...,n−mn

and Hk = ∂2

∂θ2
σ 2

(
k

n
,Xk/n, θ

)∣∣∣∣
θ=θ0

.

From the same arguments that lead to (5.4), we have f ′′
n (θ0) = f ′′(θ0) + Op(n−1/4), where

f ′′(θ0) = 2
∫ 1

0

(
∂

∂θ
σ 2(s,Xs, θ)

∣∣∣∣
θ=θ0

)T(
∂

∂θ
σ 2(s,Xs, θ)

∣∣∣∣
θ=θ0

)
ds

− 2
∫ 1

0

{
σ 2

s − σ 2(s,Xs, θ0)

}
∂2

∂θ2
σ 2(s,Xs, θ)

∣∣∣∣
θ=θ0

ds

is positive definite. Note that the second term in this sum vanishes, when either the hypothesis is
linear (since the Hessian is zero) or the null hypothesis is valid (since σ 2

s equals σ 2(s,Xs, θ0)).
In these cases the matrix f ′′(θ0) takes precisely the same form as D in the linear setting. In any
case, f ′′(θ0) is of order Op(1).

Regarding f ′
n(θ0), a similar calculation as given in the Appendix plus the definition of θ0 yield

−f ′
n(θ0) = 2

(
1

n

n−mn∑
k=1

σ̂ 2
k/n

∂

∂θ
σ 2

(
k

n
, X̂k/n, θ

)∣∣∣∣
θ=θ0

−
∫ 1

0
σ 2

s

∂

∂θ
σ 2(s,Xs, θ)

∣∣∣∣
θ=θ0

ds

)

+ op(n−1/4),

and thus f ′
n(θ0) is of order Op(n−1/4), just as Ĉ − C. We conclude that θ̂ − θ0 = Op(n−1/4) as

well, and a Taylor expansion gives (5.3).
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Table 2. Simulated level of the bootstrap test proposed by Dette and Podolskij [10],
where the volatility function equals H0: σ 2(t, x) = θx2, but the observations are
corrupted with normally distributed noise having variance ω2

n 256 1024

ω/α 0.025 0.05 0.1 0.025 0.05 0.1

0.001 0.033 0.062 0.111 0.333 0.415 0.512
0.002 0.158 0.243 0.324 0.810 0.862 0.907
0.004 0.392 0.518 0.650 0.993 0.996 0.998
0.005 0.497 0.628 0.742 0.991 0.994 0.998
0.01 0.596 0.754 0.873 0.987 0.998 0.999

6. Simulation study

We have indicated in the introduction that the original test for a constant volatility from the
noise-free model loses its asymptotic properties in the presence of noise. Unsurprisingly, for a
smaller variance of the noise variables, the data look more like observations from a continuous
semimartingale and thus the test statistics behaves roughly in the same way as before, provided
that the sample size is not too large. On the other hand, for a large variance of the error terms
these are dominating, and thus the whole procedure breaks down even for small sample sizes.
The same problem arises if the variance of the error is small but the sample size is large (see
the discussion in the Introduction). We start with a further example simulating the level of the
bootstrap test proposed by Dette and Podolskij [10] for a parametric hypothesis, assessing its
quality for various sample sizes n and different variances ω2.

Precisely, we have used that test for testing the hypothesis H0: σ 2(t, x) = θx2, where b(t, x) =
0.1x. The results are obtained from 1000 simulation runs and 500 bootstrap replications and
displayed in Table 2 for various sample sizes and standard deviations ω of the noise process. We
observe that for n = 256 and a (small) standard deviation of ω = 0.001 the test does roughly
keep its asymptotic level, whereas it cannot be used at all when the variance becomes larger.
Moreover, even if the variance is small but the sample size is increased, the test does not keep
its pre-assigned level (see the results for ω = 0.001 and n = 1024 in Table 2). Thus, in practice
the application of testing procedures addressing the problem of microstructure noise is strictly
recommended.

In the following section, we illustrate the finite sample properties of a bootstrap version of
the Kolmogorov–Smirnov test based on the processes investigated in Sections 4 and 5. Since
the stochastic order of |�n

i Z| is basically determined by the maximum of n−1/2 and ω (which
are the orders of |�n

i X| and |�n
i U |, respectively), we kept nω2 = 0.1024 fixed in order to have

comparable results for different sample sizes n. The regularisation parameters κ and ρ were set
to be 1/2 each. All simulation results presented in the following paragraphs are based on 1000
simulation runs and 500 bootstrap replications (if the bootstrap is applied to estimate critical
values).

