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We prove several results on the behavior near t = 0 of Y−t
t for certain (0,∞)-valued stochastic processes

(Yt )t>0. In particular, we show for Lévy subordinators that the Pareto law on [1,∞) is the only possible
weak limit and provide necessary and sufficient conditions for the convergence. More generally, we also
consider the weak convergence of tL(Yt ) as t → 0 for a decreasing function L that is slowly varying at
zero. Various examples demonstrating the applicability of the results are presented.
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1. Introduction

We consider the behavior near t = 0 of a stochastic process (Yt )t>0 with values in (0,∞). Let
Ft(y) = P (Yt ≤ y) and ψt(u) = E(e−uYt ) be the distribution function and the Laplace–Stieltjes

transform (LST) of Yt and let
d→ denote convergence in distribution.

We start with the following observation from [1], which is not difficult to prove. It states that
the convergence of Y−t

t to some nondegenerate random variable (r.v.) with distribution function
F ∗ is equivalent to the weak convergence of the distribution function u �→ 1 − ψt(u

1/t ) to F ∗.

Proposition 1.1 (see [1]). Assume that Ft(0) = 0 for all t and let Y ∗ be a r.v. with distribution

function F ∗ which is not concentrated at one point. Then Y−t
t

d→ Y ∗ as t → 0 if and only if
ψt(u

1/t ) → 1 − F ∗(u) as t → 0 at all continuity points u of F ∗.

In [1], the applicability of Proposition 1.1 to various examples was demonstrated. In these
examples, the limiting distribution F ∗ turned out to be either a Pareto law with support [1,∞),
or a mixture of such a Pareto law and a point mass at 1, or an exponential law (possibly shifted
to the right). In general, any distribution on (0,∞) can occur as F ∗ (take Yt = (Y ∗)−1/t ), but it
is a challenging question which F ∗ appear as limits of ‘reasonable’ processes Y−t

t .
In this paper, we study the case when ψt(u) = ψ(u)t for some LST ψ ; of course this means

that F is infinitely divisible, and the (0,∞)-valued process (Yt )t≥0 (with Y0 ≡ 0) can then be
interpreted as an increasing Lévy process (a subordinator) with Laplace exponent �(u) defined
by E(e−uYt ) = e−t�(u).

In [2], it is proved that for a subclass of exponential dispersion models (cf. [7]) generated by
an infinitely divisible probability measure μ on [0,∞) and associated with an unbounded Lévy
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measure ν satisfying ν((x,∞)) ∼ −γ logx as x → 0, the limit F ∗ is a Pareto type law supported
on [1,∞). Our main result below shows that this is indeed the only limit law that can occur for
any subordinator. We also give several necessary and sufficient conditions for this convergence
to occur. Combining subordinators and fixed r.v.’s one obtains mixtures of a Pareto law and the
point mass at 1.

The results presented in this paper enable an approximation of the distribution of Yt for rela-
tively small values of t . Note that while the distribution of Yt can be quite complex, the specific
limiting Pareto law is rather simple to handle. Such numerical approximation aspects for various
distributions Ft are subject of future investigations.

This paper is organized as follows. Some preliminary results are presented in Section 2. Under
rather mild conditions on the behavior of ψt (which are satisfied for subordinators), it is shown
that Y ∗ ≥ 1 almost surely. Some other straightforward results concerning the limiting behavior of
products and sums of stochastic processes are also presented. In Section 3, we present necessary

and sufficient criteria for the convergence Y−t
t

d→ Y ∗ for subordinators in terms of their char-
acteristics. We also provide an alternative proof of the result of [2]. Section 4 presents several
applications. In Section 5, we consider the problem under which conditions tL(Yt ) converges
weakly as t → 0, if L is a slowly varying decreasing function with limx→0 L(x) = ∞. Clearly,
our original question concerns the special case L(x) = − logx.

2. Preliminary results

Our first result deals with the limiting variable Y ∗. Under a suitable monotonicity condition
on ψt , it follows easily that Y ∗ ≥ 1.

Proposition 2.1. Suppose that Y−t
t

d→ Y ∗ and that there are s > 0 and y > 0 such that ψt(u) is
decreasing in t for t ∈ [0, s] and u ∈ [0, y]. Then Y ∗ ≥ 1 almost surely.

