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Let {Xn}n≥0 be a V -geometrically ergodic Markov chain. Given some real-valued functional F , define
Mn(α) := n−1 ∑n

k=1 F(α,Xk−1,Xk), α ∈ A ⊂ R. Consider an M estimator α̂n, that is, a measurable
function of the observations satisfying Mn(̂αn) ≤ minα∈A Mn(α)+ cn with {cn}n≥1 some sequence of real
numbers going to zero. Under some standard regularity and moment assumptions, close to those of the i.i.d.
case, the estimator α̂n satisfies a Berry–Esseen theorem uniformly with respect to the underlying probability
distribution of the Markov chain.
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1. Introduction

Let (E, E ) be a measurable space with E a countably generated σ -field, and let {Xn}n≥0 be a
Markov chain with state space E and transition kernels {Qθ(x, ·): x ∈ E}, where θ is a parame-
ter in some general set �. The initial distribution of the chain, that is, the probability distribution
of X0, is denoted by μ and may or may not depend on θ . Although {Xn}n≥0 does not need
to be the canonical version, we use the standard notation Pθ,μ to refer to the probability dis-
tribution of {Xn}n≥0 (and Eθ,μ for the expectation w.r.t. Pθ,μ). We consider that {Xn}n≥0 is a
V -geometrically ergodic Markov chain, where V :E→[1,+∞) is some fixed unbounded func-
tion. This class of Markov chains is large enough to cover interesting applications (see [16],
Sections 16.4 and 16.5).

The parameter of interest is α0 = α0(θ) ⊂ A, where α0(·) is a function of the parameter θ and
A is an open interval of R. To estimate α0, let us introduce the statistic

Mn(α) := 1

n

n∑
k=1

F(α,Xk−1,Xk), (1)

where F is a real-valued measurable functional on A × E2. We define an M-estimator (this is
slightly more general than the usual definition of M-estimators or minimum contrast estimators,
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where cn = 0, see [1]) to be a random variable α̂n depending on the observations (X0, . . . ,Xn)

such that

Mn(̂αn) ≤ min
α∈A

Mn(α) + cn,

where {cn}n≥1 is a sequence of non-negative real numbers going to zero to be specified later.
Assume that for all θ ∈ �

Mθ(α) := lim
n→∞ Eθ,μ[Mn(α)]

is well defined everywhere on A and does not depend on μ. In addition, assume that there exists
a unique “true” value α0 of the parameter of interest, that is, Mθ(α0) < Mθ(α), ∀α 	= α0. We
want to prove the following uniform Berry–Esseen bound for α̂n

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ = O

(
1√
n

)
, (BE)

where � denotes the standard normal distribution function, and τ(θ) is some positive real number
defined in Theorem 3.

To derive (BE), we use Pfanzagl’s approach [20]. Besides technical assumptions, this approach
relies on several ingredients. First, we need the uniform consistency condition:

(UC) ∀d > 0, supθ∈� Pθ,μ{|̂αn − α0| ≥ d} = O(1/
√

n).

Second, consider the following two convergence properties: If Sn(α0) := ∑n
k=1 ξ(α0,Xk−1,Xk)

with ξ(α0,Xk−1,Xk) centered,

(a) the sequence {Eθ,μ[S2
n(α0)]/n}n≥1 converges to a real number σ 2(θ);

(b) there exists a positive constant B(ξ) such that for any n ≥ 1

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{
Sn(α0)

σ (θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ ≤ B(ξ)√
n

.

The properties (a) and (b) will be required for certain ξ(α0, x, y) defined as linear combinations
of some functionals related to F . To obtain (a) and (b) for such ξ(α0, x, y) with V -geometrically
ergodic Markov chains, a natural moment (or V -domination) condition is used: There exist pos-
itive constants Cξ and m such that

∀(x, y) ∈ E2,∀α ∈ A |ξ(α, x, y)|m ≤ Cξ

(
V (x) + V (y)

)
. (2)

The paper is organized as follows. In Section 2, an extended version of Pfanzagl’s theorem
[20], is stated for any sequence of observations, not necessarily Markovian. Section 3 is devoted
to a Berry–Esseen bound for the additive functional

∑n
k=1 ξ(α0,Xk−1,Xk) of a V -geometrically

ergodic Markov chain {Xn}n≥0 with ξ satisfying inequality (2). In Section 3.2, we prove that the
properties (a) and (b) are fulfilled when inequality (2) holds with the (almost expected) order m,
namely: m > 2 ⇒ (a), and m > 3 ⇒ (b). These results follow from the weak spectral method
based on the theorem of Keller and Liverani [14]. This approach, introduced in [10], is fully
described in [12] in the Markov context (see also [8,9] and other references given in [12]). It is
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important to notice that Pfanzagl’s method requires the precise control of the constant B(ξ)

in property (b) as a function of the size of ξ . The present operator-type approach shows that
B(ξ) depends only on the constant Cξ in inequality (2). Thanks to these preliminary results, in
Section 4 we prove our main statement, that is:

(R) Under some technical assumptions and the uniform consistency condition (UC), if two
functionals F ′ and F ′′ related to F (in the basic case F ′ and F ′′ are the first- and
second-order derivatives of F with respect to α) satisfy inequality (2) for some m > 3
and constants CF ′ , CF ′′ that do not depend on α, then α̂n satisfies property (BE).

To the best of our knowledge, the result (R) is new. It completes the central limit theorem for
{̂αn}n≥1 proved in [5] when inequality (2) holds with m = 2. The domination condition (2) re-
quired by (R) is almost optimal in the sense that we impose m > 3 in place of the best possible
value m = 3 obtained in the i.i.d. case. In Section 5, our results are applied to the AR(1) process
with ARCH (autoregressive conditional heteroscedastic) of order-1 errors. The paper ends with
a conclusion section.

Let us close the Introduction with a brief review of previous related works in the literature.
In [20], {Xn}n∈N is a sequence of i.i.d. random variables and Pfanzagl proved a Berry–Esseen
theorem for minimum contrast estimators (which are special instances of M-estimators) associ-
ated with functionals of the form F(α,Xk). In [20], the moment conditions on F ′ := ∂F/∂α,
F ′′ := ∂2F/∂α2 are the expected ones since the property (b) is fulfilled under the expected third
moment condition [6], Chapter XVI. Using convexity arguments, Bentkus et al. [2] proposed an
alternative method for deriving Berry–Esseen bounds for M-estimators with i.i.d. data. In the
Markov context, the method proposed by Pfanzagl is extended, first by Rao to cover the case
of uniformly ergodic Markov chains [21], second in [19] to the case of the linear autoregressive
model. However, their assumptions to get the property (BE) include much stronger moment con-
ditions involving both the functional F and the Markov chain. Here, as already mentioned, the
weak spectral method of [12] enables us to have an (almost) optimal treatment of (a) and (b), and
hence an improved Berry–Esseen result (BE).

2. The Pfanzagl method revisited

We state and prove a general result that allows us to derive uniform Berry–Esseen bounds for M-
estimators. This result is an extended version of Theorem 1 in [20] and is applied to our Markov
context in Section 4.

2.1. The result

Consider a statistical model (
, F , {Pθ , θ ∈ �}), where � denotes some parameter space, and
let {Xn}n≥0 be any sequence of observations (not necessarily Markovian). Let us denote the
expectation with respect to Pθ by Eθ .

For each n, let Mn(α) be a measurable functional of the observations X0, . . . ,Xn and the
parameter of interest α ∈ A, where A is some open interval of R. Let {cn}n≥1 be a sequence of
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non-negative real numbers going to zero at some rate to be specified later. An M-estimator is a
measurable function α̂n of the observations (X0, . . . ,Xn) such that

Mn(̂αn) ≤ min
α∈A

Mn(α) + cn. (3)

This is the usual definition of minimum contrast estimators as soon as cn ≡ 0.

Assumptions. Suppose that for all n ≥ 1 and α ∈ A, there exist M ′
n(α), M ′′

n (α) some measurable
functions depending on X0,X1, . . . ,Xn and on the parameter of interest, such that the following
properties hold true:

(A1) ∀θ ∈ �, there exists a unique α0 = α0(θ) ∈ A such that M ′
θ (α0) = 0, where M ′

θ (α) :=
limn→∞ Eθ [M ′

n(α)] (the limit is assumed to be well defined for all (θ,α) ∈ � × A);
(A2) 0 < infθ∈� m(θ) ≤ supθ∈� m(θ) < ∞, where m(θ) := limn→∞ Eθ [M ′′

n (α0)] (the limit
is assumed to be well defined for all θ );

(A3) for every n ≥ 1, there exists rn > 0 independent of θ such that rn = o(n−1/2) and

sup
θ∈�

Pθ {|M ′
n(̂αn)| ≥ rn} = O(n−1/2);

(A4) for j = 1,2, there exists a function σj (·) such that 0 < infθ∈� σj (θ) ≤ supθ∈� σj (θ) <

∞ and there exists a positive constant B such that for all n ≥ 1

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ

{ √
n

σ1(θ)
M ′

n(α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ B√
n
,

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ

{ √
n

σ2(θ)

(
M ′′

n (α0) − m(θ)
) ≤ u

}
− �(u)

∣∣∣∣ ≤ B√
n
;

(A4′) for n ≥ 1, |u| ≤ 2
√

lnn and θ ∈ �, there is a positive number σn,u(θ) such that

|σn,u(θ) − σ1(θ)| ≤ A′ |u|√
n
,∣∣∣∣Pθ

{ √
n

σn,u(θ)

(
M ′

n(α0) + uσ1(θ)√
nm(θ)

(
M ′′

n (α0) − m(θ)
)) ≤ u

}
− �(u)

∣∣∣∣ ≤ B ′
√

n

with some positive constants A′,B ′ independent of n,u, θ ;
(A5) for any (α, α̃) ∈ A2, let Rn(α, α̃) be defined by the equation

M ′
n(α̃) = M ′

n(α) + [M ′′
n (α) + Rn(α, α̃)](α̃ − α).