For all testing problems discussed below, we have not used exactly the statistics N̂t and M̂t ,
but related versions accounting for finite sample adjustments. Following Jacod et al. [19], where
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Table 3. Simulated nominal level of the test, which rejects the null
hypothesis of homoscedasticity for a large value of sup |An(t)/ŝt |,
using the critical values from the asymptotic theory. The variance
of the noise process is defined by nω2 = 0.1024

n/α 0.025 0.05 0.1

256 0.008 0.022 0.058
1024 0.007 0.023 0.062
4096 0.013 0.029 0.079

16 384 0.017 0.038 0.077

it has been shown that finite sample corrections improve the behaviour of the estimate B̂0
t (and

presumably of Ĉ as well) substantially, we have replaced the quantities ψi and 
ij in (3.3) by
certain numbers ψn

i and 
n
ij , which constitute the “true” quantities for finite samples, but are

replaced by their limits ψi and 
ij in the asymptotics. See Jacod et al. [19] for details.

6.1. Testing for homoscedasticity

In the problem of testing for homoscedasticity the limiting process A(t)t∈[0,1] has an extremely
simple form, when the null hypothesis of a constant volatility holds. In fact, the finite dimen-
sional distributions of the process (A(t))t∈[0,1] coincide with those of a rescaled Brownian bridge,
thus (An(t)/ŝt )t∈[0,1] converges weakly to (Bt )t∈[0,1]. We have investigated the properties of the
Kolmogorov–Smirnov test for different sample sizes n, where the noise satisfies U ∼ N (0,ω2)

and the drift function is again given by b(t, x) = 0.1x. A similar test can be constructed us-
ing Theorem 2, but the corresponding results are omitted for the sake of brevity as the rate of
convergence in this case becomes worse.

In Table 3, we present the simulated level of the Kolmogorov–Smirnov test using the critical
values from the asymptotic distribution. It can be seen that the asymptotic level of the test is
slightly underestimated. This effect becomes less visible for a larger sample size, but even then it
is still apparent. Note that these findings are in line with previous simulations on noisy observa-
tions and it is likely that they are due to the fact the rate of convergence for most testing problems
is only n−1/4.

6.2. Testing general hypotheses

For a general null hypothesis in (2.2), the distribution of the limiting process (A(t))t∈[0,1] de-
pends on the path of the underlying semimartingale (Xt )t∈[0,1] and on the volatility (σt )t∈[0,1],
and thus we cannot use it directly for the calculation of critical values. For this reason, we pro-
pose the application of the parametric bootstrap in order to obtain simulated critical values. First,
we compute the global estimators ω̂2 and θ̂ = D̂−1Ĉ as well as each n1/4N̂t and ŝ2

t from the ob-
served data. Under the null hypothesis Nt equals zero, and thus it is intuitively clear that the null



Model checks for the volatility 1435

Table 4. Simulated level of the bootstrap test based on the standardised
Kolmogorov–Smirnov functional of (N̂t ) for various hypotheses. The variance of
the noise process is defined by nω2 = 0.1024

σ 2
1 (t, x) 1 x2

n/α 0.025 0.05 0.1 0.025 0.05 0.1

256 0.019 0.046 0.113 0.03 0.066 0.118
1024 0.02 0.049 0.099 0.034 0.07 0.119
4096 0.021 0.04 0.072 0.022 0.048 0.090

hypothesis has to be rejected for large values of the standardised Kolmogorov–Smirnov statistic
Yn = supt∈[0,1] |n1/4N̂t /ŝt |.

In a second step we generate bootstrap data Z
∗(j)

1/n = X
∗(j)

1/n +U
∗(j)

1/n , where the X
∗(j)
i/n are realisa-

tions of the process in (2.1) with bs ≡ 0 and σ 2
s = σ 2(s,Xs) =∑d

k=1 θ̂kσ
2
k (s,Xs) (corresponding

to the null hypothesis) and each U
∗(j)
i/n is normally distributed with mean zero and variance ω̂2.

Using these data, we calculate the corresponding bootstrap statistics Y
∗(j)
n and use these to com-

pute the quantiles of the bootstrap distribution. Finally, the null hypothesis is rejected if Yn is
larger than its (1 − α)-quantile.

