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This paper deals with the Fisher-consistency, weak continuity and differentiability of estimating function-
als corresponding to a class of both linear and nonlinear regression high breakdown M estimates, which
includes S and MM estimates. A restricted type of differentiability, called weak differentiability, is defined,
which suffices to prove the asymptotic normality of estimates based on the functionals. This approach al-
lows to prove the consistency, asymptotic normality and qualitative robustness of M estimates under more
general conditions than those required in standard approaches. In particular, we prove that regression MM-
estimates are asymptotically normal when the observations are φ-mixing.
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1. Introduction

We consider estimation in the regression model with random predictors

yi = g(xi, β0) + ui, (1.1)

with data (xi, yi) ∈ Rp ×R, i = 1, . . . , n; where β0 ∈ B ⊆ Rq is a vector of unknown parameters,
g(x,β) is a known function continuous in β , and for each i, xi and ui are independent. It is
assumed that {(xi, yi), i ≥ 1} are identically distributed but not necessarily independent. The
well-known fact that the least squares (LS) estimate of β0 is sensitive to atypical observations
has motivated the development of robust estimates.

An important class of robust estimators are the M estimates. Inside this class we can distin-
guish the S estimates introduced by Rousseeuw and Yohai [22] and the MM estimates proposed
by Yohai [28]. For linear regression, S estimates may attain the highest possible breakdown point,
and MM estimates may combine the highest possible breakdown point with a high normal effi-
ciency; see, for example, [19], Chapter 5. In the case of nonlinear regression, MM estimates may
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also combine high breakdown point with a high normal efficiency. In fact, the normal efficiency
of these estimates can be made as close to one as desired, and Monte Carlo simulations in Fasano
[10] show them to have a highly robust behavior for some nonlinear models.

In the nonlinear case, Fraiman [12] studied bounded influence estimates for nonlinear regres-
sion. Sakata and White [23] dealt with S estimates for nonlinear regression models with depen-
dent observations; Vainer and Kukush [26] and Liese and Vajda [17,18] dealt with M estimates
with a fixed scale, which therefore lack scale equivariance. The latter study the

√
n-consistency

of M estimates in more general models, which include linear and nonlinear regression with inde-
pendent observations. Stromberg [24] proved the weak consistency of the least median of squares
(LMS) estimate, and Cízek [4] dealt with the consistency and the asymptotic normality of the
least trimmed squares (LTS) estimate under dependency.

Three important qualitative features of an estimate are consistency, asymptotic normality and
qualitative robustness. These properties have been studied in the literature through specific ap-
proaches. Yohai [28] proved these properties for MM estimates in the i.i.d. linear case, and
Fasano [10] proved them in the nonlinear case, both assuming symmetrically distributed ui ’s.

In this work, we propose an alternative approach, based on the representation of the estimates
as functionals on distributions (Hampel [13]). For a large class of estimates, which includes M
estimates, one can define a functional T (G) on the space of data distributions, such that if Gn is
the empirical distribution, then T (Gn) is the estimate, and if G0 is the underlying distribution,
then T (G0) is the parameter that we want to estimate. The weak continuity of the functional
T simplifies the proof of consistency of T (Gn) and some suitable forms of differentiability of
T , as Fréchet or Hadamard differentiability, allow simple proofs of the asymptotic normality
of the estimate under very general conditions. These results hold without the requirement that
Gn be the empirical distribution of a sequence of i.i.d. random variables: if we want to estimate
T (G0), it suffices that Gn converges weakly to G0 a.s. The weak continuity of M functionals at a
general statistical model were studied by Clarke [5] and [6]. Fréchet differentiability was studied
by Boos and Serfling [3] and Clarke [5], and Hadamard differentiability by Fernholz [11]. In
all of these works, it is required that the score function used for the M estimate be bounded,
and therefore their results can not be applied to regression M estimates. In this paper, we prove
under very general conditions that the functionals associated to M estimates of regression are
weakly continuous. Besides, since the usual forms of differentiability, like Fréchet or Hadamard
differentiability, require in the case of M estimates the boundedness of the score functions, we
introduce a new concept of differentiability, that we call weak differentiability, which is satisfied
by high breakdown M estimates of regression, for example, by S and MM estimates, and which
is adequate to prove the asymptotic normality of these estimates.

This work is organized as follows: In Section 2, we define the estimates to be considered
and in Sections 3, 4 and 5 we shall respectively deal with the Fisher-consistency, continuity and
differentiability of the functionals corresponding to the estimates defined above. These results
will be shown to imply the consistency, qualitative robustness and asymptotic normality of the
estimates under assumptions more general than the i.i.d. model and without the requirement
of symmetric errors. In Section 6, we apply the results obtained in the former sections to MM
estimates. Finally, Section 7 contains all proofs.
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2. Definitions of estimates

We first define our notation. Henceforth, EG[h(z)] and PG(A) will respectively denote the ex-
pectation of h(z) and the probability that z ∈ A, when z is distributed according to G. If z has
distribution G, we write z ∼ G or D(z) = G. Weak convergence of distributions, convergence
in probability and convergence in distribution of random variables or vectors are denoted by
Gn →w G, zn →p z and zn →d z, respectively. By an abuse of notation, we will write zn →d G

to denote D(zn) →w G. The complement and the indicator of the set A are denoted by Ac and
1A, respectively. The scalar product of vectors a and b is denoted by a′b, and R+ denotes the set
of positive real numbers.

To identify β0, without assuming that the distribution of u is symmetric around 0 or that it
satisfies a centering condition (such as e.g. EF0u = 0), we assume the following

Condition 1. For all β 	= β0 and for all α, we have

P
(
g(x,β0) = g(x,β) + α

)
< 1. (2.1)

Note that when this condition is not satisfied, there exist β 	= β0 and α such that (1.1) also
holds with β instead of β0 and ui + α instead of ui . Condition 1 requires that in case there is
an intercept, it will be included in the error term u instead of as a parameter of the regression
function g(x,β). For linear regression, we have g(x,β) = β ′x and then this condition means
that the vector x is not concentrated on any hyperplane.

Although model (1.1) does not contain an intercept, in order to obtain consistent estimates of
β0, our M estimates, besides an estimate β̂ of β0, will include an additional additive term α̂.
If the model does contain an intercept, then α̂ will be a consistent estimate of this parameter
under the centering condition Eρ′(u/σ) = 0, where ρ is the loss function of the M estimate and
σ is the asymptotic value of the estimate of the error scale that is used to define the M estimate.
If the model does not contain an intercept, then α̂ can be ignored. Let henceforth ξ = (β ′, α)′
with α ∈ R, and define the function

g(x, ξ) = g(x,β) + α.

M estimates are then defined as

ξ̂M = arg min
ξ∈B×R

n∑
i=1

ρ

(
yi − g(xi, ξ)

σ̂

)
, (2.2)

where σ̂ is a robust residual scale and ρ is a loss function.
To define S estimates, we need an M scale S(r). Given r = (r1, . . . , rn)

′, S(r) is defined as the
solution σ of

1

n

n∑
i=1

ρ0

(
ri

σ

)
= δ, (2.3)

where ρ0 is another loss function and the constant δ regulates the estimate’s robustness.
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Then, S estimates of regression are defined by

ξ̂S = arg min
ξ∈B×R

S(r(ξ)), (2.4)

where r(ξ) is the residual vector with elements ri(ξ) = yi−g(xi, ξ).
In particular, we will consider with some detail the subclass of MM estimates. These estimates

are defined by (2.2) with σ̂ obtained from an S estimate, namely

σ̂ = min
ξ∈B×R

S(r(ξ)) (2.5)

with ρ ≤ ρ0. Yohai [28] showed that in the case of linear regression the asymptotic breakdown
point of MM estimates with δ = 0.5 is 0.5 if P(β ′xi + a = 0) = 0 for all β 	= 0, and that, simul-
taneously, it is possible to choose ρ so that the corresponding MM estimate yields an arbitrarily
high efficiency when the errors are Gaussian.