Proof. Let u < 1. Then u1/t converges to 0 as t → 0 and if t > max{s, logu/ logy} then 1 ≥
ψt(u

1/t ) ≥ ψs(u
1/t ) and ψs(u

1/t ) converges to 1 as t → 0. Since additionally ψt(u
1/t ) → 1 −

F ∗(u), it follows that F ∗(u) = 0 for all 0 ≤ u < 1. �

Example 1 (Stable densities). Let ψt(u) = exp(−aut ), a > 0, be the LST of the positive stable
density of type t ∈ (0,1). The family (ψt )t>0 does not satisfy the condition stated in Proposi-
tion 2.1. In fact, ψt(u

1/t ) = 1 − e−au for all t so that F ∗ is the exponential distribution with
mean 1/a, whose support is [0,∞). Consider however the distributions belonging to the natu-
ral exponential families generated by these positive stable densities (with canonical parameter
θ > 0). They have LST’s ψt(u; θ) = exp{−a[(θ + u)t − θ t ]} and thus satisfy the condition of
Proposition 2.1; in this case it is easily checked that F ∗ has the shifted exponential density
ae−a(x−1)1(1,∞)(x); see also Example 2.5(iii) in [1].
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Proposition 2.2. Let (Yi,t )t>0, i ∈ {1,2}, be two independent families of positive r.v.’s. If Y−t
i,t

d→
Y ∗

i as t → 0 for i = 1,2, then

(Y1,t Y2,t )
−t d→ Y ∗

1 Y ∗
2 and (Y1,t + Y2,t )

−t d→ min{Y ∗
1 , Y ∗

2 }.

Proof. The convergence (Y1,t Y2,t )
−t d→ Y ∗

1 Y ∗
2 is trivial. To prove the second assertion, note that

ψ1,t (u
1/t )ψ2,t (u

1/t ) → P (Y ∗
1 > u)P (Y ∗

2 > u) = P (min{Y ∗
1 , Y ∗

2 } > u)

for every u that is a common point of continuity of the functions u �→ P (Y ∗
i > u), i = 1,2. But

ψ1,tψ2,t is the LST of the sum Y1,t + Y2,t and the result follows immediately from Proposi-
tion 1.1. �

In particular, suppose that at , bt > 0 are positive functions with at ∼ a−1/t and bt ∼ b−1/t as

t → 0, with some constants a, b > 0. Then Y−t
t

d→ Y ∗ implies

(atYt + bt )
−t d→ min{aY ∗, b}.

3. Small-time behavior of Lévy subordinators

3.1. The main result

Let (Yt )t≥0 be a subordinator, that is, an increasing Lé vy process with Y0 ≡ 0 (see Chapter III in
[3]). We assume that Yt has no drift, so that the process has the Lévy–Khintchine-representation
ψt(u) ≡E(e−uYt ) = e−t�(u), where the Laplace exponent � is given by

�(u) =
∫ ∞

0
(1 − e−ux)dν(x).

Here ν is the Lévy measure with support [0,∞), satisfying ν(x) ≡ ∫ ∞
x

dν(u) < ∞ and∫ x

0 udν(u) < ∞ for all x > 0. In what follows, we write Y = Y1 and F(x) = P (Y ≤ x).
It is known that a driftless subordinator Yt tends to zero sub-linearly as t → 0, that is, almost

surely, Yt/t tends to zero as t → 0 (Proposition 8 in [3]). Moreover, if h(t) is an increasing
function such that h(t)/t is also increasing, then (see [3], Theorem 9)

either lim
t→0

Yt

h(t)
= 0 a.s. or lim sup

t→0

Yt

h(t)
= ∞ a.s.

Lévy processes in general possess the small-time ergodic property

lim
t→0

t−1E(f (Yt )) =
∫

f (x)dν(x)
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for bounded continuous functions f vanishing in a neighborhood of the origin ([11], Corol-
lary 8.9). Letting Ptf (x) = E(f (Yt )|Y0 = x) and A the infinitesimal generator of the Markov
process Yt , this is nothing else than saying that Ptf (0) ≈ f (0) + t · Af (0) as t → 0.