In order to investigate the approximation of the nominal level we consider the hypothesis
of constant volatility and the hypothesis H0: σ 2(t, x) = θx2. The data is generated under the
null hypothesis with drift function b(t, x) = 0.1x and the rejection probabilities are depicted in
Table 4. These results show that the bootstrap approximation works well even for a small n. In
particular, we see that in the case of homoscedasticity the exact asymptotic test using the weak
convergence of Yn to the supremum of a standard Brownian bridge is outperformed (compare
with Table 3). In the case of testing, the parametric hypothesis H0: σ 2(t, x) = x2 we observe a
slight overestimation of the nominal level by the bootstrap test.

As an example for testing the hypothesis H̄0, we have chosen σ(t, x) = θ |x| and investigated
the properties of the analogues of Yn and Y

∗(j)
n from above, where we have replaced n1/4N̂t and ŝt

by n1/4−δ/2M̂t and r̂t , respectively. In this case, we chose δ = 1
4 , corresponding to ln = O(n−3/4)

and a rate of convergence n−1/8. Note that in this particular situation there is no need for stating
the hypothesis in terms of H̄0 as it is equivalent to σ 2(t, x) = θ |x|2, but nevertheless it gives a
reasonable impression on how well the bootstrap approximation works for testing hypotheses of
the form H̄0.

We observe from the results in Table 5 that even though the rate of convergence in Theorem 2
is worse than in Theorem 1, there is no substantial difference in the approximation of the nominal
level by the bootstrap test for both types of hypotheses: The nominal level is slightly overesti-
mated, but in general the parametric bootstrap yields a satisfactory and reliable approximation of
the nominal level.

Finally, Table 6 contains the rejection probabilities of the bootstrap test under the alternative.
The null hypothesis is given by H0: σ 2(t, x) = θ |x|2, and we discuss two local volatility alterna-
tives, namely σ 2(t, x) = 1 and σ 2(t, x) = 1 + |x|, and one alternative coming from a stochastic
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Table 5. Simulated level of the bootstrap test based
on the standardised Kolmogorov–Smirnov functional of
(M̂t ) for σ(t, x) = θ |x|. The variance of the noise pro-
cess is defined by nω2 = 0.1024

n/α 0.025 0.05 0.1

256 0.040 0.076 0.136
1024 0.032 0.057 0.119

volatility model is considered. For this case, we chose the Heston model, that is,

Xt = X0 +
∫ t

0
(μ − νs/2)ds +

∫ t

0
σs dWt

with νt = ν0 + δ

∫ t

0
(α − νs)ds + γ

∫ 1

0
ν

1/2
s dBs,

where νt = σ 2
t and Corr(W,B) = η and the parameters were chosen as μ = 0.05/252, δ =

5/252, α = 0.04/252, γ = 0.05/252 and ρ = −0.5.
We observe from the results depicted in Table 6 that the bootstrap test indicates in all cases

that the null hypothesis is not satisfied. It is also remarkable that it is more difficult to detect the
local volatility alternatives than the one coming from the Heston model. In the latter case, the
rejection probabilities are extremely large even for a small sample size, contrary to the first two
situations.

Appendix: Proof of Theorem 1

We will only prove the Theorem 1, as similar methods show Theorem 2 as well. We start with
a typical localisation argument, which allows us to assume that several quantities are bounded.
Recall first that a and σ are locally bounded by assumption, from which is follows that X is
locally bounded as well. Thus we can conclude along the lines of Jacod [18] that we may assume
without loss of generality that each of these processes is actually bounded. Since further each

Table 6. Simulated rejection probabilities of the bootstrap test based on the standardised Kolmogorov–
Smirnov functional of (N̂t ) for various alternatives. The data is simulated with σ 2(t, x) = θ |x|2 and the
variance of the noise process is defined by nω2 = 0.1024

alt 1 1 + |x| Heston

n/α 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

256 0.057 0.128 0.237 0.073 0.152 0.263 0.722 0.870 0.941
1024 0.170 0.230 0.329 0.224 0.326 0.465 0.975 0.980 0.985
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σ 2
i is continuous and because U has a compact support, we may conclude that both (s,Xt )

and (s, X̂k/n) (for arbitrary s, t , k and n) are living on a compact set, and thus σ 2
i (s,Xt ) and

σ 2
i (s, X̂k/n) are also bounded, the latter one uniformly in n. Similar results hold for the first two

derivatives of σ 2
i as well as for any of the functions σ̄i . Constants are denoted by K throughout

this section.
The proof of Theorem 1 is based on several preliminary results, and we start with two results

determining the rate of convergence of the quantities B̂i
t −Bi

t and D̂ij −Dij defined in (2.5) and
(2.4), respectively. The following result ensures that the (conditional) variance in a limit theorem
for N̂t −Nt will not depend on B̂i

t and D̂ij , since the rate of convergence is n−1/4. Thus, we will
focus in the following on the behavior of Ĉi and B̂0

t .