For each n, there exist ωn ≥ 0 and a real-valued measurable function Wn depending on
X0, . . . ,Xn, both independent of θ , such that ωn = o(1) and

∀(α, α̃) ∈ A2 |Rn(α, α̃)| ≤ {|α − α̃| + ωn}Wn,
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and there is a constant cW > 0 such that

sup
θ∈�

Pθ {cW ≤ Wn} = O(n−1/2);

(A6) α̂n is assumed to be uniformly consistent, that is, there exists γn = o(1) such that

sup
θ∈�

Pθ {|̂αn − α0| ≥ d} ≤ γn,

where d := infθ∈� m(θ)/8cW with cW and m(θ) defined in (A5) and (A2), respectively.

Let us comment on these assumptions. Condition (A1) identifies the true value of the param-
eter. In conditions (A1) and (A2), the expectations Eθ [M ′

n(α)] and Eθ [M ′′
n (α0)] may depend on

n, as in the Markovian framework considered in the sequel when the initial distribution is not
the stationary distribution. Condition (A3) ensures that the estimator (approximately) satisfies
a kind of first-order condition. Such a condition allows us to take into account the numerical
errors with which we are faced when computing α̂n. It may also be useful when the estimator
of the parameter α0 depends on some “nuisance” parameters (see the example in the second
part of Section 5). Conditions (A4) and (A4′) are the uniform Berry–Esseen bounds for M ′

n(α0),
M ′′

n (α0) and for some of their linear combinations. The identity defining Rn(α, α̃) in condition
(A5) is guaranteed by a Taylor expansion when the criterion Mn(α) is twice differentiable with
respect to α. In this case M ′

n and M ′′
n are nothing else but the first- and second-order deriva-

tives of Mn with respect to α. The reminder Rn(α, α̃) must satisfy a Lipschitz condition. For
instance, when ωn = 0, this holds true if α �→ Mn(α) is three times continuously differentiable
with a bounded third-order derivative. Condition (A6) is a standard consistency condition (see
[2]). General sufficient conditions for (A6) with γn = O(n−1) have been proposed in the case of
i.i.d. observations or uniformly ergodic Markov chains (see [18], Lemma 4, and [21], Lemma
4.1, resp.). Such general arguments can easily be adapted to the geometrically ergodic Markov
chain framework. In specific examples, like the one investigated in Section 5, condition (A6) can
be checked by direct arguments.

The proof of Theorem 1, which adapts the arguments of [20], is given in Section 2.2.

Theorem 1. Under conditions (A1)–(A6), there exists a positive constant C such that

∀n ≥ 1 sup
θ∈�

sup
u∈R

∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C

(
1√
n

+ √
nrn + ωn + γn

)
(4)

with τ(θ) := σ1(θ)/m(θ).

To obtain the classical order O(n−1/2) of the Berry–Esseen bound, one needs γn = O(n−1/2),
rn = O(n−1) and ωn = O(n−1/2). Note that this usually requires that the sequence {cn}n≥1 in
(3) decreases at the rate n−3/2. This is to be compared to the rate n−1 that is usually required to
obtain the asymptotic normality of M-estimators (see [1]).

Remark 1. A close inspection of the proof of Theorem 1 below shows that the constant C in
inequality (4) can be tracked provided that the O(·) and o(·) rates in assumptions (A3)–(A6)
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are more explicit. For the sake of brevity, we only consider the case where cn = rn = ωn = 0,
α(θ) = θ and (A3) is: for any n ≥ 1, |M ′

n(θ̂n)| = 0. The constants C in the various inequalities of
assumptions (A4)–(A6) are denoted by C1,C2 in (A4), C3,C4 in (A4′) and C5 in (A5) and we
choose γn ≤ C6n

−1/2 in (A6). Then we can obtain from Propositions 1 and 2 that

∀n ≥ 1 sup
θ∈�

∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C√
n
,

where C := 1
2 + 1√

2π
+ 2C1 + 2C2 + exp(−a2/2)

a
+C5 +C6 when |u| ≥ 2

√
lnn; or C := 2[ 1√

2π
+

2C1 + 4C2 + 2 exp(−a2/2)
a

+ 2C5 + C6] + C4 + 16e−1(C3+σ 2cW )

σ 1

√
2π

when |u| < 2
√

lnn provided

that
√

n/ lnn ≥ max(8cWσ 2,4)/σ 1; with a := infθ∈�(m(θ)/4σ2(θ)), σ := supθ∈� σ1(θ)/m(θ),
σ 1 := infθ∈� σ1(θ).

2.2. Proof of Theorem 1

The hypotheses of Theorem 1 are assumed to hold. For the sake of brevity, the sequence {rn}n≥1

in (A3) is supposed to be such that rn = o(n−1/2) and |M ′
n(̂αn)| ≤ rn for every n ≥ 1. In the

general case, it suffices to work on the event {|M ′
n(̂αn)| ≤ rn} and to bound the probability of the

event {|M ′
n(̂αn)| > rn} using (A3). From conditions (A2) and (A4),

τ(θ) := σ1(θ)

m(θ)
, m := inf

θ∈�
m(θ), m := sup

θ∈�

m(θ),

σ j := inf
θ∈�

σj (θ), σ j := sup
θ∈�

σj (θ),

j = 1,2, are well defined. Recall that 0 < m ≤ m < ∞ and 0 < σj ≤ σ j < ∞. Note that the
function τ(·) is positive and bounded. In the following, C denotes a positive constant whose
value may be different from line to line.

Inequality (4) is proved, first for |u| ≥ 2
√

lnn, second for |u| < 2
√

lnn. In fact, for |u| ≥
2
√

lnn, the bound in inequality (4) does not involve rn and ωn.

Proposition 1. There exists a positive constant C such that for each n ≥ 1 and all u ∈ R such
that |u| ≥ 2

√
lnn

sup
θ∈�

∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C√
n

+ γn. (5)

Proof. For |u| ≥ 2
√

lnn, it is easily checked that∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ Pθ

{ √
n

τ(θ)
|̂αn − α0| ≥ 2

√
lnn

}
+ �

(−2
√

lnn
)
.
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Now,

�
(−2

√
lnn

) ≤ 1

2
√

lnn

1√
2π

∫ +∞

2
√

lnn

ve−v2/2 dv = 1

2
√

lnn

1√
2π

1

n2
.

Finally, the proof is complete if there exists C > 0 such that (see [18], Lemma 6)

∀n ≥ 1 sup
θ∈�

Pθ

{ √
n

τ(θ)
|̂αn − α0| > 2

√
lnn

}
≤ C√

n
+ γn. (6)

It follows from (A5) and (A3) that |M ′
n(α0)| + rn ≥ |̂αn − α0||M ′′

n (α0) + Rn(̂αn,α0)|. Then,

√
n

σ1(θ)
|̂αn − α0| > 2

√
lnn

m(θ)
�⇒

√
n

σ1(θ)

(|M ′
n(α0)| + rn

)
> 2

√
lnn

m(θ)
|M ′′

n (α0) + Rn(̂αn,α0)|,

provided that M ′
n(̂αn) 	= M ′

n(α0). Next, introducing the event {2|M ′′
n (α0) + Rn(̂αn,α0)| > m(θ)}

and its complement (which includes the event {M ′
n(̂αn) = M ′

n(α0)}), we obtain

Pθ

{ √
n

τ(θ)
|̂αn − α0| > 2

√
lnn

}
≤ Pθ

{ √
n

σ1(θ)
{|M ′

n(α0)| + rn} >
√

lnn

}
+ Pθ {2|M ′′

n (α0) + Rn(̂αn,α0)| ≤ m(θ)}.

It is easily checked from (A4) and rn = o(n−1/2) that

sup
θ∈�

Pθ

{ √
n

σ1(θ)
{|M ′

n(α0)| + rn} >
√

lnn

}
= O

(
1√
n

)
+ 2�

(
−√

lnn +
√

nrn

σ1(θ)

)
= O

(
1√
n

)
.

Finally, to obtain the bound (6), it remains to justify the use of the following bound:

sup
θ∈�

Pθ {2|M ′′
n (α0) + Rn(̂αn,α0)| ≤ m(θ)} = O(n−1/2) + γn. (7)

Using elementary inequalities and assumption (A5),

Pθ {2|M ′′
n (α0) + Rn(̂αn,α0)| ≤ m(θ)}

≤ Pθ {|M ′′
n (α0) − m(θ)| ≥ m(θ)/4} + Pθ {|Rn(̂αn,α0)| ≥ m(θ)/4}

≤ Pθ {|M ′′
n (α0) − m(θ)| ≥ m(θ)/4} + Pθ {[|̂αn − α0)| + ωn]Wn ≥ m(θ)/4}

=: P1,n,θ + P2,n,θ .

It follows from (A4) that a := infθ∈�(m(θ)/4σ2(θ)) is well defined and positive, and

sup
θ∈�

P1,n,θ ≤ O(n−1/2) + 2�
(−a

√
n
) = O(n−/1/2). (8)
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Now, let d(θ) := m(θ)/4cW with cW defined in (A5) and notice that d = infθ ′∈� d(θ ′)/2 in (A6).
Use the event {|̂αn − α0| ≤ d(θ) − ωn} and its complement to write

P2,n,θ ≤ Pθ

{
m(θ)

4
≤ [|̂αn − α0| + ωn]Wn ≤ Wnd(θ)

}
+ Pθ {|̂αn − α0| > d(θ) − ωn}

≤ sup
θ∈�

Pθ {cW ≤ Wn} + sup
θ∈�

Pθ {|̂αn − α0| > d} = O(n−1/2) + γn,

from (A5)–(A6) and provided that ωn ≤ d . Therefore, inequality (7) holds true. �

Now, it remains to investigate the case |u| < 2
√

lnn.

