
Bernoulli 18(4), 2012, 1361–1385
DOI: 10.3150/11-BEJ369

Uniform convergence of the empirical
cumulative distribution function under
informative selection from a finite population
DANIEL BONNÉRY1,*,** , F. JAY BREIDT2 and FRANÇOIS COQUET1,†,‡

1Ensai, Campus de Ker-Lann, Rue Blaise Pascal – BP 37203, 35172 Bruz – cedex, France.
E-mail: *daniel.bonnery@ensai.fr; †fcoquet@ensai.fr, url: **www.ensai.com/daniel-bonnery-rub,
‡www.ensai.com/francois-coquet-rub
2Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877, USA.
E-mail: jbreidt@stat.colostate.edu, url: www.stat.colostate.edu/~jbreidt

Consider informative selection of a sample from a finite population. Responses are realized as independent
and identically distributed (i.i.d.) random variables with a probability density function (p.d.f.) f , referred to
as the superpopulation model. The selection is informative in the sense that the sample responses, given that
they were selected, are not i.i.d. f . In general, the informative selection mechanism may induce dependence
among the selected observations. The impact of such dependence on the empirical cumulative distribution
function (c.d.f.) is studied. An asymptotic framework and weak conditions on the informative selection
mechanism are developed under which the (unweighted) empirical c.d.f. converges uniformly, in L2 and
almost surely, to a weighted version of the superpopulation c.d.f. This yields an analogue of the Glivenko–
Cantelli theorem. A series of examples, motivated by real problems in surveys and other observational
studies, shows that the conditions are verifiable for specified designs.

Keywords: complex survey; cut-off sampling; endogenous stratification; Glivenko–Cantelli; length-biased
sampling; superpopulation

1. Introduction

Consider informative selection of a sample from a finite population, with responses Y realized
as independent and identically distributed (i.i.d.) random variables with probability density func-
tion (p.d.f.) f , referred to as the superpopulation model. (Regression problems, in which ob-
servations are conditionally independent given covariates, are also of interest, but the following
discussion readily generalizes to that setting and we restrict attention to the i.i.d. case for sim-
plicity of exposition.) In non-informative selection (e.g., Cassel et al. [6], Section 1.4, or Särndal
et al. [34], Remark 2.4.4), the probability of drawing the sample does not depend explicitly
on the responses Y . We consider informative selection in the sense that the sample responses,
given that they were selected, are not i.i.d. f . A specification of informative selection that in-
cludes the i.i.d. case described here is given in Pfeffermann and Sverchkov [30], Remark 1.2.
We study the implications of this informative selection for estimation of the superpopulation
model.

1350-7265 © 2012 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/11-BEJ369
mailto:daniel.bonnery@ensai.fr
mailto:fcoquet@ensai.fr
http://www.ensai.com/daniel-bonnery-rub,65.html
http://www.ensai.com/francois-coquet-rub,30.html
mailto:jbreidt@stat.colostate.edu
http://www.stat.colostate.edu/~jbreidt


1362 D. Bonnéry, F.J. Breidt and F. Coquet

In general, the informative selection mechanism may induce dependence among the selected
observations. Nevertheless, a large body of current methodological literature treats the obser-
vations as if they were independently distributed according to the sample p.d.f., defined as the
conditional distribution of the random variable Y , given that it was selected. Under informative
selection, the sample p.d.f. differs from f . In particular, Pfeffermann et al. [26] (see some mo-
tivating work in Skinner [37]) have developed a sample likelihood approach to estimation and
inference for the superpopulation model, which maximizes the criterion function formed by tak-
ing the product of the sample p.d.f.’s, as if the responses were i.i.d. This methodology has been
extended in a number of directions Eideh and Nathan [11–13], Pfeffermann et al. [27], Pfeffer-
mann and Sverchkov [28,29,31]. An extensive review of these and other approaches to inference
under informative selection is given by Pfeffermann and Sverchkov [30].

Under a strong set of assumptions (in particular, sample size remains fixed as population size
goes to infinity), Pfeffermann et al. [26] have established the pointwise convergence of the joint
distribution of the responses to the product of the sample p.d.f.’s. This is taken as partial justifi-
cation of the sample likelihood approach. Alternatively, the full likelihood of the data (selection
indicators for the finite population and response variables and inclusion probabilities for the
sample) can be maximized (Breckling et al. [3], Chambers et al. [7]), or the pseudo-likelihood
can be obtained by plugging in Horvitz–Thompson estimators for unknown quantities in the
log-likelihood for the entire finite population (e.g., Binder [2], Chambers and Skinner [8], Kish
and Frankel [19], Section 2.4). Obviously, each of these likelihood-based approaches requires a
model specification.

Rather than starting at the point of likelihood-based inferential methods for the superpop-
ulation model, we take a step back and consider the problem of identifying a suitable model
using observed data. In an ordinary inference problem with i.i.d. observations, we often begin
not by constructing a likelihood and conducting inference, but by using basic sample statistics
to help identify a suitable model. In particular, under i.i.d. sampling the empirical cumulative
distribution function (c.d.f.) converges uniformly almost surely to the population c.d.f., by the
Glivenko–Cantelli theorem (e.g., van der Vaart [39], Theorem 19.1). What is the behavior of
the empirical c.d.f. under informative selection from a finite population? In this paper, we de-
velop an asymptotic framework and weak conditions on the informative selection mechanism
under which the (unweighted) empirical c.d.f. converges uniformly, in L2 and almost surely, to
a weighted version of the superpopulation c.d.f. The corresponding quantiles also converge uni-
formly on compact sets. Our almost sure results rely on an embedding argument. Importantly,
our construction preserves the original response vector for the finite population, not some inde-
pendent replicate.

The conditions we propose are verifiable for specified designs, and involve computing condi-
tional versions of first and second-order inclusion probabilities. Motivated by real problems in
surveys and other observational studies, we give examples of where these conditions hold and
where they fail. Where the conditions hold, the convergence results we obtain may be useful in
making inference about the superpopulation model. For example, the results may be used in iden-
tifying a suitable parametric family for the weighted c.d.f., from which a selection mechanism
and a superpopulation p.d.f. may be postulated using results in Pfeffermann et al. [26].
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2. Results

2.1. Asymptotic framework and assumptions

In what follows, all random variables are defined on a common probability space (�,A ,P ). Let
B(R) denote the σ -field of Borel sets. Assume that for k ∈ N, Yk : (�,A ,P ) → (R,B(R)) are
i.i.d. real random variables with a density f with respect to λ, the Lebesgue measure. Consider
{Nγ }γ∈N, an increasing sequence of positive integers representing a sequence of population sizes,
with limγ→∞ Nγ = ∞.

We consider a sequence of finite populations and samples. The γ th finite population is the set
of elements indexed by Uγ = (1, . . . ,Nγ ). In the sampling literature (e.g., Särndal et al. [34]),
Uγ is often an unordered set, but it is convenient for us to order it and to write, for example,∑

k∈Uγ
= ∑Nγ

k=1. The vector of responses for the population is Yγ = (Yk)k∈Uγ and the sample is
indexed by the random vector Iγ = (Iγ k)k∈Uγ , where the kth coordinate Iγ k indicates the number
of times element k is selected: 0 or 1 under without-replacement sampling, or a non-negative
integer under with-replacement sampling. Define the distribution of Iγ conditional on Yγ :

gγ (i1 . . . , iNγ , y1, . . . , yNγ ) = P
(

Iγ = (i1, . . . , iNγ )|Yγ = (y1, . . . , yNγ )
)
.