We investigate the limiting behavior of Y−t
t as t → 0. Since ψt(u) = ψ(u)t is decreasing in t

for fixed u < 1, it is an immediate consequence of Proposition 2.1 that the limit in distribution,
if it exists, will be concentrated on [1,∞). The Pareto law Pγ with parameter γ > 0 has the
distribution function

�γ (x) = (1 − x−γ )1[1,∞)(x).

Theorem 3.1. Let Y ∗ be a positive r.v. which is not concentrated at one point. Let F ∗(x) =
P (Y ∗ ≤ x) be its distribution function. Then the following statements are equivalent:

(S1) Y−t
t

d→ Y ∗ as t → 0.
(S2) t�(u1/t ) → − log(1 − F ∗(u)) as t → 0, for all continuity points u of F ∗.

(S3) Y−t
t

d→ Pγ as t → 0 for some γ > 0.

Furthermore, for any γ > 0 the following statements are equivalent:

(S4) Y−t
t

d→ Pγ as t → 0.
(S5) �(s)/ log s → γ as s → ∞.
(S6) logF(x)/ logx → γ as x → 0.
(S7) ν(x)/ logx → −γ as x → 0.

If F(x) is absolutely continuous near the origin, that is, if there is a measurable function f (x)

such that F(x) = ∫ x

0 f (u)du for all x ≥ 0 in a neighborhood of the origin, then

(S8) logf (x)/ logx → γ − 1 as x → 0

implies (S4)–(S7). If additionally the density f is monotone near the origin then (S8) is equiva-
lent to (S4)–(S7).

Proof. (S3) ⇒ (S1) is obvious.
(S1) ⇔ (S2). This is clearly equivalent to Proposition 1.1.
(S2) ⇒ (S3). Suppose that t�(ez/t ) → − log(1 − F ∗(ez)) for all continuity points ez of F ∗.

We know already that F ∗(ez) = 0 for z < 0. Moreover, if z > 0 then

�(ez/t )

z/t
→ − log(1 − F ∗(ez))

z
(3.1)

for all continuity points ez of F ∗. Now, the key observation is that the latter limit is necessarily
the same for all z > 0. Indeed, the left-hand side of (3.1) has the form h(z/t) for some function
h so that if (3.1) holds for some z > 0 then for arbitrary z′ > 0 we get, setting t ′ = (z/z′)t ,

lim
t→0

�(ez′/t )

z′/t
= lim

t ′→0

�(ez/t ′)

z/t ′
= − log(1 − F ∗(ez))

z
.
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Denote the limit in (3.1) by γ . As F ∗ attains a value in (0,1), we have γ ∈ (0,∞). Then
F ∗(ez) = 1 − e−γ z, that is, F = �γ . This completes the proof of the equivalence of (S1)–(S3).

(S4) ⇔ (S5). This follows by setting s = ez/t in (3.1).
(S6) ⇒ (S5). For every s ≥ 0 and every z ≥ 0, we have the decomposition

ψ(s) = s

∫ ∞

0
e−sxF (x)dx =

∫ z

0
e−xF (x/s)dx +

∫ ∞

z

e−xF (x/s)dx. (3.2)

Consequently, ψ(s) ≤ F(z/s)
∫ z

0 e−x dx + ∫ ∞
z

e−z dx = F(z/s)(1 − e−z) + e−z and ψ(s) ≥
e−z

∫ z

0 F(x/s)dx + F(z/s)e−z, yielding the inequalities

F(z/s)e−z ≤ ψ(s) ≤ F(z/s)(1 − e−z) + e−z. (3.3)

Since we assume (S6), we have F(x) = xγ+o(1) as x → 0. Letting z be a constant on the left-hand
side of (3.3), we see that ψ(s) ≥ s−γ+o(1) as s → ∞. Moreover, by choosing z = z(s) = (log s)2

on the right-hand side of (3.3) we obtain z(s) = so(1) and sδ = o(ez(s)) for any δ > 0, as s → ∞,
so that by (3.3)

ψ(s) ≤ F
(
so(1)−1) + e−(log s)2 = s(o(1)−1)(γ+o(1)) + s− log s .