Proposition 2. There exists a positive constant C such that, for any |u| < 2
√

lnn,

sup
θ∈�

∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C

(
1√
n

+ √
nrn + ωn + γn

)
. (9)

Proof. We just have to prove that (9) holds true for all n ≥ n0, for some n0 ∈ N. Let us introduce
some sets and derive their probability bounds:

• En,θ := {√n|̂αn − α0|/τ(θ) ≤ 2
√

lnn}. From (6), supθ∈� Pθ (E
c
n,θ ) = O(n−1/2 + γn).

• An := {0 ≤ Wn ≤ cW } where the r.v. Wn and the constant cW are defined in (A5). Then
supθ∈� Pθ (A

c
n) = O(n−1/2).

• Dn,θ := {2M ′′
n (α0) > m(θ)}. We have Pθ {Dc

n,θ } ≤ Pθ {|M ′′
n (α0) − m(θ)| ≥ m(θ)/2} ≤

Pθ {|M ′′
n (α0) − m(θ)| ≥ m(θ)/4}. We know from (8) that supθ∈� Pθ (D

c
n,θ ) = O(n−1/2).

Then, we obtain from the previous estimates that the following set

Bn,θ := En,θ ∩ An ∩ Dn,θ

is such that

sup
θ∈�

Pθ (B
c
n,θ ) ≤ O(n−1/2 + γn). (10)

Now, if Dn,θ,u := {√n(̂αn − α0)/τ(θ) ≤ u}, then we can write from (10)

|Pθ (Dn,θ,u) − �(u)| ≤ |Pθ (Dn,θ,u ∩ Bn,θ ) − �(u)| + O(n−1/2 + γn). (11)

From (A2) and (A4), 0 < σ := supθ∈� τ(θ) < ∞. Define the piecewise quadratic functions

g−(v) := c− + b−v + a−v2, g+(v) := c+ + b+v + a+v2, (12)

where c± := n[M ′
n(α0) ± rn], b± := τ(θ)

√
n[M ′′

n (α0) ± sign(v)cWωn], a± := ±σ 2cW , and
sign(v) denotes the sign of v when v 	= 0 and sign(0) = 0. Notice that g− and g+ are continuous
on the whole real line. To bound the term |Pθ (Dn,θ,u ∩Bn,θ )−�(u)| in (11), let us introduce the
events

E±
n,θ,u := {g±(u) ≥ 0}. (13)
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It follows from Lemma A.2 in Appendix A that, for n large enough and |u| < 2
√

lnn,

Pθ (E
−
n,θ,u ∩ Bn,θ ) ≤ Pθ (Dn,θ,u ∩ Bn,θ ) ≤ Pθ (E

+
n,θ,u ∩ Bn,θ )

so that

|Pθ (Dn,θ,u ∩ Bn,θ ) − �(u)|
≤ max{|Pθ (E

−
n,θ,u ∩ Bn,θ ) − �(u)|, |Pθ (E

+
n,θ,u ∩ Bn,θ ) − �(u)|} (14)

≤ max{|Pθ (E
−
n,θ,u) − �(u)|, |Pθ (E

+
n,θ,u) − �(u)|} + Pθ (B

c
n,θ ).

Then the proof of Proposition 2 is easily completed using (10) and the following estimate: There
exists a constant C such that for n large enough and |u| < 2

√
lnn

sup
θ∈�

|Pθ (E
±
n,θ,u) − �(u)| ≤ C

(
1√
n

+ √
nrn + ωn

)
. (15)

Indeed, E±
n,θ,u = {g±(u) ≥ 0} with g± defined in (12). We can write

E±
n,θ,u = {

n[M ′
n(α0) ± rn] + uτ(θ)

√
n[M ′′

n (α0) ± sign(u)cWωn] ± u2σ 2cW ≥ 0
}

=
{ √

n

σn,u(θ)

(
M ′

n(α0) + uσ1(θ)√
nm(θ)

(
M ′′

n (α0) − m(θ)
)) ≥ −an(u, θ) + bn(u, θ)

σn,u(θ)

}
,

where the positive real number σn,u(θ) is that of condition (A4′) and

an(u, θ) = u

[
σ1(θ)(1 ± sign(u)cWωn

m(θ)
) ± uσ 2cW√

n

]
, bn(u, θ) = ±√

nrn.

From the second statement of (A4′), it follows that there exists a constant B ′ such that we have,
for n large enough and |u| < 2

√
lnn,

sup
θ∈�

∣∣∣∣Pθ (E
±
n,θ,u) − �

(
an(u, θ) + bn(u, θ)

σn,u(θ)

)∣∣∣∣ ≤ B ′
√

n
.

Now, from σ 1 := infθ∈� σ1(θ) > 0 and from the first property of σn,u(θ) in (A4′), it follows that,
for n large enough and |u| < 2

√
lnn, and for all θ ∈ �, we have σn,u(θ) ≥ σ 1/2 and∣∣∣∣an(u, θ)

σn,u(θ)
− u

∣∣∣∣ ≤ |u|
σn,u(θ)

(
|σn,u(θ) − σ1(θ)| + cWωn

m(θ)
+ |u|σ 2cW√

n

)

≤ 2|u|
σ 1

[
(A′ + σ 2cW )

|u|√
n

+ cW

m
ωn

]
≤ C′

(
u2

√
n

+ |u|ωn

)
,

where C′ is independent of n, u, θ . We obtain from estimates on the characteristic function of the
standard Gaussian distribution reported in [20], page 89, that, for n large enough, |u| < 2

√
lnn,



712 L. Hervé, J. Ledoux and V. Patilea

and θ ∈ �, ∣∣∣∣�(
an(u, θ)

σn,u(θ)

)
− �(u)

∣∣∣∣ ≤ C1

(
1√
n

+ ωn

)
for some C1 > 0. We deduce from similar arguments that, for some constant C2,∣∣∣∣�(

an(u, θ)

σn,u(θ)

)
− �

(
an(u, θ) + bn(u, θ)

σn,u(θ)

)∣∣∣∣ ≤ C2
√

nrn.

Since C1, C2 only depend on A′, σ 1, m, σ and cW , the proof of (15) is complete. �

3. A Berry–Esseen bound for an additive functional of
geometrically ergodic Markov chains

The main focus of the paper is to apply the general Berry–Esseen result of Theorem 1 to the case
of M-estimators as defined in the Introduction when the observations come from a geometrically
ergodic Markov chain. To check conditions (A4) and (A4′) in Theorem 1, we need the next
probabilistic results based on a recent version of the Berry–Esseen theorem derived by [12] in
the geometrically ergodic Markov chain setting.

3.1. The statistical model

Let (E, E ) be a measurable space with a countably generated σ -field E and � be some gen-
eral parameter space. Let {Xn}n≥0 be a Markov chain with state space E, transition kernels
{Qθ(x, ·), x ∈ E}, θ ∈ � and an initial distribution μ that may or may not depend on θ .

Assumption (M). Let V :E→[1,+∞) be an unbounded function (independent of θ ). For each
θ ∈ �, there exists a Qθ -invariant probability distribution, denoted by πθ , such that

(VG1) b1 := supθ∈� πθ(V ) < +∞.
(VG2) For all γ ∈ (0,1], there exist real numbers κγ < 1 and Cγ ≥ 0 such that we have, for

any θ ∈ �, n ≥ 1 and x ∈ E,

sup{|Qn
θf (x) − πθ(f )|, f :E→C measurable, |f | ≤ V γ } ≤ Cγ κn

γ V (x)γ .

Throughout Section 3, we assume that μ(V ) := supθ∈� μ(V ) < ∞. Notice that (VG2) with
γ = 1 implies the following property: For any measurable real-valued function f defined on E

such that |f | ≤ DV, for some constant D > 0,

∀n ≥ 1 sup
θ∈�

|Eθ,μ[f (Xn)] − πθ (f )| ≤ DC1κ
n
1 μ(V ). (16)

Moreover, conditions (VG1) and (VG2) imply that, for any γ ∈ (0,1] and θ ∈ �, Qθ is V γ -
geometrically ergodic, but it is worth noticing that the constants Cγ and κγ do not depend on θ . In
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the following remark, the properties (VG1) and (VG2) are related to the so-called drift condition
w.r.t. the function V for each Qθ .

Remark 2. Assume that for each θ ∈ �, Qθ is aperiodic and ψ -irreducible w.r.t. a certain posi-
tive σ -finite measure ψ on E (which may depend on θ ).

1. For γ = 1 and any fixed θ , the properties (VG1)–(VG2) follow from the drift condition:
QθV ≤ �V + ς1S , with � < 1, ς > 0 and some set S (S is the so-called small set) satisfying the
minorization condition Qθ(x, ·) ≥ cν(·)1S(x), where c > 0 and ν is a probability measure con-
centrated on S (see [16], Theorem 16.0.1). In addition, the constants C1 and κ1 can be bounded
by a quantity involving �, ς , c, the measure ν and the set S (see [17]). To obtain the uniformity
in θ , it suffices to check that all these elements do not depend on θ .

2. For any γ ∈ (0,1], we have πθ (V
γ ) ≤ πθ (V ) and thus condition (VG1) implies that

supθ∈� πθ(V
γ ) < ∞. Furthermore, under the drift condition, it follows from Jensen’s inequality

that QθV
γ ≤ �γ V + ςγ 1S . Using [17], one obtains (VG2).

3.2. A preliminary uniform Berry–Esseen statement

Let α0 = α0(θ) ∈ A be the parameter of interest for the statistical applications we have in mind
(see condition (A1), page 706), where θ is the parameter of the Markov chain model and A is an
open interval of the real line.