Theorem 3. Under the assumptions from Section 3 we have

B̂i
t − Bi

t = op(n−1/4) for i = 1, . . . , d,
(A.1)

D̂ij − Dij = op(n−1/4) for i, j = 1, . . . , d,

where the first result holds uniformly with respect to t ∈ [0,1].

Proof. For a proof of the first estimate, we use for a fixed index i the decomposition

B̂i
t − Bi

t = 1

n

�nt�−mn∑
k=1

(
σ 2

i

(
k

n
, X̂k/n

)
− σ 2

i

(
k

n
,Xk/n

))

+
(

1

n

�nt�−mn∑
k=1

σ 2
i

(
k

n
,Xk/n

)
−
∫ t

0
σ 2

i (s,Xs)ds

)
.

Regarding the first term in this sum, note that

X̂k/n − Xk/n = 1

mn

mn∑
j=1

(
U(k+j)/n +

∫ (k+j)/n

k/n

σu dWu

)
+ Op(n−1/2)

and thus X̂k/n − Xk/n = Op(n−1/4). A Taylor expansion and boundedness of the second deriva-
tive of the function σ 2 give

1

n

�nt�−mn∑
k=1

(
σ 2

i

(
k

n
, X̂k/n

)
− σ 2

i

(
k

n
,Xk/n

))
= 1

n

�nt�−mn∑
k=1

Ak,n + Op(n−1/2)

with

Ak,n = 1

mn

mn∑
j=1

∂

∂y
σ 2

i

(
k

n
,Xk/n

)(
U(k+j)/n +

∫ (k+j)/n

k/n

σs dWs

)
.
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However, we have E[Ak,nAl,n] = O(n−1/2) for arbitrary k and l as well as E[Ak,nAk+l,n] = 0
for l ≥ mn by conditioning on F(k+l)/n. This yields

E

[(
1

n

�nt�−mn∑
k=1

Ak,n

)2]
= 1

n2

�nt�−2mn∑
k=mn

mn∑
l=−mn

E[Ak,nAk+l,n] + O

(
mn

n2

)
= O

(
1

n

)
,

which is small enough. For the second term in the decomposition of B̂i
t − Bi

t it holds that

1

n

�nt�−mn∑
k=1

σ 2
i

(
k

n
,Xk/n

)
−
∫ t

0
σ 2

i (s,Xs)ds

=
�nt�∑
k=1

∫ k/n

(k−1)/n

(
σ 2

i

(
k − 1

n
,X(k−1)/n

)
− σ 2

i

(
s,X(k−1)/n

)

+ σ 2
i

(
s,X(k−1)/n

)− σ 2
i (s,Xs)

)
ds + Op(n−1/2).

By differentiability in both components and from a similar expansion as above the claim follows.
The result on D̂ij − Dij can be shown in the same way. �

The following result specifies the convergence of the finite dimensional distributions of the

processes, which are used for the construction of {N̂t }t∈[0,1]. Below we use the notation Gn
Dst−→

G to indicate stable convergence of a sequence of random variables (Gn) to a limiting variable
G, which is defined on an appropriate extension of the original probability space. For details on
stable convergence see Jacod and Shiryaev [20].

Theorem 4. Define for any fixed t1, . . . , tk ∈ [0,1] the matrix �t1,...,tk (s,Xs) = γ 2
s �(s,Xs)�

T (s,

Xs) where �(s,Xs) = (1[0,t1](s), . . . ,1[0,tk](s), hT (s,Xs))
T . Then we have

n1/4(B̂0
t1

− B0
t1
, . . . , B̂0

tk
− B0

tk
, Ĉ1 − C1, . . . , Ĉd − Cd)T

Dst−→
∫ 1

0
�

1/2
t1,...,tk

(s,Xs)dW ′
s ,

where W ′ is another Brownian motion, which is independent of the σ -algebra F .

Proof. Since ω2 − ω̂2
n = Op(n−1/2), one obtains

Ĉi = 1

n

n−mn∑
k=1

σ 2
i

(
k

n
,Xk/n

)
σ̂ 2

k/n + 1

n

n−mn∑
k=1

(
σ 2

i

(
k

n
, X̂k/n

)
− σ 2

i

(
k

n
,Xk/n

))
σ̂ 2

k/n

+ Op(n−1/2).