Hence, ψ(s) = s−γ+o(1) as s → ∞, which is tantamount to (S5).
(S5) ⇒ (S6). By letting x = z/s, it follows from (3.3) that

ezψ(z/x) − 1

ez − 1
≤ F(x) ≤ ψ(z/x)ez. (3.4)

Now suppose that logψ(s)/ log s → −γ as s → ∞. Letting z be constant on the right-hand side,
we obtain that F(x) ≤ xγ+o(1). Then, by choosing z(s) = √

log s, we see that F(x) ≥ xγ+o(1)

and hence F(x) = xγ+o(1).
(S5) ⇒ (S7). This follows from Lemma 5.17(ii) in [9].
(S7) ⇒ (S5). Suppose that ν(x)/ logx → −γ as x → 0. Applying integration by parts, we can

write � as an ordinary Laplace transform:

�(s) =
∫ ∞

0
e−xν(x/s)dx =

∫ K

0
e−xν(x/s)dx +

∫ ∞

K

e−xν(x/s)dx

(3.5)
= IK(s) + JK(s), say, for every K > 0.

Fix an arbitrary ε > 0. By assumption, there is an sK,ε > K such that −γ − ε ≤ ν(x/s)/

log(x/s) ≤ −γ + ε for all x ∈ (0,K] and all s ≥ sK,ε . Hence,

∫ K

0
e−xν(x/s)dx ≤

∫ K

0
e−x | log(x/s)|(γ + ε)dx

≤ (γ + ε)

[∫ K

0
e−x log s dx −

∫ K

0
e−x logx dx

]
, s > sK,ε.
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Clearly,
∫ K

0 e−x | logx|dx < ∞. Therefore,

lim sup
s→∞

IK(s)/ log s ≤ (γ + ε)

∫ K

0
e−x dx ≤ γ + ε

for every ε > 0. Thus,

lim sup
s→∞

IK(s)/ log s ≤ γ. (3.6)

For x > K we have ν(x/s) ≤ ν(K/s) so that JK(s) ≤ ν(K/s)
∫ ∞
K

e−x dx, yielding

lim sup
s→∞

JK(s)/ log s ≤ γ e−K for every K > 0. (3.7)

Letting K → ∞ we obtain from (3.5)–(3.7) that

lim sup
s→∞

�(s)/ log s ≤ γ.

The relation lim infs→∞ �(s)/ log s ≥ γ follows along similar lines. Altogether this proves (S5).
(S8) ⇒ (S6). Assume that F is absolutely continuous around the origin with a density f

satisfying logf (x)/ logx → γ −1 as x → 0. Then, given an arbitrary ε ∈ (0, γ ), we have f (x) ≤
xγ−1−ε for all sufficiently small x > 0. Thus,

F(x) =
∫ x

0
f (u)du ≤ xγ−ε

γ − ε
,

which implies F(x) ≤ xγ−(ε/2) for sufficiently small x. Similarly, it follows that F(x) ≥ xγ+(ε/2)

for small x, so that indeed limx→0 logF(x)/ logx = γ .
(S6) ⇒ (S8). Finally, suppose that limx→0 logF(x)/ logx = γ and F has a monotone density

f near 0. First, let f be nondecreasing at 0. Given an arbitrary ε > 0, we obtain

f (x) ≥ 1

x

∫ x

0
f (u)du = F(x)

x
≥ xγ−1+ε for small x.

Similarly,

f (x) ≤
∫ 2x

x
f (u)du

x
≤ F(2x)

x
≤ 2γ−(ε/2)xγ−1−(ε/2) for small x,

and the right-hand side is ultimately ≤xγ−1−ε as x → 0. If f is nonincreasing near zero we can
interchange ≤ and ≥ in the last inequalitites. �

Remark 1. The implication “(S6) for some γ > 0 ⇒ (S1)” was already shown in [1].