We assume that the index of the element k of the population plays no role in the way elements
are selected. Specifically, let σ denote a permutation of a vector of length Nγ . Then, for all
γ ∈ N, (Iγ |Yγ ) and (σ · Iγ |σ · Yγ ) are identically distributed, or equivalently

gγ (i1, . . . , iNγ , y1, . . . , yNγ ) = gγ

(
σ · (i1, . . . , iNγ ), σ · (y1, . . . , yNγ )

)
. (1)

We refer to (1) as the exchangeability assumption. It corresponds to the condition of weakly
exchangeable arrays (Eagleson and Weber [10]) applied to (Iγ k, Yk)γ∈N,k∈Uγ

.

Definition 1. For γ ∈ N, the empirical c.d.f. is the random process Fγ : R → [0,1] via

Fγ (α) =
∑

k∈Uγ
1(−∞,α](Yk)Iγ k

1Iγ =0 + ∑
k∈Uγ

Iγ k

.

Definition 2. Given γ , let k, � ∈ Uγ with k �= �. Assume exchangeability as in (1) and let

mγ (y) = E[Iγ k|Yk = y],
vγ (y) = Var(Iγ k|Yk = y),

m′
γ (y1, y2) = E[Iγ k|Yk = y1, Y� = y2],

cγ (y1, y2) = Cov(Iγ k, Iγ �|Yk = y1, Y� = y2).

(These definitions do not depend on the choice of k, � under the exchangeability assumption).

The following conditions on mγ are used in defining the limit c.d.f.:
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A0. There exist M : R → R
+ and m : R → R

+, both λ-measurable, such that⎧⎨
⎩

∀γ ∈ N, mγ < M,∫
Mf dλ < ∞,

(0a)

⎧⎨
⎩

mγ → m pointwise as γ → ∞,∫
mf dλ > 0.

(0b)

Definition 3. Under A0, the limit c.d.f. Fs : R → [0,1] is

Fs(α) =
∫

1(−∞,α]mf dλ∫
mf dλ

.

Remark (relation to sample p.d.f.). Because of informative selection, the empirical c.d.f. does
not converge to the superpopulation c.d.f. Under some conditions to be specified below, it con-
verges to Fs , a weighted integral of the superpopulation p.d.f. To see this, consider the case of
without-replacement sampling and a single element, k. The sample p.d.f. defined in Krieger and
Pfeffermann [20] is the conditional density of Yk given Iγ k = 1. By Bayes’ rule,

fsγ (y) = f (y|Iγ k = 1) = P(Iγ k = 1|Yk = y)f (y)∫
P(Iγ k = 1|Yk = y)f dλ

= mγ (y)∫
mγ f dλ

f (y) = wγ (y)f (y).

Define w = limγ→∞ wγ and consider α ∈ R. Then

lim
γ→∞

∫
1(−∞,α]fsγ dλ = lim

γ→∞

∫
1(−∞,α]wγ f dλ =

∫
1(−∞,α]wf dλ = Fs(α).

Thus, if observations were i.i.d. from the sample p.d.f., Fs would be the natural limiting c.d.f.
A related argument can be used to show that the same weighted c.d.f. is obtained under with-
replacement sampling and a fixed number of draws, when considering the distribution of any
observation in the sample.

Because informative selection from a finite population may induce dependence among the se-
lected observations, observations are not i.i.d., and we next specify asymptotic weak dependence
conditions among Iγ coordinates.

For a sequence {bγ }, let oγ (bγ ) denote limγ→∞ oγ (bγ )b−1
γ = 0. In the next two assumptions,

we define sufficient conditions for uniform L2 convergence and uniform a.s. convergence of the
empirical c.d.f.
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A1 (Uniform L2 convergence conditions).∫
cγ (y1, y2)f (y1)f (y2)dy1 dy2 = oγ (1), (1a)

∫ (
m′

γ (y1, y2)m
′
γ (y2, y1) − mγ (y1)mγ (y2)

)
f (y1)f (y2)dy1 dy2 = oγ (1), (1b)

∫
(vγ + m2

γ )f dλ = oγ (Nγ ), (1c)

P
(

Iγ = (0, . . . ,0)
) = oγ (1). (1d)

A2 (Uniform almost sure convergence conditions). Let y ∈ R
N satisfy

sup
α′∈R

∣∣∣∣
∑

k∈Uγ
1(−∞,α′](yk)

Nγ

−
∫

1(−∞,α′]f dλ

∣∣∣∣ = oγ (1).

Then for all α ∈ R,

Var

( ∑
k∈Uγ

1(−∞,α](yk)Iγ k

∣∣Yγ = (y1, . . . , yNγ )

)
= oγ (N2

γ ), (2a)

∑
k∈Uγ

1(−∞,α](yk)
(
E[Iγ k|Yγ = (y1, . . . , yNγ )] − mγ (yk)

) = oγ (Nγ ), (2b)

gγ ((0, . . . ,0), y) = oγ (1). (2c)

Properties of sampling without replacement

In the case of sampling without replacement, Iγ :� → {0,1}Nγ , A0 and A1 can be replaced by
a simpler set of sufficient conditions for uniform L2 convergence.

A3 (Uniform L2 convergence conditions under sampling without replacement).

∃m : R → R
+ λ-measurable s.t.

⎧⎨
⎩

mγ → m pointwise as γ → ∞,∫
mf dλ > 0,

(3a)

∀y1, y2, cγ (y1, y2) = oγ (1), (3b)

∀y1, y2, m′
γ (y1, y2) − mγ (y2) = oγ (1), (3c)

P
(

Iγ = (0, . . . ,0)
) = oγ (1). (3d)

These conditions imply A0 and A1.

Proof. Since Iγ k ∈ {0,1}, (0a) and (1c) always hold. By applying the Lebesgue dominated con-
vergence theorem, we obtain that (1a) is verified when ∀y1, y2, cγ (y1, y2) = oγ (1) and (1b) is
verified when ∀y1, y2, m′

γ (y1, y2) − mγ (y2) = oγ (1). �
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An important special case of sampling without replacement is non-informative selection,
with Iγ independent of Yγ for all γ ∈ N. In this case, the sample obtained is an i.i.d. sample
of size nγ = ∑

k∈Uγ
Iγ k (Fuller [14], Theorem 1.3.1), and the classic Glivenko–Cantelli theorem

can be applied as soon as nγ →a.s.∞ as γ → ∞. The assumptions of Theorem 1 and Theorem 2
will then just ensure that the expectation of the sample size will grow to infinity, and that its vari-
ations are small enough to avoid very small samples. We can thus replace A0–A2 by a simpler
set of sufficient conditions.

A4 (Uniform L2 and a.s. convergence conditions under independent sampling without re-
placement). {

Nγ
−1E[nγ ] → m �= 0 as γ → ∞,

Var(nγ ) = oγ (N2
γ ).

(4)

These conditions imply A0–A2.