From similar arguments as given in the proof of Theorem 3 we find that the second term is of
order op(n−1/4) and thus asymptotically negligible as well. Therefore, we are left to focus on



Model checks for the volatility 1439

Fin = 1
n

∑n−mn

k=1 σ 2
i ( k

n
,Xk/n)σ̂

2
k/n. Due to the dependence structure of the summands in Fin it

will be convenient to use a “small-blocks–big-blocks”-technique as in Jacod et al. [19] in order
to prove Theorem 4. To this end, we choose an integer p, which eventually goes to infinity, and
partition the n observations into several subsets: We define bk(p) = k(p + 1)mn and ck(p) =
k(p + 1)mn + pmn and denote by jn(p) the largest integer k such that ck(p) ≤ n − mn holds.
Moreover, we use the notation in(p) = (jn(p) + 1)pmn, and introduce for each 0 ≤ k ≤ jn(p)

and any p the following random variables:

G(k,p)n1 = 1

n
σ 2

i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

σ̂ 2
k/n,

G(k,p)n2 = 1

n
σ 2

i

(
ck(p)

n
,Xck(p)/n

) bk+1(p)−1∑
j=ck(p)

σ̂ 2
k/n.

The remainder terms from in(p) to n − mn are gathered in some G(p)n3 . Note that each of these
quantities depends on i, although it does not appear in the notation.

The main intuition behind these quantities is that the terms G(k,p)n1 are defined on non-
overlapping intervals, which means that the intervals on which each Z

n

j within G(k,p)n1 lives

are disjoint from those of any Z
n

j within any other G(l,p)n1 . This is sufficient to ensure some
type of conditional independence, which will be used in order to prove Theorem 4. The variables
G(k,p)n2 and G(p)n3 are filling the gaps between G(k,p)n1 and G(l,p)n1 and can be shown to be
asymptotically negligible.

An important tool will be the following decomposition of |Zn

j |2. We set

V
j
s =

∫ j/n+s

j/n

gn

(
u − j

n

)
au du +

∫ j/n+s

j/n

gn

(
u − j

n

)
σu dWu,

and obtain by an application of Ito’s formula

|Zn

j |2 = |Xn

j |2 + |Un

j |2 + 2X
n

jU
n

j

= 2
∫ (j+mn)/n

j/n

V
j
s gn

(
s − j

n

)
as ds + 2

∫ (j+mn)/n

j/n

V
j
s gn

(
s − j

n

)
σs dWs

+
∫ (j+mn)/n

j/n

g2
n

(
s − j

n

)
σ 2

s ds + |Un

j |2 + 2U
n

j

∫ (j+mn)/n

j/n

gn

(
s − j

n

)
as ds

+ 2U
n

j

∫ (j+mn)/n

j/n

gn

(
s − j

n

)
σs dWs

=
6∑

l=1

D(j)nl ,

where the last identity defines the quantities D(j)nl in an obvious manner.
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For bk(p) ≤ j < ck(p) we introduce approximations for the quantities D(j)n2 and D(j)n6 ,
namely

D̃(k, j,p)n2 = 2σ 2
bk(p)/n

∫ (j+mn)/n

j/n

(∫ j/n+s

j/n

gn

(
u − j

n

)
dWu

)
gn

(
s − j

n

)
dWs,

D̃(k, j,p)n6 = 2σbk(p)/nU
n

j

∫ (j+mn)/n

j/n

gn

(
s − j

n

)
dWs.

Additionally, we set H(k,p)n = σ 2
i (

bk(p)
n

,Xbk(p)/n)Y (k,p)n, where

Y(k,p)n = 1

κψ2
n−1/2

ck(p)−1∑
j=bk(p)

{
D̃(k, j,p)n2 + D̃(k, j,p)n6 +

(
D(j)n4 − n−1/2 ψ1

κ
ω2

)}
. (A.2)

Finally, we define

χ(p)nk = E
[(

sup
s,t∈[bk(p)/n,ck(p)/n]

|as − at | + |σs − σt |
)2∣∣Fbk(p)/n

]1/2
.

The main part of the proof of Theorem 1 are two auxiliary results which specify the asymptotic
properties of Fin.