Remark 2. Some of the above equivalences have counterparts in the theory of regularly varying
functions. In particular (S5)⇔(S6) has the classical form of a Tauberian theorem of the type of
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Theorem 8.1.7 in [4]. However, the functions there are regularly varying while our functions are
of type xγ L(x) with some L(x) = xo(1). Note that the class of regularly varying functions is a
subclass of the class investigated here. The extra smoothness conditions in the Karamata theory
come with the reward of being able to conclude from f (x) = xγ L(x), with L slowly varying,
that the Laplace transform of f is of the same form s−γ L′(1/s) with a precisely determined func-
tion L′. As opposed to this, in our situation the exact form of the xo(1) terms remain unknown,
but are not needed anyway. It is also worth mentioning that for regularly varying functions the
implication (S8)⇒(S4)–(S7) follows from the monotone density theorem (Theorem 8.1.8 in [4]).

Remark 3. Among the possible limits of Y−t
t as t tends to zero is the somewhat uninteresting

limit 1, which is excluded from Theorem 3.1. Loosely speaking, this is the γ = ∞ case of the
theorem. We refrain from stating the corresponding result here.

Remark 4. The theorem shows that the Pareto distribution is the only possible limit distribution
of Y−t

t as t → 0. This can alternatively be deduced as follows. Note that since Yt is a Lévy

process, Yt
d∼ ∑n

k=1 Yk,t/n for any n, where (Yi,·)i=1,2,...,k are i.i.d. copies of the process Y·. It

follows from Proposition 2.2 that if Y−t
t

d→ Y ∗ and Y−t
k,t

d→ Y ∗
k , then (taking the limits Y ∗

k to be
independent)

Y
−t/n
t

d∼
(

n∑
k=1

Yk,t/n

)−t/n
d→ min{Y ∗

k , k = 1,2, . . . , n}.

On the other hand Y
−t/n
t

d→ (Y ∗)1/n, so that min{Y ∗
k , k = 1,2, . . . , n} d∼ (Y ∗)1/n. Consequently,

letting F ∗(x) = P (Y ∗ ≤ x) and F ∗(x) = 1 − F ∗(x), we have F ∗(xn) = F ∗(x)n for all n ∈ N. It
follows that for all q = n/m ∈ Q with n,m ∈ N, F ∗(xq) = F ∗(x1/m)n = (F ∗(x))q . Hence, F ∗
is a continuous function and F ∗(xr ) = F ∗(x)r for all r ∈ [0,∞).

We next show that F ∗ is strictly monotone (unless Y ∗ = 1 a.s., which is not of interest here).
We already know from Proposition 2.1 that F ∗ is concentrated on [1,∞). Let x, y ∈ [1,∞)

with x �= y and suppose that F ∗(x) = F ∗(y). It then follows that F ∗(xr ) = F ∗(yr ) for all r ∈
[0,∞), implying F ∗(x) = 1 constantly for x ∈ [1,∞). If this is not the case, the function g(x) =
logF ∗(ex) is monotone decreasing on [1,∞) and satisfies the functional equation g(ry) = rg(y)

for y ∈ [0,∞), identifying g as g(x) = −γy for some γ > 0.

Remark 5. Adding a positive drift ct , c > 0 to the subordinator Y ∗
t changes the limiting behavior

dramatically, because Y−t
t

d→ Y ∗ implies (ct + Yt )
−t d→ 1 by Proposition 2.2.

Remark 6. Suppose that Yt does not start at zero, but Y0
d∼ B instead, where B is a nonnegative

r.v. with q = P (B = 0) ∈ (0,1) and Yt is of the form Yt = Lt + B , where Lt is a subordinator

independent of B with L−t
t

d→ L∗. If β denotes the LST of B , then β(u1/t ) tends to β(0) = 1
for u < 1 and to q for u > 1 as t → 0. Letting ϕ denote the LST of Lt and F ∗ the distribution
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function of L∗, it follows that

lim
t→0

ψt(u
1/t ) = lim

t→0
ϕ(u1/t )tβ(u1/t ) =

{
1 − F ∗(u), u < 1,
q(1 − F ∗(u)), u > 1,

so that the limiting distribution of Y−t
t has a atom of mass 1 − q at 1 and an atom of mass q at

infinity, as expected, since by Proposition 2.1,

Y−t
t

d→ min(L∗,B∗),

where L∗ and B∗ are independent, L∗ has a Pareto distribution and B∗ attains only the values 1
and infinity. This way we can obtain any mixture of a Pareto distribution Pγ and the point mass
at 1 as limiting distribution (with F ∗(x) = q1[0,1)(x) + (1 − qx−1)1[1,∞)(x)).