Proof. We first show that A4 implies A3. Because Iγ and Yγ are independent, the exchange-
ability assumption implies mγ (y) = E[Iγ 1] = N−1

γ E[nγ ] and Nγ
−1E[nγ ] → m by A4, so (3a)

holds. Exchangeability also implies

E[Iγ 1Iγ 2] =
∑

k,�∈Uγ : k �=� E[Iγ kIγ �]
Nγ (Nγ − 1)

= E

[∑
k,�∈Uγ : k �=� Iγ kIγ �

Nγ (Nγ − 1)

]
= E

[
nγ (nγ − 1)

Nγ (Nγ − 1)

]

so

cγ (y1, y2) = Cov(Iγ 1, Iγ 2) = E

[
nγ (nγ − Nγ )

N2
γ (Nγ − 1)

]
+ Var

(
nγ

Nγ

)
= oγ (1) (5)

by A4, so (3b) is obtained, and (3c) holds by independence. Finally,

P(nγ = 0) = P(nγ < 1) = P(nγ − E[nγ ] < 1 − E[nγ ])
(6)

≤ P(|nγ − E[nγ ]| > E[nγ ] − 1) ≤ Var(nγ )

(E[nγ ] − 1)2
= oγ (1),

establishing (3d).
We next show that (4) implies A2. For all α ∈ R,

Var

( ∑
k∈Uγ

1(−∞,α](Yk)Iγ k

∣∣Yγ = (y1, . . . , yNγ )

)

=
∑
k∈Uγ

1(−∞,α](yk)Var(Iγ k)

+
∑

k,�∈Uγ : k �=�

1(−∞,α](yk)1(−∞,α](y�)Cov(Iγ k, Iγ �)

≤ Nγ + Nγ (Nγ − 1)oγ (1) = oγ (N2
γ )
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by equation (5), so (2a) holds. By independence,

E[Iγ k|Yγ = (y1, . . . , yNγ )] = E[Iγ k|Yk = yk] = mγ (yk),

so (2b) holds. Finally,

gγ ((0, . . . ,0), y) = P(nγ = 0) = oγ (1)

by independence and (6), so (2c) holds. �

Remark. In conventional finite population asymptotics (Breidt and Opsomer [4,5], Isaki and
Fuller [17], Robinson and Särndal [33]), conditions on design covariances Cov(Iγ k, Iγ �) are
imposed to guarantee that the Horvitz–Thompson estimator

∑
k∈Uγ

ykIγ k(E[Iγ k])−1 is consis-
tent. Typically, these conditions imply that the variance of the Horvitz–Thompson estimator is
Oγ (N2

γ /(Nγ π∗γ )), where Nγ π∗γ → ∞ is a sequence of lower bounds on the expected sample

size, E[nγ ]. These same conditions can be used to show that Var(nγ ) = Oγ (N2
γ /(Nγ π∗γ )) =

oγ (N2
γ ), agreeing with A4.

2.2. Uniform convergence of the empirical c.d.f.

In this section, we state the main results of the paper: uniform L2 convergence of the empirical
c.d.f. and uniform almost sure convergence of the empirical c.d.f. Important corollaries yield
uniform convergence of sample quantiles on compact sets. Proofs are given in the Appendix.

2.2.1. Uniform L2 convergence of the empirical c.d.f.

Theorem 1. Under A0 and A1, the empirical c.d.f. converges uniformly in L2 in the sense that

sup
α∈R

|Fγ (α) − Fs(α)| = ‖Fγ − Fs‖∞
L2→

γ→∞ 0.

Definition 4. The limit quantiles ξs : (0,1) → R are given by

ξs(p) = inf{y ∈ R :Fs(y) ≥ p}
and the empirical quantiles ξγ : (0,1) → R are given by

ξγ (p) = inf{y ∈ R: Fγ (y) ≥ p}.

With this definition, we have the following corollary.

Corollary 1. Suppose that Fs is continuous on R and 0 < Fs(y1) = Fs(y2) < 1 ⇒ y1 = y2.
Then, under A0 and A1, the empirical quantiles converge uniformly in probability to the limit
quantiles,

sup
p∈K

|ξγ (p) − ξs(p)| P→
γ→∞ 0
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for all K a compact subset of (0,1). Under the further hypothesis that f has compact support,
the convergence is uniform in L2:

sup
p∈K

|ξγ (p) − ξs(p)| L2→
γ→∞ 0.

2.2.2. Uniform almost sure convergence of the empirical c.d.f.

The Glivenko–Cantelli theorem gives uniform almost sure convergence of the empirical c.d.f.
under i.i.d. sampling. We now consider uniform almost sure convergence under dependent sam-
pling satisfying the second-order conditions of A2.

Asymptotic arguments in survey sampling consist first in embedding a specific sample scheme
in a sequence of sample schemes. In the proof of the following representation theorem, we link
the elements of the sequence of sample schemes in a way that ensures uniform almost sure
convergence of the empirical c.d.f. We stress that in our result the vector of responses for the
population remains the original Yγ = (Yk)k∈Uγ , and not another set of identically distributed
random variables.

Theorem 2. Under A0 and A2, there exist sequences of random variables (I ′
γ k)γ∈N,k∈Uγ

,
(Y ′

k)k∈N defined on the probability space (� × [0,1],A ⊗ B[0,1],P′ = P ⊗ λ[0,1]) such that

• ‖F ′
γ − Fs‖∞ converges P′-a.s. to 0

• ∀γ ∈ N, (I ′
γ , Y ′

γ ) and (Iγ , Yγ ) have the same law
• ∀γ ∈ N,ω ∈ �,x ∈ [0,1], Y ′

γ (ω, x) = Yγ (ω),

where B[0,1] is the σ -field of Borel sets, λ[0,1] is the Lebesgue measure on [0,1], I ′
γ =

(I ′
γ 1, . . . , I

′
γNγ

), Y ′
γ = (Y ′

1, . . . , Y
′
Nγ

) and F ′
γ : R → [0,1] via

F ′
γ (α) =

∑
k∈Uγ

1(−∞,α](Y ′
γ k)I

′
γ k∑

k∈Uγ
I ′
γ k + 1I ′

γ =0
. (7)

Corollary 2. Suppose that Fs is continuous and 0 < Fs(y1) = Fs(y2) < 1 ⇒ y1 = y2. If A0
and A2 hold, then for (I ′

γ k)γ∈N,k∈Uγ
and (Y ′

k)k∈N that satisfy the conditions of Theorem 2, the
empirical quantiles

ξ ′
γ (p) = inf{y ∈ R: F ′

γ (y) ≥ p}
converge uniformly almost surely,

sup
p∈K

|ξγ (p) − ξs(p)| a.s.→
γ→∞ 0

for all K a compact subset of (0,1).
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3. Examples

We now consider a series of examples of selection mechanisms, motivated by real problems in
surveys and other observational studies. We give examples where conditions A0, A1, A2 hold
and where they fail.

3.1. Non-informative selection without replacement

• For any sequence of fixed-size without-replacement designs with Iγ independent of Yγ

(e.g., simple random sampling, stratified sampling with stratification variables independent
of Yγ , rejective sampling (Hájek [15]) with inclusion probabilities independent of Yγ , etc.),
the condition A4 holds provided that nγ N−1

γ converges to a strictly positive sampling rate.
• For a sequence of Bernoulli samples with parameter p ∈ (0,1), the {Iγ k} are i.i.d.

Bernoulli(p) random variables, so Var(nγ ) = Nγ p(1 − p) and condition A4 holds.
• Poisson sampling corresponds to a design in which, given a random vector (�γ 1, . . . ,

�γNγ ) :� → (0,1]Nγ , the {Iγ k} are a sequence of independent Bernoulli(�γk) random
variables (Poisson [32]). In this case, the variance of nγ is given by

Var(nγ ) =
∑
k∈Uγ

E[�γk(1 − �γk)] + Var

( ∑
k∈Uγ

�γk

)
.