Lemma 1. We have

lim
p→∞ lim sup

n→∞
n1/4

{(
jn(p)∑
k=0

(
G(k,p)n1 + G(k,p)n2

)+ G(p)n3 − Ci

)
−

jn(p)∑
k=0

H(k,p)

}
= 0.

Proof. The proof goes through a rather large number of steps and makes extensive use of the
decomposition in (A.2). We will show first that the influence of the random variables D(j)n1 and
D(j)n5 within G(k,p)n1 (and analogously for G(k,p)n2 and G(p)n3) is asymptotically negligible,
that is

lim
p→∞ lim sup

n→∞
n−1/4

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

(
D(j)n1 + D(j)n5

)= 0. (A.3)

For a proof of (A.3), assume without loss of generality that bk(p) ≤ j < ck(p). One obtains

D(j)n1 = 2abk(p)/n

∫ (j+mn)/n

j/n

(∫ j/n+s

j/n

gn

(
u − j

n

)
σu dWu

)
gn

(
s − j

n

)
ds

+ 2
∫ (j+mn)/n

j/n

(∫ j/n+s

j/n

gn

(
u − j

n

)
σu dWu

)
gn

(
s − j

n

)(
as − abk(p)/n

)
ds

+ Op

(
1

n

)
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and from the martingale property of a stochastic integral with respect to Brownian motion and
the Cauchy–Schwarz inequality we derive that |E[D(j)n1|Fbk(p)/n]| ≤ Kn−3/4χ(p)nk . Thus, with

the notation δ(k,p)n1 =∑ck(p)−1
j=bk(p) D(j)n1 we conclude

∣∣E[
δ(k,p)n1|Fbk(p)/n

]∣∣≤ Kpn−1/4χ(p)nk and E
[
(δ(k,p)n1)2|Fbk(p)/n

]≤ Kp2n−1/2,

and for k > l it follows∣∣∣∣E
{
σ 2

i

(
bk(p)

n
,Xbk(p)/n

)
σ 2

i

(
bl(p)

n
,Xbl(p)/n

)
δ(l,p)n1E

[
δ(k,p)n1|Fbk(p)/n

]}∣∣∣∣
≤ Kp2n−1/2E[χ(p)nk ].

Since jn(p) is of order n1/2/p, we obtain

E

[(
n−1/4

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

D(j)n1

)2]

≤ K

(
pn−1/2 +

jn(p)∑
k>l

p2n−1E[χ(p)nk ]
)

.

From Lemma 5.4. in Jacod et al. [19] it follows that limn→∞ n−1/2 ∑jn(p)

k=1 E[χ(p)nk ] = 0 for
any p, which gives that the first term in the sum (A.3) converges to 0. The second term in (A.3)
converges to zero from the independence of X and U and a standard martingale argument.

The next step is devoted to the analysis of the term D(j)n2 . We prove

lim
p→∞ lim sup

n→∞
n−1/4

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

(
D(j)n2 − D̃(k, j,p)n2

)= 0 (A.4)

as well as

lim
p→∞ lim sup

n→∞
n−1/4

jn(p)∑
k=0

σ 2
i

(
ck(p)

n
,Xck(p)/n

) bk+1(p)−1∑
j=ck(p)

D(j)n2 = 0, (A.5)

lim
p→∞ lim sup

n→∞
n−1/4σ 2

i

(
in(p)

n
,Xin(p)/n

) n−mn∑
j=in(p)

D(j)n2 = 0. (A.6)

Set bk(p) ≤ j < ck(p) again. A martingale argument as before allows us to focus on

D′′(j)n2 = 2
∫ (j+mn)/n

j/n

(∫ j/n+s

j/n

gn

(
u − j

n

)
σu dWu

)
gn

(
s − j

n

)
σs dWs
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only. We have E[D′′(j)n2 |Fbk(p)/n] = 0 and E[|D′′(j)n2D′′(l)n2||Fbk(p)/n] ≤ Kn−1, thus (A.6)

follows easily. For (A.5), note that E[(∑bk+1(p)−1
j=ck(p) D′′(j)n2)2] ≤ K, which gives (recall the defi-

nition of jn(p), bk(p) and ck(p))

n−1/2
jn(p)∑
k=0

E

[
σ 4

i

(
ck(p)

n
,Xck(p)/n

)(bk+1(p)−1∑
j=ck(p)

D′′(j)n2

)2]

≤ Kn−1/2 n1/2

p
= K

1

p
,

converging to zero as p tends to infinity. We are thus left to prove

lim
p→∞ lim sup

n→∞
n−1/4

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

(
D′′(j)n2 − D̃(k, j,p)n2

)= 0.