Now in order to state our results, we must first express the already defined M and S estimates
as functionals. Throughout this article, loss functions will be “bounded ρ-functions,” in the fol-
lowing sense.

Definition 1. A bounded ρ-function is a function ρ(t) that is a continuous nondecreasing func-
tion of |t |, such that ρ(0) = 0, ρ(∞) = 1, and ρ(v) < 1 implies that ρ(u) < ρ(v) for |u| < |v|.

Then, in the rest of the paper we will assume the following.

Condition 2. ρ and ρ0 are bounded ρ-functions.

Define the residual scale functional S∗(G, ξ) by

EGρ0

(
y − g(x, ξ)

S∗(G, ξ)

)
= δ, (2.6)

with δ ∈ (0,1). Then the regression S functional TS and the associated error scale M functional
S(G) are, respectively, defined by

TS(G) := (TS,β(G),TS,α(G)) = arg min
ξ∈B×R

S∗(G, ξ) (2.7)

and

S(G) = min
ξ∈B×R

S∗(G, ξ). (2.8)

We will deal with a regression M functional TM(G) defined as

TM(G) := (TM,β(G),TM,α(G)) = arg min
ξ∈B×R

MG(ξ), (2.9)

where the function MG :B × R → R is

MG(ξ) = EGρ

(
y − g(x, ξ)

S̃(G)

)
(2.10)
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and S̃(G) is an arbitrary residual scale functional, for example, the one defined in (2.8).
It is easy to show that the S regression functional defined in (2.7) is also an M functional. In

fact, TS(G) coincides with TM(G) when in (2.10) we have ρ = ρ0 and S̃(G) = S(G). We may
then write

TS(G) = arg min
ξ∈B×R

EGρ0

(
y − g(x, ξ)

S(G)

)
. (2.11)

Remark 1. In general, the minimum at (2.7) or (2.9) might be attained at more than one value
of ξ . It will be henceforth assumed that the functional is well-defined by the choice of a single
value. Our results will not depend on how the choice is made. However, it will be shown in
Section 3 that under very general conditions, if G0 is the distribution of (x, y) satisfying (1.1),
then TS(G0) and TM(G0) are unique and TS,β(G0) = TM,β(G0) = β0 (Fisher-consistency).

3. Fisher-consistency of M and S estimates

In this section, we give sufficient conditions to guarantee that both (2.7) and (2.9) are minimized
at unique values, and that TM,β(G0) = TS,β(G0) = β0 (Fisher consistency for β0).

Recall that a density f is strongly unimodal if there exists a such that f (t) is nondecreasing
for t < a, nonincreasing for t > a, and f has a unique maximum at t = a.

We will need the following condition on ρ.

Condition 3. The function ρ is a ρ-function such that for some m > 0, ρ(u) = 1 iff |u| ≥ m, and
log(1 − ρ) is concave on (−m,m).

It is easy to check that Condition 3 with m = k holds in particular for the popular family of
bisquare functions, defined by

ρk(u) = 1 −
(

1 −
(

u

k

)2)3

I (|u| ≤ k).

We will establish the Fisher-consistency of TM. Put for brevity σ = S(G0) and let F0 be the
distribution of ui in (1.1) and assume that it has a strongly unimodal density. Let 	 denote the
unique minimizer of EF0ρ((u − t)/σ ); note that if ui is symmetric around μ0, then part (b) of
Theorem 3 implies that 	 = μ0.

Theorem 1. Let G0 be the joint distribution of (xi, yi) satisfying model (1.1), where ui has
distribution F0 with a strongly unimodal density. Assume that Conditions 1 and 3 hold. Then
MG0(ξ) is minimized at the unique point TM(G0) = (β0,	), and so TM is Fisher-consistent
for β0, that is, TM,β(G0) = β0. If we also assume that F0 is symmetric around μ0, we have
TM,α(G0) = μ0.

Remark 2. Theorem 1 gives also sufficient conditions for the Fisher-consistency of the regres-
sion S functional TS. In fact, according to (2.11), TS is also an M functional.
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4. Weak continuity of M and S regression functionals

Definition 2. We say that a functional T is weakly continuous at G if Gn →w G implies
T (Gn) → T (G).

We will show the weak continuity of the functionals defined above in two cases: nonlinear
regression with a compact parameter space B , and linear regression.

Define for G = D(x, y)

c(G) = sup{PG(β ′x + α = 0): β ∈ Rp,α ∈ R,β 	= 0}. (4.1)

Theorem 2. Let G0 = D(x, y) be such that (2.9) has a unique solution TM(G0). Assume that S̃

is weakly continuous at G0 and S̃(G0) > 0. Then TM = (TM,β , TM,α) is weakly continuous at G0
if either (a) or (b) holds, where

(a) B is compact,
(b) B = Rp , g(x,β) = β ′x and

MG0(TM(G0)) < 1 − c(G0). (4.2)

Theorem 3. Let G0 = D(x, y) be such that TS(G0) is unique and S(G0) > 0. Assume that either
(a) B is compact, or (b) B = Rp , g is linear, that is, g(x,β) = β ′x and δ < 1 − c(G0) with c(G)

defined in (4.1). Then S(G) and TS(G) = (TS,β , TS,α) are weakly continuous at G0.

Let now G0 be the distribution of (x, y) under model (1.1), and assume that TM (resp., TS) is
Fisher-consistent for β0, that is, TM,β(G0) = β0 (resp., TS,β(G0) = β0). Then the former results
imply that TM,β (resp., TS,β) evaluated at the empirical distribution is consistent whenever the
empirical distributions converge to the underlying one. More precisely, we have the following
result.

Corollary 1. Assume the same hypotheses as in Theorem 2 (resp., Theorem 3) plus the Fisher-
consistency of TM (resp., TS): TM,β(G0) = TS,β(G0) = β0. Call Gn the empirical distribution
of {(xi, yi): i = 1, . . . , n}. If Gn →w G0 a.s., then {TM,β(Gn)} (resp., {TS,β(Gn)}) is strongly
consistent for β0.

This result is immediate. The a.s. weak convergence of Gn to G0 is well known to hold for i.i.d.
(xi, yi). It holds also under more general assumptions on the joint distribution of {(xi, yi): i ≥ 1},
such as ergodicity.

We now turn to qualitative robustness. Consider a sequence of estimates {̂ξn} based on a
functional T , that is, ξ̂n = T (Gn) where Gn is the empirical distribution corresponding to data
(z1, . . . , zn). Hampel [13] proved that for {̂ξn} to be qualitatively robust at a distribution G0 it
suffices that T be weakly continuous at G0 and ξ̂n be a continuous function of (z1, . . . , zn).

Papantoni-Kazakos and Grey [21] employ a weaker definition of robustness, which they call
asymptotic qualitative robustness, and prove that it is equivalent to weak continuity. Therefore,
Theorems 2 and 3 imply the asymptotic qualitative robustness of TM and TS.
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5. Differentiability of estimating functionals

In this section, we shall first deal with the differentiability of general functionals and then spe-
cialize to our regression case. Let Gh be a set of distributions on Rh. Consider an estimating
functional T : Gh → Rk . Hampel [14] defines the influence function of T at G ∈ Gh as the func-
tion IT ,G(z) :Rh → Rk

IT,G(z) = ∂(T ((1 − ε)G + εδz))

∂ε

∣∣∣∣
ε=0

, (5.1)

where δz is the point mass distribution at z. Given a distance d on Gh which metricizes the
topology of convergence in distribution, T is Fréchet differentiable at G0 under d if

T (G) − T (G0) = EGIT,G0(z) + o(d(G,G0)).

Fréchet differentiability can be used to prove the asymptotic normality of the estimate. How-
ever, Fréchet differentiability also requires that IT ,G(z) be bounded. Since this condition is not
satisfied by regression M estimates, we are going to define a weaker type of differentiability,
which suffices to prove asymptotic normality.