Note that the first term in this expression is always oγ (N2
γ ), so it suffices to consider the

second.
– In the case where the vector [�γk]k∈Uγ is just a random permutation of a non-random

vector [πγk]k∈Uγ , then Var(
∑

k∈Uγ
�γk) = Var(

∑
k∈Uγ

πγ k) = 0 and A4 is satisfied

when Nγ
−1 ∑

k∈Uγ
πγ k converges to a non-zero constant.

– Suppose that Zγ is a random positive real vector of size Nγ , and suppose that the law
of (Zγ , Yγ ) is invariant under any permutation of the coordinates. For n∗

γ fixed, consider

the design in which �γk = n∗
γ Zγk{∑k∈Uγ

Zγk}−1. Then

Var

( ∑
k∈Uγ

�γk

)
= Var(n∗

γ ) = 0

and A4 is satisfied when Zγ and Yγ are independent and Nγ
−1n∗

γ converges to a non-
zero constant.

– Let aγ , bγ ∈ (0,1] with aγ �= bγ . If

(�γ 1, . . . ,�γNγ ) ≡
{

(aγ , . . . , aγ ), with probability 1/2,

(bγ , . . . , bγ ), with probability 1/2,

then

Var

( ∑
k∈Uγ

�γk

)
= N2

γ

(aγ − bγ )2

4
�= oγ (N2

γ ).
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Then A4 is not verified and in fact if Nγ aγ = oγ (1) we do not have uniform convergence
of the empirical c.d.f.

3.2. Length-biased sampling

Length-biased sampling, in which P(Iγ k = 1|Yk = yk) = mγ (yk) ∝ yk , is pervasive in real sur-
veys and observational studies. Cox [9] gives a now-classic example of sampling fibers in textile
manufacture, in which mγ (yk) ∝ yk = fiber length. In surveys of wildlife abundance, “visibil-
ity bias” means that larger individuals or groups are more noticeable (e.g., Patil and Rao [25]),
so mγ (yk) ∝ yk = size of individual or group. “On-site surveys” are sometimes used to study
people engaged in some activity like shopping in a mall (Nowell and Stanley [24]) or fishing at
the seashore (Sullivan et al. [38]); the longer they spend doing the activity, the more likely the
field staff are to intercept and interview them, so mγ (yk) ∝ yk = activity time. In mark-recapture
surveys of wildlife populations, individuals that live longer are more likely to be recaptured,
so mγ (yk) ∝ yk = lifetime (e.g., Leigh [22]). Similarly, in epidemiological studies of latent
diseases, individuals who become symptomatic seek treatment and drop out of eligibility for
sampling, while those with long latency periods are more likely to be sampled: mγ (yk) ∝ yk =
latency period. Finally, propensity to respond to a survey is often related to a variable of interest;
for example, higher response rates from higher-income individuals.

Suppose that f has compact, positive support:
∫

1[ε,M]f dλ = 1 for some 0 < ε < M < ∞.
For the γ th finite population, consider Poisson sampling with inclusion probability proportional
to Y , in the sense that {Iγ k}k∈Uγ are independent binary random variables, with

P(Iγ k = 1|Yk = yk) = 1 − P(Iγ k = 0|Yk = yk) = mγ (yk) ∝ yk.

Let τγ = y−1
k P(Iγ k = 1|Yk = yk) be the common proportionality constant (independent of k),

and assume that τγ → τ ∈ (0,M−1] as γ → ∞. Then

mγ (y) = τγ y → τy = m(y),

cγ (yk, y�) = 0, m′
γ (yk, y�) − mγ (yk) = 0,

P
(

Iγ = (0, . . . ,0)
) = E

[ ∏
k∈Uγ

(1 − τγ yk)

]

≤ (1 − τγ ε)Nγ = exp
(
Nγ ln(1 − τγ ε)

) = oγ (1),

so that A3 is verified. It then follows that the limiting c.d.f. is given by

Fs(α) =
∫

1(−∞,α]
y

E[Y1]f dλ. (8)

3.3. Cluster sampling

Let F denote the superpopulation c.d.f.: F(τ) = ∫
1(−∞,τ ]f dλ. Let τ ∈ R be such that

F(τ) > 0. Define i1γ = (1(−∞,τ ](Yk))k∈Uγ and i2γ = (1(τ,∞)(Yk))k∈Uγ . The selection mecha-
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nism is Iγ = i1γ or i2γ , each with probability 1/2, so uniform convergence of the empirical
c.d.f. is not possible. Note that

Cov(Iγ k, Iγ �|Yk = y1, Y� = y2) = 1
21(−∞,τ ](y1)1(−∞,τ ](y2)

+ 1
21(τ,∞)(y1)1(τ,∞)(y2) − 1

4

so that ∫
cγ (y1, y2)f (y1)f (y2)dy1 dy2 = 1

2
F 2(τ ) + 1

2

(
1 − F(τ)

)2 − 1

4
�= oγ (1),

and (1a) fails to hold. This example can be regarded as a “worst-case” cluster sample: the sample
consists of many elements but only one cluster, and the population is made up of a small number
of large clusters, none of which is fully representative of the population.

3.4. Cut-off sampling and take-all strata

In cut-off sampling a part of the population is excluded from sampling, so that Iγ k = 0 with
probability one for some subset of Uγ . This may be due to physical limitations of the sampling
apparatus, like a net that lets small animals escape, or may be due to a deliberate design decision.
For example, a statistical agency may be willing to accept the bias inherent in cutting off small
y-values if the y-distribution is highly skewed, as is often the case in establishment surveys (e.g.,
Särndal et al. [34], Section 14.4).

Consider cut-off sampling with Iγ k = 0 for {k ∈ Uγ : yk ≤ τ }, and simple random sampling
without replacement of size min{nγ ,Nγ − ∑

j∈Uγ
1(−∞,τ ](yj )} from the remaining population,

{j ∈ Uγ : yj > τ }.
Define Zk = 1(−∞,τ ](Yk) with corresponding realization zk = 1(−∞,τ ](yk). Let ργ = N−1

γ nγ

and assume that limγ→∞ ργ = ρ. We now verify A3.
Define SγA = ∑

j∈Uγ : j /∈A Zj . By the weak law of large numbers, N−1
γ SγA→P F (τ) as γ →

∞ for A = {k} or A = {k, �}, and so for those sets A we have

lim
γ→∞ E

[
ργ − Nγ

−1SγA

1 − N−1
γ SγA

1{ργ >Nγ
−1SγA}

]
= (ρ − F(τ))1{ρ>F(τ)}

1 − F(τ)

by the uniform integrability of the integrand. With the same argument,

lim
γ→∞ E

[
(nγ − Sγ {k,�})(nγ − 1 − Sγ {k,�})
(Nγ − Sγ {k,�})(Nγ − 1 − Sγ {k,�})

1{nγ >Sγ {k,�}}
]

=
(

ρ − F(τ)

1 − F(τ)

)2

1{ρ>F(τ)}.
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Using conditional first and second-order inclusion probabilities under simple random sam-
pling, we have

mγ (yk) = zk + (1 − zk)E

[
nγ − Sγ {k}
Nγ − Sγ {k}

1{nγ >Sγ {k}}
]

→ zk + (1 − zk)
(ρ − F(τ))1{ρ>F(τ)}

1 − F(τ)
,

m′
γ (y�, yk) = zk + (1 − z�)(1 − zk)E

[
nγ − Sγ {k,�}
Nγ − Sγ {k,�}

1{nγ >Sγ {k,�}}
]

+ z�(1 − zk)E

[
nγ − 1 − Sγ {k,�}
Nγ − 1 − Sγ {k,�}

1{nγ −1>Sγ {k,�}}1{Nγ −1>Sγ {k,�}}
]