Remark 7. Example 1 (in Section 2) shows that for parametrized families (ψt )t>0 not of the
infinitely divisible form ψ(u)t other interesting limit laws can occur (e.g., the shifted exponential
distribution). Thus, there may be other limit theorems and characterizations to be explored.

4. Applications

4.1. Explicit examples

Example 2. The following distributions are all infinitely divisible (see [11], Section 2.8). A close
look at their distribution functions or densities reveals that either condition (S6) or condition (S8)
can be applied so that Y−t

t tends in distribution to Pγ for some γ > 0. Note that in most cases
neither explicit formulas for the convolution powers of F nor simple expressions for ψt(s) are
known.

• (Gamma process) The Gamma process is a standard example of a subordinator. The density
of Y1 is given by

f (x) = xγ−1λγ e−λx/
(γ ),

where λ > 0 and γ > 0. Obviously f (x) ∼ xγ−1 as x → 0, implying that condition (S8)
holds.

• (Weibull distribution) If F(x) = 1 − e−xγ
then F(x) ∼ xγ as x → 0, so that in particular

condition (S6) is satisfied.

For the next three distributions, the density f (x) tends to some positive constant as x → 0, so
that condition (S8) holds with γ = 1.

• (Pareto-type distribution) f (x) = a

(1+x)a+1 , with a > 0.

• (F-distribution) f (x) = 
(a)
(b)

(a+b)

xb−1(1 + x)−a−b with a, b > 0.

• (Cauchy distribution on (0,∞)) f (x) = 2
π

1

1 + x2
.
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Example 3 (Generalized gamma process). Let μ be a σ -finite measure on [0,∞) and suppose
that the Lévy measure is given by

ν(dx) = 1

x

∫ ∞

0
e−xy dμ(y)dx.

The associated Lévy process is called a generalized gamma process (see [6]) and μ is the so-
called Thorin measure. If μ is a finite measure and γ = μ([0,∞)), then ν(x)/ logx → −γ

as x → 0, by dominated convergence. It then follows from criterion (S7) of the theorem that

Y−t
t

d→ Pγ . Note that the Gamma process corresponds to the case where μ is the Dirac measure
with mass γ at y = λ.

More examples of generalized gamma processes can be found in [5] (the complete Bernstein
functions f correspond to our function �, τ(ds) corresponds to ν(ds)/s and ρ(dt) to μ(t)dt/t in
our paper). For instance, if the Thorin measure is given by μ(dt) = 1(0,γ )(t)dt then �(s) = (x +
γ ) log(x + γ ) − x logx − γ logγ and hence �(s)/ logx → γ . Note that indeed γ = μ([0,∞)).
The corresponding Lévy measure is given by ν(dx) = 1−e−γ x

x
dx.

Example 4 (cf. [1,2]). Let the density of Yt be given by ft (x) = e−xx−1tIt (x), where It is the
modified Bessel function of order one. Then the Laplace exponent is given by

�(s) = log
(
1 + s −

√
s2 + 2s

)
and since 2s(1+s −√

s2 + 2s) → 1 as s → ∞ it follows that �(s)/ log s → 1 and hence Y−t
t

d→
P1 by criterion (S5).

Example 5. We coin the name Dickman process for a subordinator with Lévy measure dν(x) =
γ x−11(0,1](x)dx, where γ > 0 is some parameter. The infinitely divisible distribution function
F associated with ν is the generalized Dickman distribution as defined in [10]. This F appears
for example, as

• the distribution of a random variable X satisfying X
d∼ U1/γ (X + 1), where U is a uniform

random variable on [0,1] independent of X,
• the limiting distribution of

∑n
i=1(U1U2 · · ·Ui)

1/γ , where U1,U2, . . . are independent uni-
form random variables on [0,1].

The name ‘Dickman distribution’ is due to the fact that for γ = 1 the density of F is given by
f (x) = e−Cρ(x), where C is Euler’s constant and ρ is the generalized Dickman function. This
function is implicitly defined by ρ(z) = 1 for z ∈ [0,1] and zρ′(z) = ρ(z − 1) for z > 1. Since
ν(x) = −γ logx for x small enough, criterion (S7) of Theorem 3.1 can be applied; we have

Y−t
t

d→ Pγ .