Definition 3. Let T be an estimating functional that is weakly continuous at G0. We say that T

is weakly differentiable at a sequence {Gn} converging weakly to G0 if

T (Gn) − T (G0) = EGnIT ,G0(z) + o(‖EGnIT ,G0(z)‖). (5.2)

The definition of weak differentiability helps understanding the asymptotic behavior of
T (Gn) − T (G0), as the next lemma shows.

Lemma 1. Consider a random sequence of distributions {Gn} converging weakly to G0 a.s.
Assume that T is weakly differentiable at {Gn} a.s. and that for some sequence {an} of real
numbers

anEGnIT ,G0(z) →d H.

Then

an

(
T (Gn) − T (G0)

) = anEGnIT ,G0(z) + op(1) (5.3)

and therefore an(T (Gn) − T (G0)) →d H too.

The proof of this lemma is immediate.

Remark. Note that if (5.3) holds for a joint functional T = (T1, T2), it also holds for T1, that is,

an

(
T1(Gn) − T1(G0)

) = anEGnIT1,G0(z) + op(1). (5.4)
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We now deal with the differentiability of a general M estimating functional, that is, a functional
T defined on a subset of Gp with values in Rq , that for some function � :Rp ×Rq → Rq satisfies
the equation

EG�(z,T (G)) = 0. (5.5)

We will assume that � is continuously differentiable with respect to θ and call �̇(z, θ) (or al-
ternatively ∂�(z, θ)/∂θ ) the q ×q differential matrix with elements �̇jk(z, θ) = ∂�j (z, θ)/∂θk .
Define

D(G,θ) = EG�̇(z, θ). (5.6)

Let θ0 = T (G0) and assume that

D0 = D(G0, θ0) (5.7)

exists. Assume that T is weakly continuous at G0 and that the following holds.

Condition 4. D0 is nonsingular and there exists η > 0 such that

EG0 sup
‖θ−θ0‖≤η

‖�̇(z, θ)‖ < ∞, (5.8)

where ‖ · ‖ denotes the l2 norm.

Then, it is easy to show that the influence function of T at G0 is given by

IT ,G0(z) = −D−1
0 �(z, θ0). (5.9)

We shall now see that the following conditions are sufficient for the weak differentiability of
T at {Gn}.

Condition 5. {Gn} is a sequence of distribution functions that converges weakly to G0 and

lim
η→0

lim sup
n→∞

sup
‖θ−θ0‖≤η

‖D(Gn, θ) − D0‖ = 0. (5.10)

Condition 6. {Gn} is a sequence of distribution functions such that, at a neighborhood of θ0, for
each n

∂

∂θ
EGn�(z, θ) = EGn

∂

∂θ
�(z, θ). (5.11)

Condition 5 means that D(Gn, θ) approaches D(G0, θ0) when n is large and θ is close to θ0.

Condition 6 means that we can interchange differentiation of �(z, θ) with respect to θ and expec-
tation with respect to Gn. Theorem 4 shows that these two conditions imply weak differentiability
and Theorem 5 shows that these conditions hold in very general circumstances.
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Theorem 4. Assume that T is an M functional satisfying (5.5) and weakly continuous at G0,

that �̇(z, θ) is continuous in θ, and that Condition 4 holds. If {Gn} satisfies Conditions 5 and 6;
then T is weakly differentiable at {Gn}.

The following theorem gives sufficient conditions for a.s. differentiability of M functionals, at
a random sequence of distributions.

Theorem 5. Let {Gn} be a sequence of random distributions converging weakly to G0 and sat-
isfying Condition 6 a.s. Assume also that �̇(z, θ) is continuous in θ and that Condition 4 holds.
Let T be an M functional satisfying (5.5) and weakly continuous at G0. Then T is weakly dif-
ferentiable at {Gn} a.s. in any of the following two cases: (a) for each function d(z) such that
EG0 |d(z)| < ∞, on a set of probability one we have that {EGnd(z)} converges to EG0d(z), or
(b) �̇(z, θ) is bounded.

Note case (a) contains situations where a Law of Large Numbers holds, in particular when Gn

is the empirical distribution of an ergodic process.

Corollary 2. Let {Gn} be a sequence of empirical distributions associated to i.i.d. {zi} with
distribution G0. Assume that �̇(z, θ) is continuous in θ , that Condition 4 holds and that
IT ,G0(z) has finite second moments under G0. Let T be an M functional continuous at G0.
Then n1/2(T (Gn) − T (G0)) →d N(0,V ) with

V = EG0IT ,G0(z)IT ,G0(z)
′. (5.12)

There are many examples where Fréchet differentiability does not hold and that can be dealt
with using the concept of weak differentiability. One of these cases is that of MM estimates for
linear an nonlinear regression which is treated in detail in the next section. Other examples where
Fréchet differentiability fails are MM estimates for the multivariate linear model (see [16]) and
M estimates for logistic models (see [1] and [8]). An example where the asymptotic expansions
that can be obtained with weak differentiability are essential to prove asymptotic normality is the
problem of robust estimation with missing data considered by Sued and Yohai [25].

6. MM estimates

In this section, we will summarize the properties derived from Theorems 1–6 for S and MM
estimates of regression and location.

6.1. Regression case

Recall that MM estimates, which we denote here by TMM = (TMM,β , TMM,α), are defined in
(2.9), where S̃ is the functional S defined in (2.8). For notational convenience, we shall call ρ1
the ρ-function employed in (2.10), and we will assume that ρ1 ≤ ρ0. As mentioned above, the
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definition of ξ̂MM in (2.2) requires also σ̂ defined by (2.5), and hence also ξ̂S defined in (2.4).
Therefore, these three estimates must be considered simultaneously. Call

θ̂ = (̂ξS, ξ̂MM, σ̂ ) (6.1)

the joint solution of (2.2)–(2.4)–(2.5).
In the rest of this section, we assume the following properties.

Condition 7. ρ0 and ρ1 are twice continuously differentiable.

We denote by ψ0 and ψ1 the derivatives of ρ0 and ρ1, respectively. Assume also the following
condition.

Condition 8. g is twice continuously differentiable with respect to β.

We denote by ġ(x, ξ) and g̈(x, ξ) the vector of first derivatives and the matrix of second
derivatives of g with respect to ξ , respectively. Analogously, we denote by ġ(x,β) and g̈(x,β)

the vector of first derivatives and the matrix of second derivatives of g with respect to β , respec-
tively. Note that ġ(x, ξ) and g̈(x, ξ) depend only on β , and for this reason we will indistinctly
use also the notation ġ(x,β) and g̈(x,β).

Differentiating (2.2) we have that ξ̂MM satisfies the system

1

n

n∑
i=1

ψ1

(
yi − g(xi, ξ̂MM)

σ̂

)
ġ(xi, ξ̂MM) = 0. (6.2)

It is immediate that ξ̂S also satisfies

ξ̂S = arg min
ξ∈B×R

1

n

n∑
i=1

ρ0

(
yi − g(xi, ξ)

σ̂

)
.

Then, differentiating this equation we get

1

n

n∑
i=1

ψ0

(
yi − g(xi, ξ̂S)

σ̂

)
ġ(xi, ξ̂S) = 0. (6.3)

Finally according to (2.3), σ̂ satisfies

1

n

n∑
i=1

ρ0

(
yi − g(xi, ξ̂S)

σ̂

)
− δ = 0. (6.4)

Then θ̂ satisfies the system of 2q + 3 equations (6.2)–(6.4). Putting zi = (xi, yi) and denoting by
Gn the empirical distribution of {z1, . . . , zn}, this system can be written as

1

n

n∑
i=1

�(zi, θ̂ ) = EGn�(z, θ̂) = 0, (6.5)
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where if θ = (ξS, ξMM, σ ), �(z, θ) is defined by

�(z, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0

(
y − g(x, ξS)

σ

)
ġ(x, ξS)

ψ1

(
y − g(x, ξMM)

σ

)
ġ(x, ξMM)

ρ0

(
y − g(x, ξS)

σ

)
− δ.