Let ξ(α, x, y) be a real-valued measurable function defined on A × E2 such that the random
variable ξ(α,Xk−1,Xk) is (integrable and) centered with respect to the stationary distribution
πθ , that is,

Eθ,πθ [ξ(α0,X0,X1)] = 0,

and let

Sn(α) :=
n∑

k=1

ξ(α,Xk−1,Xk).

We investigate the following uniform Berry–Esseen property:

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{
Sn(α0)

σ (θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ = O

(
1√
n

)
,

where σ 2(θ) will be defined below as the asymptotic variance associated with the random vari-
ables ξ(α,Xk−1,Xk). When {Xn}n≥0 are i.i.d. and ξ(α,Xk−1,Xk) ≡ ξ(α,Xk), this property fol-
lows from the Berry–Esseen theorem [6], provided that ξ(α,X0) has finite third-order moment,
uniformly bounded in α, and a variance greater than some positive constant that does not depend
on α.

In our Markov framework, the following moment (or V -domination) condition is natural for
the functional ξ . In the sequel, this condition will be required for m0 = 1,2 or 3.



714 L. Hervé, J. Ledoux and V. Patilea

Condition (Dm0 ). There exist real constants m > m0 ≥ 1 and Cξ > 0 such that

∀α ∈ A,∀(x, y) ∈ E2 |ξ(α, x, y)|m ≤ Cξ

(
V (x) + V (y)

)
. (Dm0 )

This domination condition implies that

Eθ,πθ [|ξ(α,X0,X1)|m] =
∫

|ξ(α, x, y)|mQθ(x,dy)dπθ (x)

(17)
≤ Cξ

(
πθ (V ) + πθ (QθV )

)
< ∞,

and since m ≥ 1, observe that Eθ,πθ [|ξ(θ,X0,X1)|] < ∞.

Proposition 3. Suppose that Assumption (M) holds true and that ξ is centered and satisfies
condition (D1). Then, we have supθ∈� supn≥1 |Eθ,μ[Sn(α0)]| < ∞. In particular, for each θ ∈ �,
limn Eθ,μ[Sn(α0)/n] = 0. If, in addition, ξ satisfies condition (D2), then for each θ ∈ �, the non-
negative real number

σ 2(θ) := lim
n

Eθ,μ[Sn(α0)
2]

n

is well defined and does not depend on μ. Furthermore, the function σ 2(·) is bounded on �, and
there exists a positive constant C, only depending on Cξ and μ(V ), such that

∀θ ∈ � ∀n ≥ 1,

∣∣∣∣σ 2(θ) − Eθ,μ[Sn(α0)
2]

n

∣∣∣∣ ≤ C

n
.

Now, we are ready to state our uniform Berry–Esseen statement for Sn(α0).

Theorem 2. Let us assume that:

1. Assumption (M) holds true;
2. the functional ξ is centered and satisfies condition (D3);
3. σ 2

0 := infθ∈� σ 2(θ) > 0.

Then, there exists a constant B(ξ) such that

∀n ≥ 1 sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{
Sn(α0)

σ (θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ ≤ B(ξ)√
n

.

Furthermore, the constant B(ξ) depends on the functional ξ , but only through σ0 and the con-
stant Cξ of condition (D3).

The fact that we look for a Berry–Esseen bound with a constant B(ξ) independent of θ is nat-
ural given our main purpose, that is, to prove a uniform Berry–Esseen theorem for M-estimators.

There are several methods for deriving Berry–Esseen bound for the functionals of Markov
chains (see [3,13]). But to prove Proposition 3 and Theorem 2, we use the weak spectral method
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developed in [12]. (A Berry–Esseen theorem is established in [11] for sequences of the form
{ξ(Xk)}k≥0 under the conditions μ(V ) < ∞ and |ξ |3 ≤ CV ; however, the case of sequences
of the form {ξ(Xk−1,Xk)}k≥0 is not a direct corollary of this work since the Markov chain
{(Xk−1,Xk)}k≥0 may not be geometrically ergodic.) This method allows us to control the con-
stant B(ξ) as a function of Cξ for checking assumption (A4′) of Theorem 1 (see the arguments
following equation (32) in Section 4). This follows from the next key technical result. Although
the proof of the Berry–Esseen theorem only requires Taylor expansions up to the order m0 and
Condition (Dm0 ) with m0 = 3, for the purpose of possible further applications, Lemma 1 below
is stated for any m0 ∈ N

∗.

Lemma 1. If ξ is centered and satisfies Condition (Dm0 ) with m0 ∈ N
∗, then there exists β > 0

such that

∀θ ∈ �,∀n ≥ 1,∀t ∈ [−β,β] Eθ,μ

[
eitSn(α0)

] = λθ (t)
n
(
1 + Lθ(t)

) + rθ,n(t), (18)

where λθ (·), Lθ(·) and rθ,n(·) are some m0 times continuously differentiable functions from
[−β,β] into C satisfying λθ (0) = 1, λ′

θ (0) = 0,Lθ (0) = 0 and rθ,n(0) = 0. Furthermore, there
exists ρ ∈ (0,1) such that we have for � = 0, . . . ,m0:

G� := sup
{
ρ−n

∣∣r(�)
θ,n(t)

∣∣, |t | ≤ β, θ ∈ �,n ≥ 1
}

< ∞.

Finally, the constants β , ρ, G� and the following ones (for � = 0, . . . ,m0),

E� := sup
{∣∣λ(�)

θ (t)
∣∣, |t | ≤ β, θ ∈ �

}
< ∞,

F� := sup
{∣∣L(�)

θ (t)
∣∣, |t | ≤ β, θ ∈ �

}
< ∞,

depend on ξ , but only through the constant Cξ of Condition (Dm0 ).

Lemma 1 is proved in Section 3.3. The definition of Lθ(t) and rθ,n(t) (see (25) and (26))
shows that the constants F� and G� also depend on μ(V ) (see Remark 3). Now Lemma 1 allows
us to derive Proposition 3 and Theorem 2.

Proof of Proposition 3. Assume that ξ is centered and satisfies (Dm0 ) with m0 ∈ N
∗. Proceeding

as in (17) and using (16), (VG1) and μ(V ) < ∞, we obtain that

sup
θ∈�

sup
k≥1

Eθ,μ[|ξ(α0,Xk−1,Xk)|m] < ∞ for some m > m0. (19)

Now assume m0 = 1, and let φ(t) := Eθ,μ[eitSn(α0)], t ∈ R. Then φ′(0) = iEθ,μ[Sn(α0)], but
Lemma 1 also gives φ′(0) = L′

θ (0) + r ′
θ,n(0). Hence supθ∈� supn≥1 |Eθ,μ[Sn(α0)]| ≤ F1 +

G1. Next, assume m0 = 2. From (19) we have Eθ,μ[Sn(α0)
2] < ∞, and thus we can write

φ′′(0) = −Eθ,μ[Sn(α0)
2], and φ′′(0) = nλ′′

θ (0) + L′′
θ (0) + r ′′

θ,n(0) by Lemma 1. Thus we ob-

tain |λ′′
θ (0)+ Eθ,μ[Sn(α0)

2]/n| ≤ (|L′′
θ (0)| + |r ′′

θ,n(0)|)/n ≤ (F2 +G2)/n. Set σ 2(θ) := −λ′′
θ (0).

Then supθ∈� σ 2(θ) ≤ E2 (by Lemma 1), and the proof is complete with C := F2 + G2. �
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Proof of Theorem 2. Recall that ξ is centered and satisfies condition (D3). To prove the result,
we use Lemma 1 with m0 = 3 and we adapt the arguments of the i.i.d. case. Recall that σ 2(θ) =
−λ′′

θ (0). According to the classical Berry–Esseen inequality (see [6]), we must prove that for
some suitable positive constant c, supθ∈� An(θ) = O(n−1/2), where

An(θ) :=
∫ c

√
n

−c
√

n

∣∣∣∣E[eitSn(α0)/(σ (θ)
√

n)] − e−t2/2

t

∣∣∣∣dt.

For the moment, we just assume that 0 < c ≤ βσ0, where β is the real number in Lemma 1.
Notice that |t | ≤ c implies |t/σ (θ)| ≤ β for all θ ∈ �. Using Lemma 1, we have

An(θ) ≤
∫ c

√
n

−c
√

n

∣∣∣∣λθ (t/(σ (θ)
√

n))n − e−t2/2

t

∣∣∣∣dt

+
∫ c

√
n

−c
√

n

∣∣∣∣λθ

(
t

σ (θ)
√

n

)∣∣∣∣n∣∣∣∣Lθ(t/(σ (θ)
√

n))

t

∣∣∣∣dt

+
∫ c

√
n

−c
√

n

∣∣∣∣ rθ,n(t/(σ (θ)
√

n))

t

∣∣∣∣dt

:= In(θ) + Jn(θ) + Kn(θ).

By a Taylor expansion, for all θ ∈ � and |v| ≤ c,∣∣∣∣λθ

(
v

σ(θ)

)
− 1 + v2

2

∣∣∣∣ ≤ E3

6σ 3
0

|v|3,

where E3 is defined in Lemma 1. Hereafter, set c := min{βσ0,3σ 3
0 /2E3,

√
2}. From the last

inequality, deduce that for any |v| ≤ c∣∣∣∣λθ

(
v

σ(θ)

)∣∣∣∣ ≤ 1 − v2

2
+ v2

4
≤ e−v2/4.