This time, we have E[D′′(j)n2 − D̃(k, j,p)n2|Fbk(p)/n] = 0 and

E
[∣∣(D′′(j)n2 − D̃(k, j,p)n2

)(
D′′(l)n2 − D̃(k, l,p)n2

)∣∣|Fbk(p)/n

]≤ Kn−1(χ(p)nk )
2.

Thus,

E

[{
n−1/4

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

(
D(j)n2 − D̃(k, j,p)n2

)}2]

≤ Kp2n−1/2
jn(p)∑
k=0

E[(χ(p)nk )
2],

and with a similar argument as in the proof of (A.3) we are done. Proving that D(j)n6 can be
replaced by D̃(k, j,p)n6 works analogously, thus we finish the proof of Lemma 1 showing

lim
p→∞ lim sup

n→∞
n1/4

{
1

κψ2
n−1/2

(
jn(p)∑
k=0

(
σ 2

i

(
bk(p)

n
,Xbk(p)/n

) ck(p)−1∑
j=bk(p)

D(j)n3

+ σ 2
i

(
ck(p)

n
,Xck(p)/n

) bk+1(p)−1∑
j=ck(p)

D(j)n3

)
(A.7)

+
n−mn∑

j=in(p)

D(j)n3

)
− Ci

}
= 0.
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We start with the following proposition:

lim
p→∞ lim sup

n→∞
n1/4

{(
jn(p)∑
k=0

(∫ ck(p)/n

bk(p)/n

σ 2
i

(
bk(p)

n
,Xbk(p)/n

)
σ 2

s ds

+
∫ bk+1(p)/n

ck(p)/n

σ 2
i

(
ck(p)

n
,Xck(p)/n

)
σ 2

s ds

)
(A.8)

+
∫ 1

in(p)
n

σ 2
i

(
in(p)

n
,Xin(p)/n

)
σ 2

s ds

)
− Ci

}
= 0.

As in the proof of Theorem 3, we have

σ 2
i (s,Xs) − σ 2

i

(
bk(p)

n
,Xbk(p)/n

)
(A.9)

= ∂

∂y
σ 2

i

(
s,Xbk(p)/n

)(∫ s

bk(p)/n

σu dWu

)
+ Op

(
pmn

n

)
,

thus

∫ ck(p)/n

bk(p)/n

(
σ 2

i (s,Xs) − σ 2
i

(
bk(p)

n
,Xbk(p)/n

))
σ 2

s ds

(A.10)

= δ′(k,p)n3 + δ′′(k,p)n3 + Op

(
p2m2

n

n2

)
,

where

δ′(k,p)n3 = σ 3
bk(p)/n

∫ ck(p)/n

bk(p)/n

∂

∂y
σ 2

i

(
s,Xbk(p)/n

)(∫ s

bk(p)/n

dWu

)
ds

and δ′′(k,p)n3 is defined implicitly by equation (A.10). We obtain

lim
p→∞ lim sup

n→∞
n1/2E

[(
jn(p)∑
k=0

δ′(k,p)n3

)2]
= 0

from the usual martingale argument and also

lim
p→∞ lim sup

n→∞
n1/4

jn(p)∑
k=0

E[|δ′′(k,p)n3|] ≤ lim
p→∞ lim sup

n→∞
Kp3/2n−1/2

jn(p)∑
k=0

E[χ(p)nk ] = 0

as before. The corresponding results for the other summands in (A.8) can be shown analogously.
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To finish the proof of Lemma 1, we have to show

lim
p→∞ lim sup

n→∞
n1/4

{
jn(p)∑
k=0

(
σ 2

i

(
bk(p)

n
,Xbk(p)/n

)(
1

κψ2
n−1/2

ck(p)−1∑
j=bk(p)

D(j)n3 −
∫ ck(p)/n

bk(p)/n

σ 2
s ds

)

+ σ 2
i

(
ck(p)

n
,Xck(p)/n

)

×
(

1

κψ2
n−1/2

bk+1(p)−1∑
j=ck(p)

D(j)n3 −
∫ bk+1(p)/n

ck(p)/n

σ 2
s ds

))

+ σ 2
i

(
in(p)

n
,Xin(p)/n

)

×
(

1

κψ2
n−1/2

n−mn∑
j=in(p)

D(j)n3 −
∫ 1

in(p)/n

σ 2
s ds

)}
= 0,

The last term is negligible, and the main idea for the tedious proof of the remaining terms is to
fix k for a moment and to prove a representation of the form