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let

T (G) = (TS(G),TMM(G),S(G)) (6.6)

be the estimating functional associated to θ̂ . Then, if (5.8) holds, we can differentiate the func-
tions to be minimized in (2.9) and (2.11) inside the expectation, obtaining that T (G) satisfies the
equation

EG�(z,T (G)) = 0. (6.7)

Note that the solution to this equation is in general not unique, and therefore, T is not defined
exclusively by the equation.

To verify (5.8), in addition to Conditions 2–3–7–8 we need the following assumption:

Condition 9. For some η > 0

EG0 sup
‖β−β0‖≤η

‖ġ(x,β)‖2 < ∞ and EG0 sup
‖β−β0‖≤η

‖g̈(x,β)‖ < ∞. (6.8)

Assume that D0 defined by (5.7) is nonsingular; then under these assumptions, we also get that
IT ,G0(z) has finite second moments under G0. Note that in the case of linear regression, (6.8)
reduces to EG0‖x‖2 < ∞.

Define

α0i = arg min
t

EF0ρi

(
u − t

S(G0)

)
, i = 0,1, (6.9)

where F0 is the distribution of ui in model (1.1). We will see in Theorem 6 that under some
general conditions, TS,α(G0) = α00 and TMM,α(G0) = α01..

Put θ0 = (β0, α00, β0, α01, σ0) with σ0 = S(G0). The following numbers, vectors and matrices
are required to derive a closed formula for the influence functions of TMM and TS. Let

a0i = EG0ψ
′
i

(
y − g(x,β0) − α0i

σ0

)
= EF0ψ

′
i

(
u − α0i

σ0

)
, i = 0,1,

e0i = EF0

(
u − α0i

σ0

)
ψ ′

0

(
u − α0i

σ0

)
, i = 0,1,
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d0 = EF0

(
u − α00

σ0

)
ψ0

(
u − α00

σ0

)
,

b0 = EG0 ġ(x,β0), b∗
0 = (b′

0,1)′,

A0 = EF0

(
ġ(x,β0) − b0

)(
ġ(x,β0) − b0

)′

and

C0 =
[
A0 + b0b

′
0 b0

b′
0 1

]
. (6.10)

It is shown in Section 7.4 that the influence function of TMM is given by

ITMM,β ,G0(x, y) = σ0

a01
ψ1

(
y − g(x, (β0, α01))

σ0

)
A−1

0

(
ġ(x,β0) − b0

)
(6.11)

and

ITMM,α,G0(x, y) = − σ0

a01
ψ1

(
y − g(x, (β0, α01))

σ0

)[
1 + b′

0A
−1
0

(
b0 − ġ(x,β0)

)]
(6.12)

+ σ0e01

a01d0

(
ρ0

(
y − g(x, (β0, α01))

σ0

)
− δ

)
.

The influence functions of TS,β and TS,α can be obtained similarly replacing α01, a01 and e01
by α00, a00 and e00, respectively.

If the errors ui have a symmetric distribution F0, then e01 = 0 and α01 = α00 = α0, the center
of symmetry of F0. This entails a considerable simplification of the influence function ITMM . In
fact, in this case, we get

ITMM,G0(z) = σ0

EF0ψ
′
1((u − α0)/σ0)

ψ1

(
y − g(x,β0) − α0

σ0

)
C−1

0 ġ(x,β0), (6.13)

and the asymptotic covariance matrix (5.12) is

V = σ 2
0

EF0ψ1((u − α0)/σ0)
2

(EF0ψ
′
1((u − α0)/σ0))2

C−1
0 . (6.14)

The next theorem summarizes the properties of S and MM regression functionals.

Theorem 6. Let z = (x, y) satisfy model (1.1) where the distribution F0 of ui has a strongly
unimodal density and Condition 1 holds. Assume that ρ0 and ρ1 are bounded ρ-functions that
satisfy Condition 3, with ρ1(u) ≤ ρ0(u). Let T be defined by (6.6) and let G0 be the distribution
of (x, y). Then:

(i) TS(G0) = (β0, α00) is the unique minimizer in (2.7). If F0 is symmetric with respect to
μ0, then α00 = μ0.
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(ii) TMM(G0) = (β0, α01) is the unique minimizer in (2.9). If F0 is symmetric with respect
to μ0 then α01 = μ0.

(iii) The functional T = (TS, TMM, S) is weakly continuous at G0 if either (a) B is compact,
or (b) B = Rp, g(x,β) = β ′x and δ < 1 − c(G0).

(iv) Assume also that Conditions 7, 8 and 9 hold, that a00 	= 0, a01 	= 0, d0 	= 0 and
that A0 is invertible. Then, D0 = EG0�̇(z, T (G0)) is invertible, ITMM,β ,G0(x, y) and
ITMM,α,G0(x, y) are given by (6.11) and (6.12), respectively, while the influence func-
tions ITS,β ,G0(x, y) and ITS,α,G0(x, y) have a similar expression replacing α01, a01 and
e01 by α00, a00 and e00, respectively.

(v) Under the same assumptions as in (iv), let {Gn} be a sequence of random distributions
converging weakly to G0 and satisfying Condition 6 a.s. Suppose also that for each
function d(z) such that EG0 |d(z)| < ∞, we have that {EGnd(z)} converges to EG0d(z)

a.s. Then, the functional T is weakly differentiable at {Gn}.
(vi) Assume the same conditions as in (v) and:

n1/2EGnIT ,G0(x, y) →d H. (6.15)

Then

n1/2(T (Gn) − T (G0)
) = n1/2EGnIT ,G0(x, y) + op(1) (6.16)

and therefore

n1/2(T (Gn) − T (G0)
) →d H. (6.17)

(vii) Assume that the conditions in (iv) hold and that {(xi, ui): i ≥ 1} are i.i.d. Let Gn be the
sequence of empirical distributions corresponding to {(xi, yi): i ≥ 1} with common dis-
tribution G0. Then (6.17) holds with H = N(0,V ) and V = E[ITMM,G0(x, y)ITMM,G0(x,

y)′], where ITMM,G0(x, y) is defined by (6.11) and (6.12).
(viii) Assume that the conditions in (iv) hold, that {ui : i ≥ 1} is stationary and ergodic and

that {xi, i ≥ 1} are i.i.d. and independent of {ui : i ≥ 1}. Let Gn be the sequence of
empirical distributions corresponding to {(xi, yi): i ≥ 1} with common distribution G0.
Then

n1/2(TMM,β(Gn) − β0
) →d N(0,V ) (6.18)

with

V = σ 2
0

EF0ψ
2
1 ((u − α01)/σ0)

E2
F0

ψ ′
1((u − α01)/σ0)

A−1
0 . (6.19)

A similar result can be obtained for TS,β .

(ix) Assume that the conditions in (iv) hold, that {(ui, xi): i ≥ 1} is φ-mixing (see, e.g.,
Billingsley [2] for the definition of φ-mixing) with

∑∞
i=1 φ

1/2
n < ∞, that ui have a sym-

metric distribution F0 and that {xi, i ≥ 1} and {ui : i ≥ 1} are independent. Let Gn be
the sequence of empirical distributions corresponding to {(xi, yi): i ≥ 1} with common
distribution G0. Then

n1/2(TMM(Gn) − TMM(G0)
) →d N(0,V ), (6.20)
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where

V = σ 2
0

E2
F0

ψ ′
1((u − α0)/σ0)

C−1
0

( ∞∑
i=−∞

ciCi

)
C−1

0 ,

ci = E

[
ψ1

(
u1 − α0

σ0

)
ψ1

(
u1+i − α0

σ0

)]
, (6.21)

Ci = Eġ(x1, β0)ġ(x1+i , β0)
′

and TMM(G0) = (β0, a0).

Remark 3. Note that (viii) implies that the asymptotic covariance matrix of n1/2(TMM,β(Gn) −
β0) is the same as when the ui are i.i.d. This result does not hold for the intercept estimate
TMM,α(Gn). Croux, Dhaene and Hoorelbeke [7] derived a similar result for linear regression
through the origin with one covariable with mean 0.