Therefore, for any t ∈ R such that |t | ≤ c
√

n,∣∣∣∣λθ

(
t

σ (θ)
√

n

)∣∣∣∣n ≤ e−t2/4. (20)

Let us write

λθ

(
t

σ (θ)
√

n

)n

− e−t2/2 =
(

λ

(
t

σ (θ)
√

n

)
− e−t2/(2n)

) n−1∑
k=0

λθ

(
t

σ (θ)
√

n

)n−k−1

e−kt2/(2n).
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Notice that |λθ (t/σ (θ)
√

n) − exp(−t2/2n)| ≤ (a + E3/6σ 3
0 )|t/√n|3 if a := sup|v|≤c |ψ(3)(v)|

with ψ(v) := 6 exp(−v2/2). Moreover,

n−1∑
k=0

∣∣∣∣λθ

(
t

σ (θ)
√

n

)∣∣∣∣n−k−1

e−kt2/2n ≤
n−1∑
k=0

e−t2(n−k−1)/(4n)e−kt2/(4n) ≤ bne−t2/4,

where b := sup|v|≤c exp(v2/4). Hence∣∣∣∣λθ

(
t

σ (θ)
√

n

)n

− e−t2/2
∣∣∣∣ ≤

(
a + E3

6σ 3
0

)
bn−1/2|t |3e−t2/4,

which yields supθ∈� In(θ) ≤ bn−1/2(a + E3/6σ 3
0 )

∫
R

t2 exp(−t2/4)dt . Next, using (20) and
Lθ(0) = 0,

sup
θ∈�

Jn(θ) ≤ F1

σ0
√

n

∫
R

e−t2/4 dt.

Finally, using rθ,n(0) = 0, we have supθ∈� |rθ,n(t/σ (θ)
√

n)| ≤ (|t |/σ0
√

n)G1ρ
n, so that

supθ∈� Kn(θ) ≤ (2cG1/σ0)ρ
n. Gathering the results, we deduce that

sup
θ∈�

An(θ) ≤ A√
n

+ 2cG1

σ0
ρn,

where the constants A,ρ,G1 and c depend on Cξ of condition (D3). The Berry–Esseen inequal-
ity [6] then yields

sup
u∈R

∣∣∣∣Pθ,μ

{
Sn(θ)

σ (θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ ≤ 1

π

(
A√
n

+ 2cG1

σ0
ρn + 24η

c
√

n

)
,

where η = supu∈R |�′(u)|. The proof of Theorem 2 is complete. �

3.3. Proof of Lemma 1

For θ ∈ � fixed, Lemma 1 follows from [12], Section 10. Here, we must prove that all the
constants in Lemma 1 are uniform in θ and depend on ξ as claimed. For this purpose, the weak
spectral method is outlined below (in the V -geometrical ergodicity context) and we give the main
statements by paying special attention to the constants. For convenience, the technical proofs are
postponed in Appendix B.

• Geometrical ergodicity of Qθ . Let 0 < γ ≤ 1. We denote by Bγ the weighted supremum-
normed space of measurable complex-valued functions f on E such that

‖f ‖γ := sup
x∈E

|f (x)|
V (x)γ

< ∞.
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(Bγ ,‖ · ‖γ ) is a Banach space. The space of bounded operators on Bγ is denoted by L(Bγ ), and
the associated operator norm is still denoted by ‖ · ‖γ . We have from (VG1)

sup
θ∈�

πθ(V
γ ) ≤ b1 = sup

θ∈�

πθ(V ) < ∞, (21)

so that πθ is a continuous linear form on Bγ . Define the following rank-one projection on Bγ :

∀f ∈ Bγ �θf := πθ (f )1E.

Then condition (VG2) in Assumption (M) can be rewritten as follows: Qθ ∈ L(Bγ ) and there
exist κγ < 1 and Cγ > 0 such that

∀θ ∈ �,∀f ∈ Bγ ,∀n ≥ 1 ‖Qn
θf − �θf ‖γ ≤ Cγ κn

γ ‖f ‖γ . (22)

From (21) and (22), ‖Qn
θ‖γ = supx∈E(Qn

θV
γ )(x)/V (x)γ is uniformly bounded in n ∈ N

∗ and
θ ∈ �.

• The Fourier kernels associated with Qθ and ξ . Assume that, for all α ∈ A, ξ(α, ·, ·) is
measurable. The Fourier kernels associated with Qθ and ξ are denoted by {Qθ(t)(x,dy), t ∈ R}
and defined by

∀x ∈ E Qθ(t)(x,dy) := eitξ(α0,x,y)Qθ (x,dy).

Let us recall that Sn(α0) := ∑n
k=1 ξ(α0,Xk−1,Xk). The following link between Qθ(t) and the

characteristic function of Sn(α0) is well-known in the spectral method:

∀n ≥ 1,∀t ∈ R Eθ,μ

[
eitSn(α0)

] = μ(Qθ(t)
n1E). (23)

In fact, we have Eθ,μ[eitSn(α0)f (Xn)] = μ(Qθ(t)
nf ) for any real-valued measurable bounded

function f on E. This can be easily checked by induction using the Markov property and the
following equality:

∀n ≥ 2 Eθ,μ

[
eitSn(α0)f (Xn)

] = Eθ,μ

[
eitSn−1(α0)(Qθ (t)f )(Xn−1)

]
.

• Spectral study of Qθ(t) on Bγ (for t near 0). It can be easily seen that, for all t ∈ R, we have
Qθ(t) ∈ L(Bγ ). For κ ∈ (0,1), we set

Dκ := {z ∈ C: |z| ≥ κ, |z − 1| ≥ (1 − κ)/2}.

Lemma 2. Let γ ∈ (0,1). For all κ ∈ (κγ ,1), there exists βγ,κ > 0 such that, for θ ∈ �, |t | ≤
βγ,κ and z ∈ Dκ , we have (z − Qθ(t))

−1 ∈ L(Bγ ) and

Rγ,κ := sup
{∥∥(

z − Qθ(t)
)−1∥∥

γ
: θ ∈ �, |t | ≤ βγ,κ , z ∈ Dκ

}
< ∞.

Moreover, the constants βγ,κ and Rγ,κ depend on ξ , but only via the constant Cξ of Condition
(Dm0 ).
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For θ fixed, Lemma 2 is established in [12], Proposition 10.1, thanks to the theorem of Keller
and Liverani [14,15]. Here, we only have to prove that the constants βγ,κ and Rγ,κ are uniform
in θ and depend on ξ as stated above. According to [14], Remark, page 145, it is enough to check
that the constants are so involved in the hypotheses of the Keller–Liverani theorem. This is due
to Lemmas B.1–B.2 in Appendix B.

• Proof of formula (18). Now assume that ξ satisfies Condition (Dm0 ) for some m0 ∈ N
∗. Let

γ0 ∈ (0,1) be fixed such that γ0 + m0/m < 1. For any κ ∈ (κγ0 ,1), denote by �0,κ the oriented
circle centered at z = 0, with radius κ , and by �1,κ the oriented circle centered at z = 1, with
radius (1 − κ)/2. Note that both �0,κ and �1,κ are contained in Dκ . From (22) and Lemma 2,
one can deduce that we have, for all n ≥ 1, θ ∈ �, and t ∈ [−βγ0,κ ;βγ0,κ ], the following equality
in L(Bγ0):

Qθ(t)
n = λθ (t)

n�θ(t) + Nθ(t)
n, (24)

where λθ (t) is the dominating simple eigenvalue of Qθ(t) and �θ(t) and Nθ(t)
n are the elements

of L(Bγ0) defined by the following line integrals:

�θ(t) := 1

2iπ

∮
�1,κ

(
z − Qθ(t)

)−1 dz and Nθ(t)
n :=

∮
�0,κ

zn
(
z − Qθ(t)

)−1 dz.

Note that we have λθ (0) = 1 and �θ(0) = �θ from (22). Also observe that, from Lemma 2
and the definition of �0,κ , we have ‖Nθ(t)

n‖γ = O(κn). Since 1E ∈ Bγ0 and μ(V ) < ∞ (μ is a
continuous linear form on Bγ0 ), the equalities (23) and (24) give:

Eθ,μ

[
eitSn(α0)

] = λθ (t)
nμ(�θ(t)1E) + μ(Nθ(t)

n1E).

Therefore, formula (18) holds true with

Lθ(t) := μ(�θ(t)1E) − 1, rθ,n(t) := μ(Nθ(t)
n1E) (n ∈ N

∗).

We have Lθ(0) = μ(�θ 1E) − 1 = 0 and rθ,n(0) = μ(Nθ(0)n1E) = μ(Qn
θ 1E − �θ 1E) = 0. Fi-

nally, to make the link with Lemma 3 below easier, let us observe that

1 + Lθ(t) = 1

2iπ

∮
�1,κ

μ
((

z − Qθ(t)
)−11E

)
dz, (25)

rθ,n(t) = 1

2iπ

∮
�0,κ

znμ
((

z − Qθ(t)
)−1

1E

)
dz. (26)

• Regularity properties of λ(·), Lθ(·), rθ,n(·). Let γ ′
0 be such that γ0 + m0/m < γ ′

0 < 1. We
denote by L(Bγ0 , Bγ ′

0
) the space of the bounded linear operators from Bγ0 to Bγ ′

0
, and by ‖ ·‖γ0,γ

′
0

the associated operator norm.

Lemma 3. We have the following regularity properties:

(a) The map Qθ(·) is m0-times continuously differentiable from R to L(Bγ0, Bγ ′
0
), and we

have Q� := supt∈R,θ∈� ‖Q(�)
θ (t)‖γ0,γ

′
0
< ∞ for � = 0, . . . ,m0.
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(b) There exist some real numbers κ ∈ (κγ0 ,1) and 0 < β < βγ0,κ such that, for all θ ∈ �

and z ∈ Dκ , the function Rθ,z : t �→ (z − Qθ(t))
−1 is m0-times continuously differentiable from

[−β,β] into L(Bγ0, Bγ ′
0
), and we have for � = 0, . . . ,m0:

sup
{∥∥R

(�)
θ,z(t)

∥∥
γ0,γ

′
0
: |t | ≤ β, z ∈ Dκ , θ ∈ �

}
< ∞.