4.2. Subordination

If Xt is another subordinator with Laplace exponent ϕ(s) and Xt and Yt are independent, then
both subordinate processes At = XYt and Bt = YXt are again subordinators. Their Laplace expo-
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nents are

φA(s) = �(ϕ(s)) and φB(s) = ϕ(�(s)),

respectively. Suppose that Y−t
t

d→ Pγ as t → 0 and that δ > 0. It follows immediately from the
representations

φA(s)

log s
= �(ϕ(s))

logϕ(s)

logϕ(s)

log s
and

φB(s)

log s
= ϕ(�(s))

�(s)

�(s)

log s

and criterion (S5) that

A−t
t

d→ Pγ δ as t → 0 ⇐⇒ lim
s→∞

logϕ(s)

log s
= δ

and

B−t
t

d→ Pγ δ as t → 0 ⇐⇒ lim
s→∞

ϕ(s)

s
= δ.

Example 6 (Subordination with α-stable processes). Suppose that ϕ(s) = sα is the Laplace
exponent of an α-stable subordinator Xt . Then it follows that

A−t
t

d→ Pγα ⇐⇒ Y−t
t

d→ Pγ .

For α = 1, we deduce that B−t
t

d→ Pγ if and only if Y−t
t

d→ Pγ , but in this case we just deal with
the trivial case of deterministic drift Xt = t and Bt = Yt .

4.3. Exponential dispersion models

For each θ ≥ 0, we define a new Lévy measure ν(θ) by exponentially tilting ν, that is, we let

dν(θ)(x) = e−θx dν(x).

The Laplace exponent of the associated Lévy process Y
(θ)
t is given by the difference

�(θ)(s) = �(θ + s) − �(θ).

The new LST ψ
(θ)
t (s) = E(e−sYt ) is related to ψ(s) via

ψ
(θ)
t (s) =

(
ψ(θ + s)

ψ(θ)

)t

.

Accordingly, the distribution of Y
(θ)
t is given by

F
(θ)
t (dx) = e−sxF t∗(dx)

(
∫ ∞

0 e−su dF(u))t
,
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where F t∗ denotes the distribution with LST (
∫ ∞

0 e−su dF(u))t . The class {F (θ)
t , t ≥ 0, θ ≥ 0} is

called an exponential dispersion model (see [2]).
By writing

�(θ)(s)

log s
= �(θ + s)

log s
− �(θ)

log s
= �(θ + s)

log s
+ o(1), as s → ∞

we see that (Y
(θ)
t )−t → Pγ if and only if Y−t

t → Pγ .

5. A generalization

In the preceding sections, we have studied the convergence of −t logYt to X∗ = logY ∗ as t → 0.
In this section, we consider the more general case

tL(Yt )
d→ X∗, t → 0,

where L : (0,∞) → (−∞,∞) is some decreasing function satisfying limy→0 L(y) = ∞. Let

L(∞) ≡ lim
y→∞L(y) ∈ [−∞,∞)

and denote by L−1 : (−∞,∞) → (0,∞) the (decreasing) inverse function of L, with the con-
vention that L−1(x) = ∞ for x ≤ L(∞), in which case 1/L−1(x) = 0.

The next result is the counterpart of Proposition 1.1, now for the general case where L is not the
negative logarithm. To impose suitable conditions on L, we need the definition of slow variation.
The function L is called slowly varying at zero if limx→0 L(λx)/L(x) = 1 for all λ > 0. If this
holds one can show that the inverse function is rapidly varying at infinity, that is,

L−1(w)

L−1(y)
→

(
w

y

)∞
≡

{0, w > y,
1, w = y,
∞, w < y,

and the convergence is necessarily uniform for w outside of intervals (y − δ, y + δ), δ > 0 (for
both concepts see [4]). With these prerequisites, we can show the following proposition.