Remark 4. The φ-mixing condition in (ix) can be replaced by any other type of mixing condition
that guarantees the validity of the central limit theorem (see, e.g., Section 1.5.1 of Doukhan [9]).
A result similar to part (ix) of Theorem 6 was stated by Croux et al. [7].

6.2. Location case

The location model corresponds to the case where there are no regressors: p = q = 0 and
so yi = ui and ξ = α. If F0 denotes the common distribution of the ui , then T (F0) =
(TS(F0), TMM(F0), S(F0)) is defined as in the regression case with g(x, ξ) replaced by α. Then,
the resulting TMM = TMM,α and TS = TS,α are the location functionals while S is a functional
estimating the error scale. In this case, ITMM,F0 is given by

ITMM,F0(x) = σ0

a01
ψ1

(
y − α01

σ0

)
(6.22)

− e01σ0

a01d0

(
ρ0

(
y − α00

σ0

)
− δ

)
.

The following theorem summarizes the properties of T that can be derived from the theorems
in the former sections.

Theorem 7. Assume that ρ0 and ρ1 are bounded ρ-functions that satisfy Condition 3, with ρ1 ≤
ρ0. We assume that F0 has a strong unimodal density. Then

(i) TS(F0) = α00 is the unique minimizer in (2.7). If F0 is symmetric with respect to μ0, we
have α00 = μ0.

(ii) TMM(F0) = α01 is the unique minimizer in (2.9). If F0 is symmetric with respect to μ0,
we have α01 = μ0.
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(iii) The functional T = (TS, TMM, S) is weakly continuous at F0.

(iv) Assume also that Condition 7 holds and that a00 	= 0, a01 	= 0, d0 	= 0. Then, D0 =
EF0�̇(z, T (F0)) is invertible, ITMM,F0(y) is given by (6.22). The influence function
ITS,F0(y) has a similar expression replacing α01, a01 and e01 by α00, a00 and e00, re-
spectively.

(v) Under the same assumptions as in (iv), let {Fn} be a sequence of random distributions
converging weakly to F0 and satisfying Condition 6 a.s. Then T is a.s. weakly differen-
tiable at {Fn}.

(vi) Assume the same conditions as in (v) and

n1/2EFnIT ,F0(y) →d H. (6.23)

Then

n1/2(T (Fn) − T (F0)
) = n

1/2
Fn

EIT ,F0(y) + op(1), (6.24)

and therefore

n1/2(T (Fn) − T (F0)
) →d H. (6.25)

(vii) Assume the same conditions as in (iv). Let {Fn} be the sequence of empirical distributions
corresponding to i.i.d. observations ui with common distribution F0. Then (6.23) holds
with H = N(0,V ) and V given by (5.12). If F0 is symmetric, the asymptotic variance of
TMM given by (6.14) becomes

V = σ 2
0

EF0ψ1(u/σ0)
2

(EF0ψ
′
1(u/σ0))2

.

7. Proofs

7.1. Proof of Theorem 1

We shall need the following auxiliary result, which is due to Ibragimov [15].

Lemma 2. If f is a strongly unimodal density and ϕ is a density such that logϕ is concave on
its support, the convolution

h(t) =
∫ ∞

−∞
ϕ(u − t)f (u)du (7.1)

is strongly unimodal.

The following lemma is a small variation of one given by Mizera [20].

Lemma 3. Let ρ satisfy Condition 3 and let F be a distribution with a strongly unimodal den-
sity f . Then (a) there exists t0 such that

q(t) = EF ρ(u − t) (7.2)
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has a unique minimum at t0; (b) if F is symmetric around μ0, then t0 = μ0.

Proof. (a) Put k = ∫ m

−m
ρ(x)dx and ϕ(u) = (1 − ρ(u))/k, which vanishes for |u| > m. Then

q(t) = 1 − EF

(
1 − ρ(u − t)

) = 1 − kEF ϕ(u − t) = 1 − kh(t),

where h(t) is given by (7.1). Since by Lemma 2 h(t) is a strongly unimodal density, part (a) of
the lemma follows.

(b) It is proved in Lemma 3.1 of Yohai [27]. �

Proof of Theorem 1. Without loss of generality we may assume σ = 1. To prove the theorem,
we will show that the unique minimum of R(β,α) = EG0ρ(y − g(x,β) − α) is β = β0, α = t0.

We will first prove that

R(β0, t0) < R(β0, α) for α 	= t0.

This is equivalent to

EF0ρ(u − t0) < EF0ρ(u − α) for α 	= t0,

which follows from Theorem 3.
Consider now (β,α) with β 	= β0. Let A = {x: g(x,β0) = g(x,β) + α − t0} and q as in (7.2),

with F replaced by F0. Then

R(β,α) = EG0

{
EG0

[
ρ
(
y − g(x,β) − α

)|x]}
(7.3)

= EG0

{
EG0

[
ρ
(
u + g(x,β0) − g(x,β) − α

)|x]}
.

Since u and x are independent, we get

E
[
ρ
(
u + g(x,β0) − g(x,β) − α

)|x] = q
(
g(x,β) − g(x,β0) + α

)
. (7.4)

Then according to Theorem 3, the left-hand side of (7.4) is equal to q(t0) if x ∈ A and grater than
q(t0) otherwise. Condition 1 implies that P(Ac) > 0 and from (7.3) we get that R(β,α) > q(t0).

Finally, the theorem follows from the fact that R(β0, t0) = q(t0). �

7.2. Proof of Theorems 2 and 3

Before proving Theorems 2 and 3, we need some auxiliary results.

Lemma 4. Consider distributions {Gn} and G0 on Rp × R. Let {ξn} and {σn} be sequences in
B × R and R+, respectively, such that ξn → ξ ∈ B × R and σn → σ > 0. Assume that g(x, ξ) is
continuous in ξ . If Gn →w G0, then

lim
n→∞ EGnρ

(
y − g(x, ξn)

σn

)
= EG0ρ

(
y − g(x, ξ)

σ

)
.



1300 Fasano, Maronna, Sued and Yohai

Proof. Since Gn →w G0 and ρ is continuous and bounded, we have

EGnρ

(
y − g(x, ξ)

σ

)
→ EG0ρ

(
y − g(x, ξ)

σ

)
,

and therefore it suffices to show that

EGnρ

(
y − g(x, ξn)

σn

)
− EGnρ

(
y − g(x, ξ)

σ

)
→ 0.

Since {Gn}n≥1 is tight, it suffices to show that if P is a tight set of distributions of (x, y), then

sup
F∈P

∣∣∣∣EF ρ

(
y − g(x, ξn)

σn

)
− EF ρ

(
y − g(x, ξ)

σ

)∣∣∣∣ → 0.

To prove this, put z = (x, y). Then for all K > 0∣∣∣∣EF ρ

(
y − g(x, ξn)

σn

)
− EF ρ

(
y − g(x, ξ)

σ

)∣∣∣∣
(7.5)

≤ 2EF 1{‖z‖>K} + EF

∣∣∣∣ρ(
y − g(x, ξn)

σn

)
− ρ

(
y − g(x, ξ)

σ

)∣∣∣∣1{‖z‖≤K}.

If ‖z‖ ≤ K , we have∣∣∣∣y − g(x, ξn)

σn

− y − g(x, ξ)

σ

∣∣∣∣
(7.6)

≤ 1

σσn

[|σn − σ ||y| + |σn − σ ||g(x, ξ)| + σ |g(x, ξn) − g(x, ξ)|].

Now, given ε > 0, we can find K such that

2 sup
F∈P

PF (‖z‖ > K) ≤ ε/2

and α such that

|ρ(u) − ρ(v)| ≤ ε/2 if |u − v| ≤ α.