The scalars β , κ and all the bounds in (a) and (b) depend on ξ only via the constant Cξ of
Condition (Dm0 ).

For θ fixed, Lemma 3 is established in [12], Proposition 10.3. It can be also derived from
[8], which relaxes the assumptions used in [9,10] to obtain Taylor expansions of the resolvent
maps. (As observed in [8], the passage to the differentiability properties can be derived from [4].)
However, a fine control of the constants is still required. Using either [8] or [12], Section 10, this
control is derived from Lemma 2 and from Lemma B.3 in Appendix B.

Since 1E ∈ Bγ0 and μ is a continuous linear form on Bγ ′
0

(use μ(V ) < ∞), Lemma 3(b)

gives that, for any z ∈ �0,κ ∪ �1,κ , the C-valued function t �→ μ((z − Qθ(t))
−11E) is m0-times

continuously differentiable on [−β,β] and that its m0 first derivatives are uniformly bounded in
θ and z ∈ �0,κ ∪ �0,κ . The regularity properties (and the related bounds) for Lθ(·) and rθ,n(·)
then follow from (25) and (26), while those concerning the function λθ (·) follow from both
Lemma 3(a) and Lemma 3(b), according to a formula given in [12], Section 7.2. Finally the
property λ′

θ (0) = 0 can be proved as follows. By deriving (18) (applied with μ = πθ ) at t = 0
and by using the fact that ξ is centered, we have 0 = iEθ,πθ [Sn(α0)] = nλ′

θ (0)+L′
θ (0)+ r ′

θ,n(0).
Hence λ′

θ (0) = 0.

Remark 3. Notice that, according to (25)–(26), the constants F� and G� in Lemma 1 also depend
on the supremum in θ of the norm of μ in B′

γ ′
0
, namely supθ∈� μ(V γ ′

0).

4. A Berry–Esseen theorem for M-estimators

Consider a Markov chain satisfying Assumption (M) of Section 3.1. Let us introduce the statistic

Mn(α) := 1

n

n∑
k=1

F(α,Xk−1,Xk), (27)

where α is the parameter of interest, F is a real-valued measurable function on A × E2 and A is
an open interval of the real line.

Assume that F satisfies condition (D1) and let

Mθ(α) := lim
n→∞ Eθ,μ[Mn(α)] = Eθ,πθ [F(α,X0,X1)],

which is well defined by Proposition 3. Assume also that, for each θ ∈ �, there exists a unique
α0 = α0(θ) ∈ A, the so-called true value of the parameter of interest, such that Mθ(α) > Mθ(α0),
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∀α 	= α0. To estimate α0 = α0(θ), we consider an M-estimator α̂n as defined in Section 2, that
is, Mn(̂αn) ≤ minα∈A Mn(α) + cn, where {cn}n≥1 is a sequence of non-negative real numbers
going to zero.

Let F ′ and F ′′ be real-valued measurable functions defined on A × E2 and let

M ′
n(α) := 1

n

n∑
k=1

F ′(α,Xk−1,Xk), M ′′
n (α) := 1

n

n∑
k=1

F ′′(α,Xk−1,Xk). (28)

The functionals F ′ and F ′′ could be the first- and second-order partial derivatives of F with re-
spect to α, but this is not necessary to deduce our next result. Consider the following assumptions
on F ′ and F ′′ (and, implicitly, on cn; see (V3)).

Assumptions.

(V0) F ′ and F ′′ satisfy condition (D3).
(V1) ∀θ ∈ �,Eθ,πθ [F ′(α0,X0,X1)] = 0 and α0 = α0(θ) is unique with this property.
(V2) m(θ) := Eθ,πθ [F ′′(α0,X0,X1)] satisfies infθ∈� m(θ) > 0.
(V3) M ′

n(̂αn) satisfies condition (A3), that is, ∀n ≥ 1 and there exists rn > 0 independent of
θ such that rn = o(1/

√
n) and supθ∈� Pθ,μ{|M ′

n(̂αn)| ≥ rn} = O(n−1/2).

Notice that (V0) ensures supθ∈� m(θ) < ∞ (see (17)). Now, as a consequence of Proposition 3
applied to F ′ and F ′′, the conditions (V0)–(V2) enable us to define the asymptotic variances:

σ 2
1 (θ) := lim

n

1

n
Eθ,μ

[(
n∑

k=1

F ′(α0,Xk−1,Xk)

)2]
,

σ 2
2 (θ) := lim

n

1

n
Eθ,μ

[(
n∑

k=1

F ′′(α0,Xk−1,Xk) − nm(θ)

)2]
.

Moreover, condition (V0) and Proposition 3 ensure that supθ∈� σj (θ) < ∞ for j = 1,2. The
following conditions are also assumed to hold.

(V4) infθ∈� σj (θ) > 0 for j = 1,2.
(V5) There exist η ∈ (0,1/2) and C > 0 such that

∀(α, α̃) ∈ A2,∀(x, y) ∈ E2 |F ′′(α, x, y)−F ′′(α̃, x, y)| ≤ C|α− α̃|(V (x)+V (y)
)η

.

(V6) Set d := infθ∈� m(θ)/8πθ (V
η) with η defined in (V5). There exists γn = o(1) such that

sup
θ∈�

Pθ,μ{|̂αn − α0| ≥ d} ≤ γn.

Theorem 3. Assume that Assumption (M) holds true, F satisfies condition (D1) and conditions
(V0)–(V6) are fulfilled. Let τ(θ) := σ1(θ)/m(θ). Then there exists a positive constant C such
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that

∀n ≥ 1 sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C

(
1√
n

+ √
nrn + γn

)
.

The statement in the above theorem corresponds to that of the i.i.d. case in [20] up to few
changes: First, the variances of the i.i.d. context (namely, Eθ [F ′(θ,X0)

2] and Eθ [(F ′′(θ,X0) −
m(θ))2] for an i.i.d. sequence {Xn}n≥0 and a functional F(θ, x)) are replaced by the above
asymptotic variances σ 2

1 (θ) and σ 2
2 (θ) (this is natural in a general Markovian context); sec-

ond, the uniform (in θ ) third-order moment conditions (namely, supθ∈� Eθ [|F ′(θ,X0)|3 +
|F ′′(θ,X0)|3] < ∞) on both F ′,F ′′ are replaced by the domination condition (D3) for F ′,F ′′;
third, even when F ′ = ∂F/∂α, here we allow for a positive sequence rn, n ≥ 1, provided it de-
creases to zero sufficiently fast. The second point is specific to the geometrically ergodic Markov
chain case. Indeed, in the same statistical model, Dehay and Yao [5] proved a CLT for maxi-
mum likelihood estimates under a second-order domination assumption on the two first deriva-
tives of the functional, which corresponds to inequality (Dm0 ) with m0 = 2. Here the previous
second-order assumption is replaced by the (almost) optimal condition (D3) for deriving the
Berry–Esseen theorem for M-estimators.

Proof of Theorem 3. It suffices to check the conditions (A1)–(A6) of Theorem 1. The limit
M ′

θ (α) := limn Eθ,μ[M ′
n(α)] is well defined by Proposition 3 and condition (V0), the uniqueness

of α0 is guaranteed by (V1) and hence (A1) holds true. One more application of Proposition 3 en-
sures that Eθ,πθ [F ′′(α0,X0,X1)] = limn Eθ,μ[M ′′

n (α0)], hence (A2) is satisfied. Condition (V3)
is nothing else but (A3). The Berry–Esseen properties in (A4) are associated with the functionals
F ′(α0, x, y) and F ′′(α0, x, y) respectively, so that they directly follow from Theorem 2.

Now, let us check that (A5) holds true with ωn ≡ 0. Define W := V η, where η ∈ (0,1/2) is the
scalar in (V5) and notice that Eθ,πθ [W(X0)

1/η] = πθ (V ). Next, since V ≥ 1 and η ∈ (0,1/2), we
have 1 ≤ W ≤ W 2 ≤ V so that 1 ≤ πθ (W) ≤ πθ (W

2) ≤ πθ (V ) ≤ b1 by property (VG1). Deduce
that supθ∈� πθ(W) < ∞, and by Proposition 3 applied to ξ(θ, x, y) = W(y)

sup
n≥1

sup
θ∈�

1

n
Eθ,μ

[(
n∑

k=1

W(Xk) − nπθ (W)

)2]
< ∞.

Now, condition (A5) is guaranteed by the properties (M) and (V5) with ωn ≡ 0, cW :=
supθ∈� πθ(W) and Wn := (1/n)

∑n
k=1(W(Xk−1) + W(Xk)) provided that

sup
θ∈�

Pθ,μ{8πθ(W) ≤ Wn} = O(n−1). (29)

To prove (29), set Sn := ∑n
k=1 W(Xk). Since Wn ≤ 2Sn/n+(W(X0)+W(Xn))/n and πθ (W) ≥

1,

Pθ,μ{8πθ (W) ≤ Wn} ≤ Pθ,μ{Sn ≥ 2nπθ (W)} + Pθ,μ{W(X0) + W(Xn) ≥ 4nπθ (W)}
≤ Pθ,μ{Sn − nπθ (W) ≥ n} + Pθ,μ{W(X0) + W(Xn) ≥ 4n}.
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Equality (29) is then obtained by Markov’s inequality,

Pθ,μ{8πθ(W) ≤ Wn} ≤ 1

n2
Eθ,μ

[(
Sn − nπθ (W)

)2] +
(

1

4n

)1/η

Eθ,μ

[(
W(X0) + W(Xn)

)1/η]
= O(n−1),

since

sup
θ∈�

sup
n≥1

Eθ,μ

[(
W(X0) + W(Xn)

)1/η] ≤ 21/η−1[μ(V ) + C1μ(V ) + b1],

using (a + b)1/η ≤ 21/η−1(a1/η + b1/η) for any a, b ≥ 0 and (VG1)–(VG2). Notice also that now
condition (V6) is identical to condition (A6).