→ zk + (1 − zk)
(ρ − F(τ))1{ρ>F(τ)}

1 − F(τ)
,

dγ (yk, y�) = E[Iγ kIγ �|Yk = yk,Y� = y�]

= zkz� + {zk(1 − z�) + (1 − zk)z�}E
[

nγ − 1 − Sγ {k,�}
Nγ − 1 − Sγ {k,�}

1{nγ −1>Sγ {k,�}}
]

+ (1 − zk)(1 − z�)E

[
(nγ − Sγ {k,�})(nγ − 1 − Sγ {k,�})
(Nγ − Sγ {k,�})(Nγ − 1 − Sγ {k,�})

1{nγ >Sγ {k,�}}
]

→ zkz� + (1 − zk)(1 − z�)

(
ρ − F(τ)

1 − F(τ)

)2

1{ρ>F(τ)}

+ {zk(1 − z�) + (1 − zk)z�} (ρ − F(τ))1{ρ>F(τ)}
1 − F(τ)

,

cγ (yk, y�) = dγ (yk, y�) − m′
γ (yk, y�)m

′
γ (y�, yk) = oγ (1),

and A3 is verified.
Cut-off sampling for yk ≤ τ is essentially the complement of stratified sampling with a “take-

all stratum”: Iγ k = 1 for the set {k ∈ Uγ : zk = 1}. Take-all strata are common in practice, particu-
larly for the highly-skewed populations in which cut-off sampling is attractive. Arguments nearly
identical to those above can be used to establish A3 in the take-all case. This take-all stratified
design is analogous to the well-known class of case–control studies in epidemiology. We specif-
ically consider prospective case–control studies (e.g., Mantel [23], Langholz and Goldstein [21],
Arratia et al. [1]), in which the finite population of all disease cases and controls is stratified,
disease cases (zk = 1) are selected with probability one, and controls (zk = 0) are selected with
probability less than one.

3.5. With-replacement sampling with probability proportional to size

Let {nγ } be a non-random sequence of positive integers with nγ < Nγ and suppose that f

has strictly positive support:
∫

1(−∞,0]f dλ = 0. Consider the case of with-replacement sam-



Uniform c.d.f. convergence under informative selection 1373

pling of nγ draws, with probability of selecting element k on the hth draw equal pγk ∈ [0,1],∑
k∈Uγ

pγ k = 1. While pγk could be constructed in many ways, a case of particular interest is
pγk ∝ Yk . This design is usually not feasible in practice, but statistical agencies often attempt
to draw samples with probability proportional to a size measure (p.p.s.) that is highly correlated
with Y . Such a design will be highly efficient for estimation of the Y -total (indeed, a fixed-size
p.p.s. design with probabilities proportional to Yk would exactly reproduce the Y -total).

For h = 1, . . . , nγ , let Rγh be i.i.d. random variables with

P(Rγh = k|Yγ ) = Yk∑
j∈Uγ

Yj

.

Then Iγ k = ∑nγ

h=1 1{Rγh=k} counts the number of draws for which element k is selected. Define
WγA = N−1

γ

∑
j∈Uγ : j /∈A Yj . Then

mγ (yk) = nγ

Nγ

ykE

[
1

N−1
γ yk + Wγ {k}

]
,

m′
γ (yk, y�) = nγ

Nγ

ykE

[
1

N−1
γ (yk + y�) + Wγ {k,�}

]
,

vγ (yk) =
(

nγ

Nγ

yk

)2

Var

(
1

N−1
γ yk + Wγ {k}

)
+ nγ

Nγ

yk

Nγ

E

[
Wγ {k}

(N−1
γ yk + Wγ {k})2

]
,

cγ (yk, y�) =
(

nγ

Nγ

)2

yky�

{
− 1

Nγ

E

[
1

(N−1
γ (yk + y�) + Wγ {k,�})2

]

+ nγ Var

(
1

N−1
γ (yk + y�) + Wγ {k,�}

)}
.

Under mild additional conditions, A1 and A2 can be established using straightforward bound-
ing and limiting arguments. A sufficient set of conditions for either A1 or A2 is nγ N−1

γ → τ ∈
[0,1] as γ → ∞ and E[Y 6

1 ] < ∞. Under these conditions, mγ (y) = τy(E[Y1])−1 + oγ (1), and
the limiting c.d.f. is the same as in length-biased sampling, as given by equation (8).

3.6. Endogenous stratification

Endogenous stratification, in which the sample is effectively stratified on the value of the de-
pendent variable, is common in the health and social sciences (e.g., Hausman and Wise [16],
Jewell [18], Shaw [36]). Often, it arises by design when a screening sample is selected, the de-
pendent variable is observed, and then covariates are measured for a sub-sample that is stratified
on the dependent variable: for example, undersampling the high-income stratum (Hausman and
Wise [16]). It can also arise through uncontrolled selection effects, in much the same way as
length-biased sampling. One such example comes from fisheries surveys, in which a field inter-
viewer is stationed at a dock for a fixed length of time, and intercepts recreational fishing boats
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as they return to the dock. The interviewer tends to select high-catch boats and, while busy mea-
suring the fish caught on those boats, misses more of the low-catch boats. Thus, sampling effort
is endogenously stratified on catch (Sullivan et al. [38]).

We consider a sample endogenously stratified on the order statistics of Y . Let {Hγ } be a non-
random sequence of positive integers, which may remain bounded or go to infinity. For each γ ,

let {Nγh}Hγ

h=1 be a set of non-random positive integers with
∑Hγ

h=1 Nγh = Nγ , and let {nγh}Hγ

h=1
be a set of non-random positive integers with nγh ≤ Nγh. Let

Y(1) < Y(2) < · · · < Y(Nγ )

denote the order statistics for the γ th population, which is stratified by taking the first Nγ 1 values
as stratum 1, the next Nγ 2 as stratum 2, etc., with the last NγHγ values constituting stratum Hγ .
The γ th sample is then a stratified simple random sample without replacement of size nγh from
the Nγh elements in stratum h.

Define Mγ 0 = 0 and Mγh = ∑h
g=1 Nγh. Because Hγ , Nγ and nγ are not random, we then

have

mγ (y) =
Hγ∑
h=1

nγh

Nγh

P
(
Y(Mγ,h−1) < Yk ≤ Y(Mγh)|Yk = y

)

=
Hγ∑
h=1

nγh

Nγh

P

(
Mγ,h−1

Nγ − 1
< FNγ −1(y) ≤ Mγ,h

Nγ − 1

)
,

where FNγ −1(·) is the empirical cumulative distribution function for {Yj }j∈Uγ : j �=k . From the
classical Glivenko–Cantelli theorem, FNγ −1(y) converges uniformly almost surely to F . Sim-
ilar computations can be used to derive m′

γ (y1, y2) and cγ (y1, y2) and their limits. With such
derivations, it is possible to establish the following result, the proof of which is omitted.

Result 1. If G(α) = limγ→∞
∑Hγ

h=1 nγhN
−1
γ h 1

(N−1
γ Mγ,h−1,N

−1
γ Mγh)

(α) exists except for a finite

number of points and is a piecewise continuous nonnull function, and the convergence is uniform
in α then A3 and A2 hold.