Then, we can choose n0 such that the right-hand side of (7.6) is smaller than α if n ≥ n0 and
‖z‖ ≤ K , and so from (7.5) we obtain for all n ≥ n0∣∣∣∣EF ρ

(
y − g(x, ξn)

σn

)
− EF ρ

(
y − g(x, ξ)

σ

)∣∣∣∣ ≤ ε ∀F ∈ P . �

Lemma 5. Assume that B is closed and let G0 be any distribution for (x, y) such that (2.9)
has a unique solution TM(G0). Let {Gn} be a sequence such that Gn →w G0 and {TM(Gn)} is
bounded. If S̃(Gn) → S̃(G0) > 0, then TM(Gn) → TM(G0).
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Proof. Put for brevity

ξn = TM(Gn), ξ0 = TM(G0), σn = S̃(Gn), σ0 = S̃(G0). (7.7)

Since {ξn} remains in a compact set, it suffices to prove that ξ0 is the only accumulation point of
{ξn}, that is, if a subsequence tends to some ξ̂ , then ξ̂ = ξ0. Without loss of generality, assume
that ξn → ξ̂ . The definition of ξn implies

EGnρ

(
y − g(x, ξn)

σn

)
≤ EGnρ

(
y − g(x, ξ0)

σn

)
. (7.8)

Using Lemma 4, we get

MG0 (̂ξ ) = EG0ρ

(
y − g(x, ξ̂ )

σ0

)
≤ EG0ρ

(
y − g(x, ξ0)

σ0

)
= MG0(ξ0).

Since ξ0 is the only minimizer of MG0 , we conclude that ξ̂ = ξ0. �

Lemma 6. Let {ξn} and {σn} be sequences in Rp+1 and R+, respectively. Assume that when
n → ∞, Gn →w G0, ‖ξn‖ → ∞ and {σn} is bounded. Then

lim inf
n→∞ EGnρ

(
y − ξ ′

n(x
′,1)′

σn

)
≥ 1 − c0, (7.9)

where c0 = c(G0) is defined in (4.1).

Proof. Assume without loss of generality that there exist γ ∈ Rp and σ > 0 such that for some
subsequence γn = ξn/‖ξn‖ → γ , and σn ≤ σ . Put λn = ‖ξn‖.

For ε > 0 let dε be such that ρ(u) ≥ 1 − ε for |u| ≥ dε . Therefore,

EGnρ

(
y − ξ ′

n(x
′,1)′

σn

)
≥ EGnρ

(
y − ξ ′

n(x
′,1)′

σ

)
≥ (1 − ε)PGn

( |y − λnγ
′
n(x

′,1)′|
σ

≥ dε

)
.

Then, to prove the lemma, it suffices to show that

lim inf
n→∞ PGn

(∣∣∣∣ y

λn

− γ ′
n(x

′,1)′
∣∣∣∣ ≥ dεσ

λn

)
≥ 1 − c0.

Let (xn, yn) ∼ Gn and (x0, y0) ∼ G0. Since λn → ∞, we have yn/λn →p 0. Then the conver-
gence of γn to γ guarantees that

yn

λn

− γ ′
n(x

′
n,1)′ →d γ ′(x′

0,1)′.

For any α > 0 which is a point of continuity of the distribution of |γ ′(x0,1)|, λn → ∞ implies

lim inf
n→∞ PGn

(∣∣∣∣ y

λn

− γ ′
n(x

′,1)′
∣∣∣∣ >

dεσ

λn

)
≥ lim inf

n→∞ PGn

(∣∣∣∣ y

λn

− γ ′
n(x

′,1)′
∣∣∣∣ > α

)
= PG0

(|γ ′(x′,1)′| > α
)
.
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Letting α → 0 and recalling (4.1), we get

lim inf
n→∞ PGn

(∣∣∣∣ y

λn

− γ ′
n(x

′,1)′
∣∣∣∣ >

dεσ

λn

)
≥ 1 − c0. �

The proof of the following lemma is similar to that of Lemma 6.

Lemma 7. Let {ξn} be a sequence in B × R, with B compact. Assume that when n → ∞,

Gn →w G0, ‖ξn‖ → ∞ and {σn} is bounded. Then

lim inf
n→∞ EGnρ

(
y − g(x, ξn)

σn

)
= 1. (7.10)

Finally, the following result we be used.

Lemma 8. Let S(G) be defined by (2.8) and suppose that S(G0) > 0. Then, Gn →w G0 implies
that there exists n0 such that S(Gn) > 0 for n ≥ n0.

Proof. Suppose that the lemma is not true. Then there exists a subsequence {Gnk
}k≥1 such that

S(Gnk
) = 0 for all k. This means that giving ε > 0, there exists (βnk

, αnk
) such that

EGnk
ρ0

(
y − g(x, βnk

) − αnk

ε

)
< δ for any s > 0.

The same arguments that we use to prove Lemma 6 let us show that {(βnk
, αnk

)} is bounded and
therefore (passing on to a subsequence if necessary) we can assume that (βnk

, αnk
) → (β̃, α̃).

Then, from Lemma 4 we get that

EG0ρ0

(
y − g(x, β̃) − α̃

ε

)
≤ δ for any s > 0.

Then, S(G0) ≤ S∗(G0, β̃, α̃) ≤ ε. Since this holds for any ε > 0, we get that S(G0) = 0. This
contradicts the assumption that S(G0) > 0. �

7.2.1. Proof of Theorem 2

Let Gn →w G0. Since S̃ is weakly continuous at G0, it follows that S̃(Gn) → S̃(G0) > 0, by
hypothesis.

Case (a): We prove first that {TM(Gn)} is bounded. Suppose that it is not true; then without
loss of generality we may assume that ‖TM(Gn)‖ → ∞. Then Lemma 7 implies

1 = lim inf
n→∞ MGn(TM(Gn)) ≤ lim inf

n→∞ MGn(TM(G0)) = MG0(TM(G0)),

and this implies that MG0(ξ) = 1 for all ξ . This contradicts the assumption that TM(G0) is univo-
cally defined. Then, {TM(Gn)} is bounded and from Lemma 5, we get that TM(Gn) → TM(G0).
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Case (b): Recall the notation in (7.7). Convergence of {σn} guarantees that it is a bounded
sequence. Suppose that {ξn} is unbounded. Then, passing on to a subsequence if necessary, we
may assume that ‖ξn‖ → ∞. In this case by Lemma 6 we have

lim inf
n→∞MGn(ξn) = lim inf

n→∞ EGnρ

(
y − ξ

′
n(x

′,1)′

σn

)
≥ 1 − c0. (7.11)

We also have

lim
n→∞MGn(ξ0) = lim

n→∞ EGnρ

(
y − ξ

′
0(x

′,1)′

σn

)
= MG0(ξ0) < 1 − c0. (7.12)

Inequalities (7.11) and (7.12) imply that there exists n0 such that for n ≥ n0

MGn(ξn) > MGn(ξ0),

contradicting the definition of TM(Gn). Therefore, {ξn} is bounded, and then the weak continuity
of TM follows from Lemma 5.

7.2.2. Proof of Theorem 3

Let Gn →w G0, ξn = TS(Gn), ξ0 = TS(G0), σn = S(Gn) and σ0 = S(G0). We prove first that
{σn} is bounded. Take any σ1 > σ0; then by Lemma 4

EGnρ0

(
y − g(x, ξ0)

σ1

)
→ EG0ρ0

(
y − g(x, ξ0)

σ1

)
< δ,

and therefore there exists n0 such that

S∗(ξ0,Gn) < σ1 for n ≥ n0, (7.13)

which implies that S∗(Gn, ξ0) is bounded and therefore σn ≤ S∗(ξ0,Gn) is also bounded. On the
other hand, by Lemma 8, we get that σn > 0 for n large enough.

We now prove that {ξn} is bounded. In case (a), if {ξn} is unbounded, Lemma 7 implies

lim inf
n→∞ EGnρ0

(
y − g(x, ξn)

σn

)
≥ 1, (7.14)

and this contradicts the fact that for all n

EGnρ0

(
y − g(x, ξn)

σn

)
= δ < 1.