The difficult part is to check the Berry–Esseen-type property (A4′). For this purpose, let
� := {ξi(·, ·, ·), i ∈ I } denote an arbitrary family of real-valued functionals defined on A × E2.
Suppose that each ξi is centered, that is, Eθ,πθ [ξi(α0,X0,X1)] = 0 for all i ∈ I and θ ∈ �, and
that condition (D3) is fulfilled uniformly in i ∈ I , that is,

∃m > 3,∃C ≥ 0,∀i ∈ I,∀α ∈ A,∀(x, y) ∈ E2 |ξi(α, x, y)|m ≤ C
(
V (x) + V (y)

)
. (30)

For each i ∈ I , set Sn(α0, i) := ∑n
k=1 ξi(α0,Xk−1,Xk), and using Proposition 3, associate the

corresponding asymptotic variance denoted by σ 2
i (θ). Moreover, assume that

0 < inf{σi(θ), θ ∈ �, i ∈ I } ≤ sup{σi(θ), θ ∈ �, i ∈ I } < ∞. (31)

Then, we deduce from Theorem 2 that, under conditions (M), (30), (31) and μ(V ) < ∞, there
exists a constant B such that

∀n ≥ 1 sup
i∈I

sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,μ

{
Sn(α0, i)

σi(θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ ≤ B√
n
. (32)

This allows us to establish the two conditions in (A4′). Indeed, for (p, v) ∈ N
∗ × R with v such

that |v| ≤ 2
√

lnp, let us introduce the functional ξp,v defined by

ξp,v(α0, x, y) := F ′(α0, x, y) + v√
p

σ1(θ)

m(θ)

(
F ′′(α0, x, y) − m(θ)

)
.

Set Sn(α0,p, v) := ∑n
k=1 ξp,v(α0,Xk−1,Xk), and

αθ (p, v) := v√
p

σ1(θ)

m(θ)
,

S′
n(θ) :=

n∑
k=1

F ′(α0,Xk−1,Xk),

S′′
n(θ) :=

n∑
k=1

F ′′(α0,Xk−1,Xk) − nm(θ),
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so that Sn(α0,p, v) = S′
n(α0) + αθ (p, v)S′′

n(α0). Notice that Eθ,πθ [ξp,v(α0,X0,X1)] = 0 by
(V1)–(V2). We have

Eθ,πθ [Sn(α0,p, v)2] − Eθ,πθ [S′
n(α0)

2]
= αθ (p, v)2

Eθ,πθ [S′′
n(α0)

2] + 2αθ (p, v)Eθ,πθ [S′
n(α0)S

′′
n(α0)].

From (V2) and the fact that σ1(·) is bounded, we have |αθ (p, v)| ≤ A|v|/√p for some A > 0
that does not depend on θ . Besides, as already mentioned in this section, one can define the
asymptotic variances σ 2

1 (θ) and σ 2
2 (θ) associated with the functionals F ′ and F ′′ by

σ 2
1 (θ) := lim

n

1

n
Eθ,πθ [S′

n(α0)
2], σ 2

2 (θ) := lim
n

1

n
Eθ,πθ [S′′

n(α0)
2].

Similarly, the asymptotic variance σ 2
p,v(θ) associated with ξp,v can be defined by:

σ 2
p,v(θ) := lim

n

1

n
Eθ,πθ [Sn(α0,p, v)2].

Then it follows from |Eθ,πθ [S′
n(α0)S

′′
n(α0)]| ≤ Eθ,πθ [S′

n(α0)
2]1/2

Eθ,πθ [S′′
n(α0)

2]1/2 that

|σ 2
p,v(θ) − σ 2

1 (θ)| ≤ A2 v2

p
σ 2

2 (θ) + 2A
|v|√
p

σ1(θ)σ2(θ).

Since σj (·) is bounded (j = 1,2) and |v| ≤ 2
√

lnp ≤ 2
√

p, the previous inequality shows that
there exists C′ > 0, independent of θ , such that

|σ 2
p,v(θ) − σ 2

1 (θ)| ≤ C′ |v|√
p

.

Set σ 1 := supθ∈� σ1(θ) and σ 1 := infθ∈� σ1(θ) (we have σ 1 > 0 from (V4)). Using |v|/√p ≤
2
√

lnp/p and
√

lnp/p = o(1), the above inequality implies that there exists P0 ∈ N such that
we have, for all p ≥ P0 and v such that |v| ≤ 2

√
lnp,

∀θ ∈ � 1
2σ 1 ≤ σp,v(θ) ≤ 3

2σ 1.

In particular, under the same condition on (p, v), this gives σp,v(θ) + σ1(θ) ≥ 3σ 1/2, hence
|σp,v(θ) − σ1(θ)| ≤ 2C′|v|/3σ 1

√
p. This proves the first assertion in (A4′).

Now, let us define

I = {
(p, v) ∈ N

∗ × R: p ≥ P0, |v| ≤ 2
√

lnp
}
.

It follows from (V0), (V2) and σ 1 < +∞ that the family � := {ξp,v, (p, v) ∈ I } satisfies (30).
Besides, the above bounds of σp,v(θ) give the property (31). Then equation (32) shows that there
exists B ′ > 0 such that we have for all n ≥ 1, (p, v) ∈ I , θ ∈ � and u ∈ R:∣∣∣∣Pθ,μ

{
Sn(α0,p, v)

σp,v(θ)
√

n
≤ u

}
− �(u)

∣∣∣∣ ≤ B ′
√

n
.
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Finally, let us fix any integer n ≥ P0 and any real number u such that |u| ≤ 2
√

lnn. Then, the
previous Berry–Esseen bound with p := n and v := u provides the second property of (A4′).
Indeed, we obtain from S′

n(α0) = nM ′
n(α0) and S′′

n(α0) = n(M ′′
n (α0) − m(θ)) that

Sn(α0, n,u)

σn,u(θ)
√

n
= 1

σn,u(θ)
√

n

(
S′

n(α0) + u√
n

σ1(θ)

m(θ)
S′′

n(α0)

)
=

√
n

σn,u(θ)

(
M ′

n(α0) + uσ1(θ)√
nm(θ)

(
M ′′

n (α0) − m(θ)
))

.

Now the proof of Theorem 3 is complete. �

5. An example: AR(1) process with ARCH(1) errors

Let us apply our theoretical results to an AR(1) process with ARCH(1) errors that belongs to
the class of ARMA–GARCH models (see [7] and the references therein). The observations are
generated by the process

Xn = ρ0Xn−1 + σ(Xn−1;a0, b0)εn, n = 1,2, . . . , (33)

where X0 has some probability distribution μ, σ 2(x;a, b) := a + bx2 and |ρ0| < 1, a0, b0 > 0
are the true values of the parameters. {εn}n≥1 is a sequence of i.i.d. random variables with zero
mean and variance equal to 1, with finite pth order moment for some p to be specified below and
(unknown) density fε that is continuous and positive on R. {εn}n≥1 is independent of X0. For
simplicity, hereafter μ is assumed to be the Dirac distribution δ0. The “true” parameter θ in the
associated statistical model is the vector (ρ0, a0, b0) ∈ � ⊂ [−ρ,ρ] × [ma,Ma] × [mb,Mb] ⊂
R

3, where ρ ∈ (0,1), 0 < ma < Ma < ∞ and 0 < mb < Mb < 1 are given such that (ρ +√
Mb)

p
∫

R
(1 + |y|)pfε(y)dy < 1. For illustration, we apply our results to estimate ρ0 and b0.

First, let us check that the Markov chain defined by (33) satisfies Assumption (M) of Sec-
tion 3.1 with V (x) = (1 + |x|)p . To check (VG1)–(VG2) and the existence of the Qθ -invariant
probability measure πθ , by [17], Theorem 2.3, it suffices to prove that there exist constants
� ∈ (0,1), c, ς > 0, a Borel subset S of the real line and a probability measure ν concentrated on
S such that the following two conditions hold true (see Remark 2): For all θ ∈ �,

∀x ∈ R QθV (x) ≤ �V (x) + ς1S(x) and Qθ(x, ·) ≥ cν(·)1S(x). (34)

In our setting, the transition probability of {Xn}n≥0 is given by

Qθ(x,B) =
∫

1B

(
ρ0x + σ(x, a0, b0)y

)
fε(y)dy

for any Borel set B ⊂ R. As a consequence, for all θ ∈ � and x ∈ R,

QθV (x)

V (x)
=

∫
R

V (ρ0x + σ(x, a0, b0)y)

V (x)
fε(y)dy

≤
∫

R

(
1 + ρ|x| + (

√
Ma + √

Mb|x|)|y|
1 + |x|

)p

fε(y)dy.
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By Fatou’s lemma,

lim sup
|x|→∞

(
sup
θ∈�

QθV (x)

V (x)

)
≤ (

ρ + √
Mb

)p
∫

R

(1 + |y|)pfε(y)dy =: ι < 1.

Next, fix � ∈ (ι,1). There exists s > 0 such that for each |x| > s, QθV (x) ≤ �V (x) for all θ ∈ �.
Set S := [−s; s]. For all x ∈ S and θ ∈ �,

QθV (x) ≤
∫

R

(
1 + ρs + (√

Ma + √
Mbs

)|y|)p
fε(y)dy < ∞,

so that the first condition in (34) is guaranteed. To check the second condition in (34), define

0 < δ(u) := inf
x∈S,θ∈�

fε

(
σ−1(x, a0, b0)(u − ρ0x)

)
, u ∈ R.