1

κψ2
n−1/2

ck(p)−1∑
j=bk(p)

D(j)n3 =
∫ bk+1(p)/n

bk(p)/n

hn,p

(
s − bk(p)

n

)
σ 2

s ds (A.11)

for a suitable function hn,p(s), using the definition of D(j)n3 . A similar expression can be found
for the sum from ck(p) to bk+1(p) with some h̄n,p(s). A careful computation shows that hn,p(s)

is either close to one (for s in the center of the corresponding interval) or that hn,p(s) and h̄n,p(s)

sum up to one (on its boundary). Then a Taylor expansion as in the proof of (A.8) gives the
result. �

Lemma 2. We have

lim
p→∞ lim sup

n→∞
n1/4

{
Fin −

(
jn(p)∑
k=0

(
G(k,p)n1 + G(k,p)n2

)+ G(p)n3

)}
= 0.

Proof. Without loss of generality, is suffices to show

lim
p→∞ lim sup

n→∞
n−1/4

jn(p)∑
k=0

ck(p)−1∑
j=bk(p)

(
σ 2

i (s,Xs) − σ 2
i

(
bk(p)

n
,Xbk(p)/n

))(
|Zn

j |2 − n−1/2 ψ1

κ
ω2

)

= 0.

The proof of this claim is tedious again. Essentially one simplifies the expression above by the
Taylor expansion from (A.9) and a similar decomposition as in (A.2) for |Zn

j |2 and discusses
each term separately. �
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Note that we have completely analogous results for a decomposition of B̂0
t − B0

t . Thus, we
end up with

lim
p→∞ lim sup

n→∞
n1/4

{
(B̂0

t − B0
t ) −

jn(p)∑
k=0

Y(k,p)1{ck(p)/n≤t}

}
= 0, (A.12)

lim
p→∞ lim sup

n→∞
n1/4

{
(Ĉi − Ci) −

jn(p)∑
k=0

σ 2
i

(
bk(p)

n
,Xbk(p)/n

)
Y(k,p)

}
= 0,

where Y(k,p) was defined in (A.2). Since

nE
[
(Y (k,p))2|Fbk(p)/n

]= pκγ 2
bk(p)/n + op(1) and E

[
Y(k,p)|Fbk(p)/n

]= 0

as in Jacod et al. [19], we conclude

lim
p→∞ lim

n→∞n1/2
jn(p)∑
k=0

E
[
Y(k,p)21{ck(p)/n≤ti∧tj }|Fbk(p)/n

]

=
∫ 1

0
γ 2
s 1[0,ti∧tj ](s)ds,

lim
p→∞ lim

n→∞n1/2
jn(p)∑
k=0

E

[
Y(k,p)21{ck(p)/n≤ti }σ 2

i

(
bk(p)

n
,Xbk(p)/n

)∣∣Fbk(p)/n

]

=
∫ 1

0
γ 2
s 1[0,ti ](s)σ 2

j (s,Xs)ds,

lim
p→∞ lim

n→∞n1/2
jn(p)∑
k=0

E

[
Y(k,p)2σ 2

i

(
bk(p)

n
,Xbk(p)/n

)
σ 2

j

(
bk(p)

n
,Xbk(p)/n

)∣∣Fbk(p)/n

]

=
∫ 1

0
γ 2
s σ 2

i (s,Xs)σ
2
j (s,Xs)ds.

Theorem 4 follows now from Theorem IX 7.28 in Jacod and Shiryaev [20], since the missing
conditions can be shown in the same way as in Jacod et al. [19]. �

The convergence of the finite dimensional distributions follows from the delta method for
stably converging sequences, since we have

n1/4(N̂t1 − Nt1, . . . , N̂tk − Ntk )
T Dst−→ Y

∫ 1

0
�

1/2
t1,...,tk

(s,Xs)dWs,

where the k × (d + k)-dimensional matrix Y has the form

Y = (Ik×k − Y ∗), Y ∗ = (BT
t1

D−1 · · · BT
tk

D−1)T .
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A straightforward calculation shows that the conditional covariance coincides with the one
of the finite dimensional distributions of the process defined in (4.2). We are left to prove
the tightness of the process n1/4(N̂t − Nt), and this can be done by an application of Theo-
rem VI.4.5 in Jacod and Shiryaev [20], using the boundedness of the processes involved as well
as E[|det(D)|−β ] < ∞. �
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