Consider now case (b) and assume that {ξn} is unbounded. Then, passing on to a subsequence
if necessary, we may assume that ‖ξn‖ → ∞. Then by Lemma 6

lim inf
n→∞ EGnρ0

(
y − ξ ′

n(x
′,1)′

σn

)
≥ 1 − c0,
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and this contradicts the fact that for all n

EGnρ0

(
y − ξ ′

n(x
′,1)′

σn

)
= δ < 1 − c0.

Then in case (b) {ξn} is also bounded.
We now show that σn → σ0. Suppose that this is not true. By passing on to a subsequence if

necessary, we may assume that σn → σ ∗ 	= σ0 and ξn → ξ∗ for some ξ∗ and σ ∗. Since (7.13)
holds for any σ ′ > σ0 we have σ ∗ ≤ σ0 and therefore σ ∗ < σ0. Then Lemma 4 implies

δ = lim
n→∞ EGnρ0

(
y − g(ξn, x)

σn

)
= EG0ρ0

(
y − g(ξ∗, x)

σ ∗

)
,

and therefore S(G0) ≤ S∗(G0,ξ
∗) = σ ∗ < σ0. This contradicts the fact that S(G0) = σ0 and

shows that S is weakly continuous.
Finally, the weak continuity of TS follows from (2.11) and Theorem 2.

7.3. Proofs of Theorems 4 and 5

7.3.1. Proof of Theorem 4

Since

EGn�(z,T (Gn)) = 0,

the Mean Value theorem together with Condition 6 and the consistency of T (Gn) yield

EGn�(z,T (G0)) + D(Gn, θ
∗
n )

(
T (Gn) − T (G0)

) = 0,

where θ∗
n → θ0. Then, (5.10) implies that D(Gn, θ

∗
n ) → D0 and, since for large n, D(Gn, θ

∗
n ) is

nonsingular, we may write

T (Gn) − T (G0) = −D(Gn, θ
∗
n )−1EGn�(z,T (G0))

= EGnIT ,G0(z) + (
D−1

0 − D(Gn, θ
∗
n )−1)EGnIT ,G0(z).

Condition 5 implies that the second term of the right–hand side divided by ‖EGnIT ,G0(z)‖ tends
to zero, and this proves the theorem.

7.3.2. Proof of Theorem 5

Under the assumptions of this theorem, we can prove that Condition 5 holds a.s. using the same
arguments as in Lemma 4.2 of Yohai [27]. The only change is to replace the Law of Large
Numbers for i.i.d. random variables by the assumption that EGnd(z) → EG0d(z) a.s. for all d

such that EG0 |d(z)| < ∞ in the case (a) and for the fact that EGnd(z) → EG0d(z) for all function
d bounded and continuous in case (b). Then, Theorem 4 implies that T is weakly differentiable
at {Gn}.
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7.4. Derivations of influence functions

7.4.1. Derivation of (6.11)–(6.12)

Put for brevity

tMM = y − g(x, ξMM)

σ
, tS = y − g(x, ξS)

σ
.

Then

�̇(z, θ) =
⎡⎢⎣ �̇11(z, θ) 0 �̇13(z, θ)

0 �̇22(z, θ) �̇23(z, θ)

�̇31(z, θ) 0 �̇33(z, θ)

⎤⎥⎦ ,

where

�̇11(z, θ) = − 1

σ
ψ ′

0(tS)ġ(x, ξS)ġ(x, ξS)′ + ψ0(tS)g̈(x, ξS),

�̇13(z, θ) = − 1

σ
ψ ′

0(tS)tSġ(x, ξS),

�̇22(z, θ) = − 1

σ
ψ ′

1(tMM)ġ(x, ξMM)ġ(x, ξMM)′ + ψ1(tMM)g̈(x, ξMM),

(7.15)

�̇23(z, θ) = − 1

σ
ψ ′

1(tMM)tMMġ(x, ξMM),

�̇31(z, θ) = − 1

σ
ψ0(tS)ġ(x, ξS),

�̇33(z, θ) = − 1

σ
ψ0(tS)tS.

From (7.15) it is easy to show that

D0 = EG0�̇(z, θ0) = − 1

σ0

⎡⎢⎣a00C0 0 e00b
∗
0

0 a01C0 e01b
∗
0

0 0 d0

⎤⎥⎦ .

Therefore, |D0| = a00a01d0|C0|2. It follows from (6.10) |C0| 	= 0 if and on only if |A0| 	= 0, and
that

C−1
0 =

[
A−1

0 −A−1
0 b0

−(A−1
0 b0)

′ 1 + b′
0A

−1
0 b0

]
,

Direct calculation shows that

D−1
0 = −σ0

⎡⎢⎣a−1
00 C−1

0 0 −e00a
−1
00 d−1

0 C−1
0 b∗

0

0 a−1
01 C−1

0 −e01a
−1
01 d−1

0 C−1
0 b∗

0

0 0 d−1
0

⎤⎥⎦ ,
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and the desired results follow from (5.1).

7.4.2. Derivation of (6.22)

In this case from (7.15), it is easy to show that

D0 = − 1

σ0

⎡⎣a00 0 e00
0 a01 e01
0 0 d0

⎤⎦ ,

which implies

D−1
0 = −σ0

⎡⎢⎣a−1
00 0 −e00a

−1
00 d−1

0

0 a−1
01 −e01a

−1
01 d−1

0

0 0 d−1
0

⎤⎥⎦ .

The rest of the derivation is straightforward.

7.5. Proof of Theorems 6 and 7

7.5.1. Proof of Theorem 6

Parts (i) and (ii) follow from Theorem 1 and Remark 2. To prove (iii), we need to check conditions
of Theorem 2 and Theorem 3. We start showing that S(G0) > 0. Let

hβ,α(s) = Eρ0

(
yi − g(xi, β) − α

s

)
.

Then, we have

lim
s→∞hβ,α(s) = ρ0(0) = 0 (7.16)

and

lim
s→0

hβ,α(s) = 1 − P
(
yi = g(xi, β) + α

)
. (7.17)

Since ui has a continuous distribution and is independent of xi , we also have

P
(
yi = g(xi, β) + α

) = P
(
g(xi, β0) + ui = g(xi, β) + α

)
(7.18)

= E
[
P
(
ui = g(xi, β) − g(xi, β0) + α

)] = 0.

Equations (7.16), (7.17) and (7.19) imply that S∗(G0, β,α) > 0 for all (β,α), and so S(G0) =
S∗(G0, β0, α01) > 0.

Note that

MG0(TMM(G0)) = E

(
ρ1

(
y − TMM(G0)

S(G0)

))
≤ E

(
ρ1

(
y − TS(G0)

S(G0)

))
≤ E

(
ρ0

(
y − TS(G0)

S(G0)

))
= δ.
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Then δ < 1 −C(G0) implies (4.2) and from Theorem 3 follows that TS and S are weakly contin-
uous. Since S is weekly continuous, Theorem 2 implies that TMM is weakly continuous too, and
so part (iii) follows.

Part (iv) follows from the formulas obtained in Section 7.4.
(v) follows from part (a) of Theorem 5 while part (vi) follows from Lemma 1. Part (vii) follows

from (vi) as was already shown before stating the theorem.
To prove (viii) is enough to show that

n1/2EGnITMM,β ,G0(x, y) →d N(0,V ), (7.19)

where V is given by (6.19). From (6.11), is immediate that for all λ ∈ Rq,λ′ITMM,β ,G0(xi, yi) is a
stationary ergodic martingale difference. Then (7.19) follows from the central limit theorem for
martingale differences (see, e.g., Theorem 23.1 of Billingsley [2]) and the Cramer–Wald device.