4. Conclusion

We have given assumptions on the selection mechanism and the superpopulation model under
which the unweighted empirical c.d.f. converges uniformly to a weighted version of the super-
population c.d.f. Because the conditions we specify on the informative selection mechanism are
closely tied to first and second-order inclusion probabilities in a standard design-based survey
sampling setting, the conditions are verifiable. Our examples illustrate the computations for se-
lection mechanisms encountered in real surveys and observational studies. We expect these con-
ditions to be useful in studying the properties of other basic sample statistics under informative
selection, which will be the subject of further research.
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Appendix A: Proofs of Theorems 1 and 2

The first subsection contains the proof of Theorem 1. The proof consists in showing the uniform
L2 convergence of the empirical c.d.f., seen as a ratio of two random variables. First, we show
that from A1 we can deduce the L2 convergence of both the numerator and denominator, then
the classical proof of Glivenko–Cantelli is adapted to obtain a uniform L2 convergence.

The second subsection contains the proof of Theorem 2. We first construct two sequences of
random variables (I ′

γ ) and Y ′ such that ∀γ, (I ′
γ , Y ′

γ ) and (Iγ , Yγ ) have the same distribution.
We then prove uniform L2 convergence of the empirical c.d.f. defined from (I ′

γ ) and Y ′, almost
surely in Y ′. The result is “design-based” in the sense that it is conditional on Y ′, and is of
independent interest. We conclude by showing the almost sure convergence.

A.1. Proof of Theorem 1: Uniform L2 convergence of the empirical c.d.f.

Lemma 1. Given a bounded measurable function b : R → R, A0 and A1 imply that∑
k∈Uγ

b(Yk)Iγ k

Nγ

L2→
γ→∞

∫
bmf dλ.

Proof. Assume A0 and A1. The exchangeability property (1) implies

E

[∑
k∈Uγ

b(Yk)Iγ k

Nγ

]
=

∑
k∈Uγ

E[b(Yk)Iγ k]
Nγ

=
∫

bmγ f dλ →
γ→∞

∫
bmf dλ

by (0a), (0b) and the dominated convergence theorem. Further, (1) implies

Var

(∑
k∈Uγ

b(Yk)Iγ k

Nγ

)

= 1

N2
γ

∑
k,�∈Uγ

{Cov(b(Yk)E[Iγ k|Yk,Y�], b(Y�)E[Iγ l |Yk,Y�])

+ E[b(Yk)b(Y�)Cov(Iγ k, Iγ �|Yk,Y�)]}

=
(

1 − 1

Nγ

)(∫
b(y1)b(y2)m

′
γ (y1, y2)m

′
γ (y2, y1)f (y1)f (y2)dy1 dy2

−
(∫

b(y1)m
′
γ (y1, y2)f (y1)f (y2)dy1 dy2

)2

+
∫

b(y1)b(y2)cγ (y1, y2)f (y1)f (y2)dy1 dy2

)

+ 1

Nγ

(∫
b2vγ f dλ +

∫
b2m2

γ f dλ −
(∫

bmγ f dλ

)2)
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=
(

1 − 1

Nγ

)(∫
b(y1)b(y2)

(
m′

γ (y1, y2)m
′
γ (y2, y1)

− mγ (y1)mγ (y2)
)
f (y1)f (y2)dy1 dy2

+
∫

b(y1)b(y2)cγ (y1, y2)f (y1)f (y2)dy1 dy2

)

+ 1

Nγ

(∫
b2(vγ + m2

γ )f dλ −
(∫

bmγ f dλ

)2)

= oγ (1)

by (1a), (1b), and (1c), and the result is proved. �

Lemma 2. Under A0 and A1, the numerator of the empirical c.d.f. converges uniformly in L2:

lim
γ→∞ E

[(
sup
α∈R

∣∣∣∣
∑

k∈Uγ
1(−∞,α](Yk)Iγ k

Nγ

−
∫

1(−∞,α]mγ f dλ

∣∣∣∣
)2]

= 0.

Proof. We first define Gγ : R → R
+ and Gs : R → R

+ as

Gγ (α) = 1

Nγ

∑
k∈Uγ

1(−∞,α](Yk)Iγ k and Gs(α) =
∫

1(−∞,α]mf dλ.

With these definitions,

sup
α∈R

∣∣∣∣
∑

k∈Uγ
1(−∞,α](Yk)Iγ k

Nγ

−
∫

1(−∞,α]mγ f dλ

∣∣∣∣ = ‖Gγ − Gs‖∞.

Let η ∈ N
∗ index the positive integers and define a sequence of subdivisions {αη,q}η+1

q=0 of R

via αη,0 = −∞, αη,η+1 = ∞, and for q = 1, . . . , η,

αη,q = inf{α ∈ R|Gs(α) ≥ η−1qGs(∞)}.
We first show that for all positive integers η,

sup
α∈R

{|Gγ (α) − Gs(α)|} ≤ max
0≤q≤η+1

{|Gγ (αη,q) − Gs(αη,q)|} + Gs(∞)

η
.

Let η ∈ N and α ∈ R. Then α ∈ [αη,q, αη,q+1] for some 0 ≤ q ≤ η, and

Gγ (αη,q) ≤ Gγ (α) ≤ Gγ (αη,q+1),

Gs(αη,q) ≤ Gs(α) ≤ Gs(αη,q+1),

Gs(αη,q+1) − Gs(∞)

η
≤ Gs(α) ≤ Gs(αη,q) + Gs(∞)

η
.
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Combining these inequalities, we have

Gγ (αη,q) − Gs(αη,q) − Gs(∞)

η
≤ Gγ (α) − Gs(α)

≤ Gγ (αη,q+1) − Gs(αη,q+1) + Gs(∞)

η
,

so that

|Gγ (α) − Gs(α)|

≤ max{|Gγ (αη,q) − Gs(αη,q)|, |Gγ (αη,q+1) − Gs(αη,q+1)|} + Gs(∞)

η

≤ max
0≤q ′≤η+1

{|Gγ (αη,q ′) − Gs(αη,q ′)|} + Gs(∞)

η
.

Thus, for all α ∈ R,

|Gγ (α) − Gs(α)|2 ≤ 2

(
max

0≤q ′≤η+1
{|Gγ (αη,q ′) − Gs(αη,q ′)|2} + Gs(∞)2

η2

)
,

so that

E[‖Gγ − Gs‖2∞] ≤ 2E
[

max
0≤q≤η+1

{|Gγ (αη,q) − Gs(αη,q)|2}
]
+ 2Gs(∞)2

η2
. (9)

Let ε > 0 be given. Choose η ∈ N so large that 2Gs(∞)2η−2 < ε/2, then use Lemma 1 to
choose � so that γ ≥ � implies

2E
[

max
0≤q≤η+1

{|Gγ (αη,q) − Gs(αη,q)|2}
]

<
ε

2
.

Hence, for all γ ≥ �, the right-hand side of (9) is bounded by ε, which was arbitrary, so
limγ→∞ E[(‖Gγ − Gs‖∞)2] = 0. �

Proof of Theorem 1. By Definitions 1 and 3 and A0, for all α ∈ R,

Fγ (α) = Gγ (α)

Gγ (∞) + 1Gγ (∞)=0
, Fs(α) = Gs(α)

Gs(∞)
,

so

‖Fγ − Fs‖∞ =
∥∥∥∥ Gγ

Gγ (∞) + 1Gγ (∞)=0
− Gs

Gs(∞)

∥∥∥∥∞

=
∥∥∥∥Gγ − Gs

Gs(∞)
+ Gγ

Gs(∞) − (Gγ (∞) + 1Gγ (∞)=0)

Gs(∞)(Gγ (∞) + 1Gγ (∞)=0)

∥∥∥∥∞
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≤ ‖Gγ − Gs‖∞
Gs(∞)

+ ‖Gγ ‖∞
Gγ (∞) + 1Gγ (∞)=0

|Gγ (∞) + 1Gγ (∞)=0 − Gs(∞)|
Gs(∞)

≤ ‖Gγ − Gs‖∞
Gs(∞)

+ |Gγ (∞) + 1Gγ (∞)=0 − Gs(∞)|
Gs(∞)

≤ ‖Gγ − Gs‖∞
Gs(∞)

+ |Gs(∞) − Gγ (∞)|
Gs(∞)

+ 1Gγ (∞)=0

Gs(∞)
.