Proposition 5.1. Suppose that L : (0,∞) → (−∞,∞) is decreasing with limy→0 L(y) = ∞
and that L is slowly varying at zero. Let X∗ be a random variable which is not concentrated at
one point. Then

tL(Yt )
d→ X∗ as t → 0

if and only if

ψt

(
1

L−1(u/t)

)
→ 1 − H ∗(u) as t → 0 (5.1)

for all continuity points u of the distribution function H ∗(u) = P (X∗ ≤ u).
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Proof. For u < 0, we always have ψt(
1

L−1(u/t)
) → 1 as t → 0, so we restrict ourselves to u > 0.

Let Ft(x) = P (Yt ≤ x) and let Ht denote the distribution function of Xt ≡ tL(Yt ). Since Ht(x) =
1 − Ft(L

−1(x/t)) for t > 0, it follows that

ψt

(
1

L−1(u/t)

)
=

∫ ∞

0
exp

(
− y

L−1(u/t)

)
dFt(y)

=
∫ ∞

L(∞)

exp

(
−L−1(x/t)

L−1(u/t)

)
dHt(x).

Hence, ψt(
1

L−1(u/t)
) = E(ζt (Xt , u)), where ζt (x,u) = exp(−L−1(x/t)/L−1(u/t)). Since L is

slowly varyingat zero, it follows that L−1 is rapidly varying at ∞, implying that limt→0ζt (x,u) =
1{x>u} for x �= u. Furthermore, we obtain that limt→0 ζt (ct (x), u) = 1{x>u} for any function ct (x)

with ct (x) → x as t → 0, since x > u implies that ct (x) > u eventually as t → 0 (and x < u

implies that ct (x) < u eventually).

(⇒) Suppose first that Xt
d→ X∗. We can apply the continuous mapping theorem in the form

of Theorem 4.27 in [8]. It follows that ζt (Xt , u)
d→ 1{x>u} for any continuity point u of H ∗. Since

ζt (x,u) ∈ [0,1], we have E(ζt (Xt , u)) → E(1{x>u}) = 1 − H ∗(u) by dominated convergence.
(⇐) If on the other hand (5.1) holds, then E(ζt (Xt , u)) → 1 − H ∗(u) and

∣∣P (Xt ≤ u) − (
1 − H ∗(u)

)∣∣
≤ |P (Xt ≤ u) −E(ζt (Xt , u))| + |1 − H ∗(u) −E(ζt (Xt , u))|
= ∣∣E(

1{Xt≤u} − ζt (Xt , u)
)∣∣ + |1 − H ∗(u) −E(ζt (Xt , u))|.

The second term on the right-hand side tends to zero as t → 0. Regarding the first term, for every
ε > 0 and δ ∈ (0, u), we have for all t large enough (by uniform convergence for rapidly varying
functions) that

∣∣E(
1{Xt≤u} − ζt (Xt , u)

)∣∣
=

∫ u−δ

0

∣∣E(
1 − ζt (x,u)

)∣∣dHt(x) +
∫ u+δ

u−δ

∣∣1{x≤u} − ζt (x,u)
∣∣dHt(x)

+
∫ ∞

u+δ

|E(ζt (x,u))|dHt(x)

≤ ε
(
Ht(u − δ) + 1 − Ht(u + δ)

) + Ht(u + δ) − Ht(u − δ).

Thus, if u is a continuity point of H ∗ it follows that |E(1{Xt≤u} − ζt (Xt , u))| tends to zero too,
yielding |P (Xt ≤ u) − (1 − H ∗(u))| → 0. �

We can now state the main result of this section, again for an arbitrary subordinator Yt . The
proof follows along the lines of that of Theorem 3.1.
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Theorem 5.1. Let L, H ∗ and X∗ be as in Proposition 5.1 and that γ > 0. Let Eγ be a r.v. with
exponential distribution function Eγ (x) = 1 − e−γ x , x ≥ 0. Then the following statements are
equivalent:

1. tL(Yt )
d→ X∗ as t → 0.

2. tL(Yt )
d→ Eγ as t → 0.

3. �(1/s)/L(s) → γ as s → 0.
4. t�(1/L−1(u/t)) → log(1 − H ∗(u)) as t → 0, for all continuity points u of H ∗.

Candidates other than − logx that satisfy the conditions of the theorem are for example the
functions −(logx)2k+1, k = 1,2, . . . .
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