Part (ix) will follow from

n1/2EGnITMM,G0(x, y) →d N(0,V ), (7.20)

where V is given by (6.21). According to (6.13), we have that

ITMM,G0(xi, yi) = σ0

EF0ψ
′
1((u − α0)/σ0)

ψ1

(
ui − α0

σ0

)
C−1

0 ġ(x,β0),

and therefore for all λ ∈ Rp+1, λ′ITMM,G0(xi, yi) is a φ-mixing process with mean 0 satisfying∑∞
i=1φ

1/2
n < ∞. Then by Theorem 20.1 of Billingsley [2], we have that n1/2λ′EGnITMM,G0(x,

y) →d N(0, λ′V λ), where

V =
∞∑

i=−∞
E[ITMM,G0(x1, y1)I

′
TMM,G0

(x1+i , y1+i )].

Finally, the proof is completed noting that

E[ITMM,G0(x1, y1)I
′
TMM,G0

(x1+i , y1+i )] = σ 2
0 ci

E2
F0

ψ ′
1((u − α0)/σ0)

C−1
0 CiC

−1
0

and using the Cramer–Wald device.

7.5.2. Proof of Theorem 7

It is completely similar to the proof of Theorem 6. The only differences are that for part (iii) we
use that in the case of a location model we have c(G0) = 0, and therefore condition (4.2) reduces
to MG0(TM(G0)) < 1. Note that this inequality is implied by the condition that TM(G0) is well
defined. So, for this case, (4.2) always holds, and that for part (iv) we use part (b) of Theorem 5
instead of part (a).
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[4] Čížek, P. (2006). Least trimmed squares in nonlinear regression under dependence. J. Statist. Plann.

Inference 136 3967–3988. MR2299174
[5] Clarke, B.R. (1983). Uniqueness and Fréchet differentiability of functional solutions to maximum

likelihood type equations. Ann. Statist. 11 1196–1205. MR0720264
[6] Clarke, B.R. (2000). A remark on robustness and weak continuity of M-estimators. J. Austral. Math.

Soc. Ser. A 68 411–418. MR1753369
[7] Croux, C., Dhaene, G. and Hoorelbeke, D. (2003). Robust standard errors for robust estima-

tors. Discussions Paper Series (DPS) 03.16, Center for Economic Studies, Katholieke Universiteit
Leuven. Available at http://www.econ.kuleuven.be/ew/academic/econmetr/members/dhaene/papers/
rsejan2004.pdf.

[8] Croux, C. and Haesbroeck, G. (2003). Implementing the Bianco and Yohai estimator for logistic
regression. Comput. Statist. Data Anal. 44 273–295. MR2020151

[9] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. New York:
Springer. MR1312160

[10] Fasano, M.V. (2009). Robust estimation in nonlinear regression. Ph.D. thesis, Univ. La Plata. Available
at http://www.mate.unlp.edu.ar/tesis/tesis_fasano_v.pdf.

[11] Fernholz, L.T. (1983). Von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics 19.
New York: Springer. MR0713611

[12] Fraiman, R. (1983). General M-estimators and applications to bounded influence estimation for non-
linear regression. Comm. Statist. Theory Methods 12 2617–2631. MR0715170

[13] Hampel, F.R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 1887–1896.
MR0301858

[14] Hampel, F.R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69
383–393. MR0362657

[15] Ibragimov, I.A. (1956). On the composition of unimodal distributions. Theory Probab. Appl. 1 255–
260.

[16] Kudraszow, N.L. and Maronna, R.A. (2011). Estimates of MM type for the multivariate linear model.
J. Multivariate Anal. 102 1280–1292.

[17] Liese, F. and Vajda, I. (2003). A general asymptotic theory of M-estimators. I. Math. Methods Statist.
12 454–477. MR2054158

[18] Liese, F. and Vajda, I. (2004). A general asymptotic theory of M-estimators. II. Math. Methods Statist.
13 82–95. MR2078314

http://www.ams.org/mathscinet-getitem?mr=1491394
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=0568724
http://www.ams.org/mathscinet-getitem?mr=2299174
http://www.ams.org/mathscinet-getitem?mr=0720264
http://www.ams.org/mathscinet-getitem?mr=1753369
http://www.econ.kuleuven.be/ew/academic/econmetr/members/dhaene/papers/rsejan2004.pdf
http://www.ams.org/mathscinet-getitem?mr=2020151
http://www.ams.org/mathscinet-getitem?mr=1312160
http://www.mate.unlp.edu.ar/tesis/tesis_fasano_v.pdf
http://www.ams.org/mathscinet-getitem?mr=0713611
http://www.ams.org/mathscinet-getitem?mr=0715170
http://www.ams.org/mathscinet-getitem?mr=0301858
http://www.ams.org/mathscinet-getitem?mr=0362657
http://www.ams.org/mathscinet-getitem?mr=2054158
http://www.ams.org/mathscinet-getitem?mr=2078314
http://www.econ.kuleuven.be/ew/academic/econmetr/members/dhaene/papers/rsejan2004.pdf


Continuity and differentiability of regression M functionals 1309

[19] Maronna, R.A., Martin, R.D. and Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley
Series in Probability and Statistics. Chichester: Wiley. MR2238141

[20] Mizera, I. (1994). On consistent M-estimators: Tuning constants, unimodality and breakdown. Kyber-
netika (Prague) 30 289–300. MR1291931

[21] Papantoni-Kazakos, P. and Gray, R.M. (1979). Robustness of estimators on stationary observations.
Ann. Probab. 7 989–1002. MR0548893

[22] Rousseeuw, P. and Yohai, V. (1984). Robust regression by means of S-estimators. In Robust and
Nonlinear Time Series Analysis (Heidelberg, 1983) (J. Franke, W. Härdle and R.D. Martin, eds.).
Lecture Notes in Statist. 26 256–272. New York: Springer. MR0786313

[23] Sakata, S. and White, H. (2001). S-estimation of nonlinear regression models with dependent and
heterogeneous observations. J. Econometrics 103 5–72. Studies in estimation and testing. MR1838195

[24] Stromberg, A.J. (1995). Consistency of the least median of squares estimator in nonlinear regression.
Comm. Statist. Theory Methods 24 1971–1984. MR1345230

[25] Sued, M. and Yohai, V.J. (2010). Robust location estimates with missing data. Available at
ArXiv:1004.5418v2 [math.ST].

[26] Vaı̆ner, B.P. and Kukush, O.G. (1998). The consistency of M-estimators constructed from a concave
weight function. Theory Probab. Math. Stat. 57 11–18.

[27] Yohai, V.J. (1985). High breakdown point and high efficiency robust estimates for regression. Tech-
nical report 66, Dept. Statistics, Univ. Washington. Available at http://www.stat.washington.edu/
research/reports/1985/tr066.pdf.

[28] Yohai, V.J. (1987). High breakdown-point and high efficiency robust estimates for regression. Ann.
Statist. 15 642–656. MR0888431

Received June 2010 and revised February 2011

http://www.ams.org/mathscinet-getitem?mr=2238141
http://www.ams.org/mathscinet-getitem?mr=1291931
http://www.ams.org/mathscinet-getitem?mr=0548893
http://www.ams.org/mathscinet-getitem?mr=0786313
http://www.ams.org/mathscinet-getitem?mr=1838195
http://www.ams.org/mathscinet-getitem?mr=1345230
http://arxiv.org/abs/1004.5418v2
http://www.stat.washington.edu/research/reports/1985/tr066.pdf
http://www.ams.org/mathscinet-getitem?mr=0888431
http://www.stat.washington.edu/research/reports/1985/tr066.pdf

	Introduction
	Definitions of estimates
	Fisher-consistency of M and S estimates
	Weak continuity of M and S regression functionals
	Differentiability of estimating functionals
	MM estimates
	Regression case
	Location case

	Proofs
	Proof of Theorem 1
	Proof of Theorems 2 and 3
	Proof of Theorem 2
	Proof of Theorem 3

	Proofs of Theorems 4 and 5
	Proof of Theorem 4
	Proof of Theorem 5

	Derivations of influence functions
	Derivation of (6.11)-(6.12)
	Derivation of (6.22)

	Proof of Theorems 6 and 7
	Proof of Theorem 6
	Proof of Theorem 7


	Acknowledgements
	References