From Lemma 2, the first two summands converge to 0 in L2. From (1d), so does the third sum-
mand. �

A.2. Proof of Theorem 2: Uniform almost sure convergence of the
empirical c.d.f.

Construction of I ′
γ , Y ′

We define Y ′ and I ′
γ on the probability space (� × [0,1],A ⊗ B[0,1],P′ = P ⊗ λ[0,1]). First,

define Y ′ :� × [0,1] → R
N via

Y ′(ω, x) = Y(ω).

Let Y ′
γ be the vector of random variables (Y ′

1, . . . , Y
′
Nγ

) and note that Y ′
γ (ω, x) = Yγ (ω). Let

Sγy = {i ∈ N
Nγ : gγ (i, y) �= 0} and note that for a given y ∈ R

Nγ ,
∑

i∈Sγy
gγ (i, y) = 1. Define

hγ : RNγ × N
Nγ → R via

hγ (y, i) = sup
α∈R

∣∣∣∣
∑

k∈Uγ
ik1(−∞,α](yk)

1i=0 + ∑
k∈Uγ

(ik)
− Gs(α)

∣∣∣∣.
We now impose an order on the Mγy vectors in Sγy by requiring hγ to be non-increasing; that is,
for vectors i(t), i(u) ∈ Sγy , t < u if and only if hγ (y, i(t)) ≥ hγ (y, i(u)). Any ties can be resolved,
for example, by randomization. For ω ∈ � and x ∈ [0,1], we then define I ′

γ (ω,0) = i(1) and for
x > 0

I ′
γ (ω, x) =

Mγy∑
u=1

i(u)1(
∑

t<u gγ (i(t),Yγ (ω)),
∑

t≤u gγ (i(t),Yγ (ω))](x).

Because we use uniform measure on B[0,1], the vector i(u) is sampled from Sγ Yγ (ω) with proba-

bility gγ (i(u), Yγ (ω)). Thus, by construction we have for all γ ,

P′[I ′
γ = i|Y ′

γ = y] = gγ (i, y) = P[Iγ = i|Yγ = y]
and P′[Y ′

γ = y] = P[Yγ = y], so that

P′[I ′
γ = i, Y ′

γ = y] = P[Iγ = i, Yγ = y].
This yields the following property.
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Property 1. For all γ ,

hγ (Y ′
γ , I ′

γ ) = sup
α∈R

|F ′
γ (α) − Fs(α)| = ‖F ′

γ − Fs‖∞

has the same law as ‖Fγ − Fs‖∞, where F ′
γ is defined in (7).

Define G′
γ : R → R

+ via

G′
γ (α) =

∑
k∈Uγ

1(−∞,α](Y ′
k)I

′
γ k

Nγ

,

noting that F ′
γ = G′

γ (G′
γ (∞) + 1G′

γ (∞)=0)
−1. We then have the following lemma.

Lemma 3. Under A0 and A2, for all α ∈ R,

lim
γ→∞

∫
[0,1]

(
G′

γ (α)(ω,x) − Gs(α)
)2 dλ(x) = 0 P-a.s. (ω).

Proof. Let

�GC =
{
ω ∈ �: lim

γ→∞ sup
α∈R

∣∣∣∣N−1
γ

∑
k∈Uγ

1(−∞,α](Yk)(ω) −
∫

1(−∞,α]f dλ

∣∣∣∣ = 0

}
.

From the Glivenko–Cantelli theorem, P(�GC) = 1. We will show that for all ω ∈ �GC,∫
[0,1]

(
G′

γ (α)(ω,x) − Gs(α)
)2 dλ(x) = oγ (1).

Let ω ∈ �GC. We then have√∫
[0,1]

(
G′

γ (α)(ω,x) − Gs(α)
)2 dλ(x)

≤
√∫

[0,1]

(
G′

γ (α)(ω,x) −
∑

k∈Uγ
1(−∞,α](Yk(ω))

∫
[0,1] I

′
γ k(ω,u)dλ(u)

Nγ

)2

dλ(x)

+
∣∣∣∣
∑

k∈Uγ
1(−∞,α](Yk(ω))

∫
[0,1] I

′
γ k(ω,u)dλ(u)

Nγ

−
∑

k∈Uγ
1(−∞,α](Yk(ω))mγ (Yk(ω))

Nγ

∣∣∣∣
+

∣∣∣∣
∑

k∈Uγ
1(−∞,α](Yk(ω))mγ (Yk(ω))

Nγ

−
∫

1(−∞,α]mγ f dλ

∣∣∣∣
+

∣∣∣∣
∫

1(−∞,α]mγ f dλ −
∫

1(−∞,α]mf dλ

∣∣∣∣.
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The first term is the square root of

Var
(
G′

γ (α)|Y ′
γ = (Y1(ω), . . . , YNγ (ω))

) = N−2
γ oγ (N2

γ ) = oγ (1)

by (2a). The second term is∣∣∣∣ ∑
k∈Uγ

1(−∞,α](Yk(ω))

Nγ

(
E[I ′

γ k|Y ′
γ = (Y1(ω), . . . , YNγ (ω))] − mγ (Yk(ω))

)∣∣∣∣ = oγ (1)

by (2b). The third term is oγ (1) because the convergence of the empirical measure given by A2
implies the convergence of the integral for all bounded random variables. Finally, the fourth term
is oγ (1) by A0 and the dominated convergence theorem. �

The following lemma has its own interest, yielding design-based uniform L2 convergence of
the empirical c.d.f.

Lemma 4. Under A0 and A2,∫
(hγ (Y ′

γ (ω, x), I ′
γ (ω, x)))2 dλ(x) = oγ (1) P-a.s. (ω).

Proof. Starting from Lemma 3 and adapting the proof of Lemma 2, we have that: A2 ⇒∫
(‖Gγ (Y ′

γ (ω, x), I ′
γ (ω, x)) − Gs‖∞)2 dλ(x) = oγ (1) P-a.s. (ω). We then adapt the end of the

proof of Theorem 1 and get the result. �

Definition 5. For ω ∈ �, γ ∈ N and all ε > 0, aε,γ,ω ∈ [0,1] is defined as

aε,γ,ω =
∫

[0,1]
1{hγ (Y ′

γ ,I ′
γ )(ω,x)≥ε} dλ(x) = λ[0,1]

({hγ (Y ′
γ , I ′

γ )(ω, ·) ≥ ε}).
Property 2. For all ε > 0,

lim sup
γ→∞

1{hγ (Y ′
γ ,I ′

γ )(ω,x)>ε} = 1{0} P-a.s. (ω).

Proof. First note that ∀x ∈ [0,1], 1{hγ (Y ′
γ ,I ′

γ )(ω,x)>ε} = 1(0,aε,γ,ω](x), because by construction
of I ′

γ , Y ′
γ , {x ∈ [0,1]: hγ (Y ′

γ , I ′
γ )(ω, x) > ε} is a subinterval of [0,1] containing 0 of measure

aε,γ,ω . Further, ∀x ∈ [0,1],
lim sup
γ→∞

1{hγ (Y ′
γ ,I ′

γ )(ω,x)>ε} = 1[0,lim supγ→∞ aε,γ,ω](x). (10)

By Lemma 4, the random variable

hγ (Y ′
γ , I ′

γ )(ω, ·) :
([0,1],B[0,1], λ[0,1]

) → R
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converges in L2(λ) to 0, P-a.s. (ω), hence it also converges in probability to 0, and so
limγ→∞ aε,γ,ω = 0. The result then follows from equation (10). �

Proof of Theorem 2. We want to show that

A0,A2 ⇒ ‖F ′
γ − Fs‖∞

a.s.→ 0 as γ → ∞,

which is equivalent to showing that

A0, A2 ⇒ P′({
lim

γ→∞hγ (Y ′
γ , I ′

γ ) = 0
})

= 1.

Assume A0 and A2. We calculate:

P′({
lim

γ→∞hγ (Y ′
γ , I ′

γ ) = 0
})

= P′
(⋂

ε>0

⋃
�

⋂
γ>�

{hγ (Y ′
γ , I ′

γ ) < ε}
)

= lim
ε→0

P′
(⋃

�

⋂
γ>�

{hγ (Y ′
γ , I ′

γ ) < ε}
)

= lim
ε→0

1 − P′
(⋂

�

⋃
γ>�

{hγ (Y ′
γ , I ′

γ ) ≥ ε}
)

= 1 − lim
ε→0

∫
lim sup
γ→∞

1{hγ (Y ′
γ ,I ′

γ )(ω,x)≥ε} dP′(ω, x).

Let ε > 0. Applying Fubini’s theorem,

∫
lim sup
γ→∞

1{hγ (Y ′
γ ,I ′

γ )(ω,x)≥ε} dP′(ω, x)

=
∫ (∫

lim sup
γ

1{hγ (Y ′
γ ,I ′

γ )(ω,x)≥ε} dλ[0,1](x)

)
dP(ω).

Since we have lim supγ→∞ 1{hγ (Y ′
γ ,I ′

γ )(ω,x)≥ε} = 1{0}(x) P-a.s. (ω), we also have for all ε > 0
that ∫

lim sup
γ→∞

1{hγ (Y ′
γ ,I ′

γ )(ω,x)≥ε} dλ[0,1](x) =
∫

[0,1]
1{0}(x)dλ[0,1](x) = 0

P-a.s. (ω). Thus,

P′({
lim

γ→∞hγ (Y ′
γ , I ′

γ ) = 0
})

= 1. �
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Appendix B: Proof of Corollaries 1, 2

We state the following lemma which is a consequence of a theorem due to Pólya (e.g., Ser-
fling [35], page 18). The proof is omitted.

Lemma 5. Let {uγ (·)}γ∈N be a sequence of increasing step functions, uγ : R → [0,1], that
converges pointwise to a continuous increasing function u : R → [0,1] with limy→−∞ u(y) = 0,
limy→∞ u(y) = 1 and 0 < u(y1) = u(y2) < 1 ⇒ y1 = y2. Define qγ (p) = inf{y ∈ R: uγ (y) ≥
p}, q(p) = inf{y ∈ R: u(y) ≥ p}. Then for all K a compact subset of (0,1),
limγ→∞ supp∈K{qγ (p) − q(p)} = 0.

B.1. Proof of Corollary 1

Proof. As mγ f and mf may have different supports, we extend the definition of ξs by

∀p ∈ R, ξs(p) = inf{y ∈ R: Fs(y) ≥ p}.
Let K be a compact subset of (0,1). Then

sup
p∈K

|ξγ (p) − ξs(p)| P→
γ→∞ 0

if from all subsequences one can extract a subsequence that converges a.s. to 0. Let τ : N → N

be a strictly increasing function. If ‖Fγ − Fs‖∞→L2 0 then ‖Fτ(γ ) − Fs‖∞→L2 0 and ‖Fτ(γ ) −
Fs‖∞→P 0. Then there exists ρ: N → N strictly increasing such that ‖Fτ(ρ(γ )) − Fs‖∞→a.s.0
and by Lemma 5, P(limγ→∞ supp∈K |ξτ(ρ(γ ))(p) − ξs(p)| = 0) = 1.

For the uniform L2 convergence, let p ∈ (0,1) and α ∈ R. Then |Fγ (α) − Fs(α)| ≤ ‖Fγ −
Fs‖∞, so that

{α ∈ R: Fs(α) ≥ p + ‖Fγ − Fs‖∞} ⊂ {α ∈ R: Fγ (α) ≥ p}
⊂ {α ∈ R: Fs(α) ≥ p − ‖Fγ − Fs‖∞},

and

inf{α ∈ R: Fs(α) ≥ p + ‖Fγ − Fs‖∞} ≥ inf{α ∈ R :Fγ (α) ≥ p}
≥ inf{α ∈ R: Fs(α) ≥ p − ‖Fγ − Fs‖∞}.

Hence, ∀p ∈ (0,1), ξs(p + ‖Fγ − Fs‖∞) ≥ ξγ (p) ≥ ξs(p − ‖Fγ − Fs‖∞).

Further, f has compact support by hypothesis, so there exists b > 0 such that the supports
of (mγ f )γ∈N and mf are included in [−b, b]. So ∀p ∈ (0,1), γ ∈ N, −b ≤ ξγ (p) ≤ b, −b ≤
ξs(p) ≤ b. By combining these three inequalities, we have, ∀p ∈ (0,1):

|ξs(p) − ξγ (p)| ≤ min{b, ξs(p + ‖Fγ − Fs‖∞)} − max{−b, ξs(p − ‖Fγ − Fs‖∞)}. (11)
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Since K ⊂ (0,1) is compact, there exists a ∈ (0,1) such that K ⊂ [a,1−a]. With the assumed
continuity of Fs , we have that ξs is uniformly continuous on any subinterval of [0,1] that does
not contain zero. Thus, for ε > 0, there exists η ∈ (0, a/2) such that p ∈ K implies |ξs(p + η) −
ξs(p−η)| ≤ ε. If ‖Fγ −Fs‖∞ ≤ η, then p+‖Fγ −Fs‖∞ ≤ p+η < 1−a/2, and ξs(p+‖Fγ −
Fs‖∞) < b, p − ‖Fγ − Fs‖∞ ≥ p − η > a/2 and ξs(p − ‖Fγ − Fs‖∞) > −b, so equation (11)
is bounded by ε. If ‖Fγ − Fs‖∞ > η, then (11) is bounded by (2b) 1{‖Fγ −Fs‖∞>η}. Thus,

E
[(

sup
p∈K

|ξγ (p) − ξs(p)|
)2] ≤ ε2 + 4b2P(‖Fγ − Fs‖∞ > η).

Since ε was arbitrary and P(‖Fγ − Fs‖∞ > η) → 0 as γ → ∞, the result follows. �

B.2. Proof of Corollary 2

Proof. If ‖F ′
γ − Fs‖∞→a.s.0, then for all K a compact subset of (0,1), and all (ω, x) ∈

{(ω, x): ‖F ′
γ − Fs‖∞ → 0}, we apply Lemma 5 with uγ = F ′

γ (ω, x), u = Fs , and obtain that
P′(limγ→∞ supp∈K |ξ ′

γ (p) − ξ ′
s(p)| = 0) = 1. �
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