Then, for any x ∈ S, Borel set B ⊂ R and θ ∈ �,

Qθ(x,B) =
∫

R

1B

(
ρ0x + σ(x, a0, b0)y

)
fε(y)dy

=
∫

B

fε(σ
−1(x, a0, b0)(u − ρ0x))

σ (x, a0, b0)
du ≥

∫
B

δ(u)

ma

du.

Define the measure m(du) := m−1
a δ(u)du and notice that m(S) > 0. We deduce from above that

all θ ∈ �, x ∈ S and Borel set B ⊂ R,

Qθ(x,B) ≥ m(B) ≥ m(B ∩ S) = m(S)ν(B),

where ν is the probability measure ν(B) := m(B ∩S)/m(S). Hence the second condition in (34)
is fulfilled and Assumption (M) is satisfied for {Xn}n≥0 defined in (33).

Second, to estimate ρ0, one can use the least-squares estimator,

ρ̂n :=
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

= arg min
ρ

1

n

n∑
k=1

F(ρ,Xk−1,Xk),

where F(ρ,Xk−1,Xk) := (Xk − ρXk−1)
2. We show that the assumptions of Theorem 3

are satisfied so that we have a uniform Berry–Esseen bound for ρ̂n. Fix some p > 6
and recall that

∫
R

|y|pfε(y)dy < ∞. Take F ′(ρ,Xk−1,Xk) := −2Xk−1(Xk − ρXk−1) and
F ′′(ρ,Xk−1,Xk) := 2X2

k−1. The conditions (V0) and (V1) are obviously fulfilled. Next, define
m(θ) := Eθ,πθ [F ′′(ρ0,Xk−1,Xk)] and notice that m(θ)/2 = a0 + (b0 + ρ2

0)m(θ)/2. It follows
that m(θ) = 2a0/(1 − ρ2

0 − b0) > 2ma and thus (V2) holds. Condition (V3) is satisfied with
rn ≡ 0. From Proposition 3, we can use the Qθ -invariant probability measure πθ to check condi-
tion (V4). Notice that limn Eθ,πθ [X2

n] = m(θ)/2 > ma and recall that {εn}n≥1 is i.i.d. We deduce
that

σ 2
1 (θ) = lim

n

4

n

n∑
k=1

Eθ,πθ [X2
k−1σ

2(Xk−1, a0, b0)ε
2
k ] ≥ 4a0 lim

n
Eθ,πθ [X2

n] ≥ 4m2
a.
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To derive a lower bound for σ 2
2 (θ), let us decompose

Eθ,πθ

[
n∑

k=1

(
F ′′(ρ0,Xk−1,Xk) − m(θ)

)]2

=
n∑

k=1

vk,k + 2
∑

1≤k<l≤n

vk,l,

where vk,l := Eθ,πθ [(F ′′(ρ0,Xk−1,Xk) − m(θ))(F ′′(ρ0,Xl−1,Xl) − m(θ))], k ≤ l. It is easily
checked that vk,l = (ρ2

0 + b0)vk,l−1 for k < l. In particular, this implies vk,l > 0, k ≤ l. Next,
by elementary inequalities, we can obtain infθ Eθ,πθ [(F ′′(ρ0,X0,X1) − m(θ))2] ≥ K for some
positive constant K depending on the variance of ε2

1. Deduce that σ 2
2 (θ) ≥ K , hence (V4) holds

true. Condition (V5) is trivially satisfied. To check the consistency of condition (V6), we take
advantage of the explicit form of ρ̂n. Indeed, we have

ρ̂n − ρ0 = n−1 ∑n
k=1(XkXk−1 − ρ0Eθ,πθ [X2

1]) − ρ0n
−1 ∑n

k=1(X
2
k−1 − Eθ,πθ [X2

1])
n−1

∑n
k=1(X

2
k−1 − Eθ,πθ [X2

1]) + Eθ,πθ [X2
1]

=: �1n − ρ0�2n

�2n + Eθ,πθ [X2
1]

.

By Chebyshev’s inequality, for any d > 0, Pθ,δ0{|�1n| > d} ≤ d−2n−1
Eθ,δ0[n�2

1n]. Proposi-
tion 3 guarantees that Eθ,δ0[n�2

1n] is uniformly bounded (with respect to θ ). Similar arguments
apply to �2n. Since Eθ,πθ [X2

1] > ma for all θ , we deduce that (V6) holds with γn = O(n−1).
Finally, by Theorem 3, there exists C > 0 such that

∀n ≥ 1 sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,δ0

{ √
n

σ1(θ)m(θ)−1
(ρ̂n − ρ0) ≤ u

}
− �(u)

∣∣∣∣ ≤ C√
n
. (35)

Third, let us now turn to the estimation of b0. For this purpose, assume that the εn’s have
a moment of order p for some p > 12. Recall that a0 = m(θ)(1 − ρ2

0 − b0)/2 and notice that
τ 2

0 := m(θ)/2 is easily estimated by τ̂ 2
n := n−1 ∑n

k=1 X2
k . Next, define

Tn(b; r, v) := 1

n

n∑
k=1

ηk(b, r, v)2

with ηk(b, r, v) := (Xk − rXk−1)
2 − v(1 − r2 − b) − bX2

k−1,

with
∂Tn

∂b
(b; r, v) = 2

n

n∑
k=1

(v − X2
k−1)ηk(b, r, v),

∂2Tn

∂b2
(b; r, v) = 2

n

n∑
k=1

(v − X2
k−1)

2.

If ρ0 and a0 were known, one could easily estimate b0 by least squares, more precisely by min-
imizing Tn(b;ρ0, τ

2
0 ) with respect to b. With this idea in mind, our feasible estimator of b0 is

defined as follows:

b̂n := arg min
b∈[mb,Mb]

Mn(b) with Mn(b) := Tn(b; ρ̂n, τ̂
2
n ).
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Define F ′(b,Xk−1,Xk) := 2(τ 2
0 − X2

k−1)ηk(b,ρ0, τ
2
0 ), F ′′(b,Xk−1,Xk) := 2(τ 2

0 − X2
k−1)

2 and
M ′

n(b) := ∂Tn/∂b(b;ρ0, τ
2
0 ), M ′′

n (b) := ∂2Tn/∂b2(b;ρ0, τ
2
0 ). Let us point out that, in this case,

M ′
n(·) and M ′′

n (·) are only approximations of the derivatives of Mn(·). Checking assumptions
(V0)–(V2) is obvious and therefore we skip the details. To check condition (V3) for M ′

n(̂bn), we
use the decomposition M ′

n(̂bn) = An + �n = An + �1n + �2n + �3n with

An := 2

n

n∑
k=1

(τ 2
0 − X2

k−1)ηk(̂bn, ρ̂n, τ̂
2
n ),

�n := 2

n

n∑
k=1

(τ 2
0 − X2

k−1)
(
ηk(̂bn, ρ0, τ

2
0 ) − ηk(̂bn, ρ̂n, τ̂

2
n )

)
,

�1n := 4(ρ̂n − ρ0)

n

n∑
k=1

(τ 2
0 − X2

k−1)(Xk − ρ0Xk−1)Xk−1,

�2n := −2(ρ̂n − ρ0)
2

n

n∑
k=1

(τ 2
0 − X2

k−1)X
2
k−1,

�3n := 2{̂τ 2
n (1 − ρ̂2

n − b̂n) − τ 2
0 (1 − ρ2

0 − b̂n)}(τ 2
0 − τ̂ 2

n + X2
n/n).

We check that each term satisfies condition (V3) with a suitable rn. First, we can write

0 = ∂Mn

∂b
(̂bn) = An + Bn with Bn := 2(̂τ 2

n − τ 2
0 )

n

n∑
k=1

ηk(̂bn, ρ̂n, τ̂
2
n ).

By elementary algebra Bn = 2(̂τ 2
n − τ 2

0 )(̂bn + ρ̂2
n)X2

n/n. Using the Berry–Esseen bound for τ̂ 2
n

(see Theorem 2) and Markov’s inequality for X2+a
n for some small a > 0, we can prove that

Pθ,δ0{|Bn| ≥ n−1} = O(n−1/2) so that Pθ,δ0{|An| ≥ n−1} = O(n−1/2). By the bound in equation

(35), we have supθ Pθ,δ0{|ρ̂n − ρ0|j ≥ n−j/2 logj/2 n} = O(n−1/2), j = 1,2. Use this with j = 1
and our Theorem 2 for the centered functional ξ(Xk,Xk−1) = (τ 2

0 − X2
k−1)(Xk − ρ0Xk−1)Xk−1

to deduce that Pθ,δ0{|�1n| ≥ n−1 logn} = O(n−1/2). Next, the bound on |ρ̂n − ρ0|2 and Theo-
rem 2 applied to the centered functional ξ(Xk,Xk−1) = (τ 2

0 − X2
k−1)X

2
k−1 − τ 4

0 + Eθ,πθ [X4
k−1]

allow us to deduce that Pθ,δ0{|�2n| ≥ n−1 logn} = O(n−1/2). Finally, use the Berry–Esseen
bounds for ρ̂n and τ̂ 2

n and Markov’s inequality for X2+a
n with some a > 0 to deduce that

Pθ,δ0{|�3n| ≥ n−1 logn} = O(n−1/2). Combining these facts gives that M ′
n(̂bn) satisfies con-

dition (V3) with rn = n−1 logn. Condition (V4) can be checked using similar arguments to those
used for ρ̂n and, therefore, the details are omitted. Condition (V5) is trivially satisfied. Finally,
let us note that

b̂n − b0 =
∑n

k=1(̂τ
2
n − X2

k−1)ηk(b0, ρ̂n, τ̂
2
n )∑n

k=1(̂τ
2
n − X2

k−1)
2

,
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and thus condition (V6) can be checked by arguments that we already used in this example. We
deduce from Theorem 3 that, for some suitable τ(θ),

∀n ≥ 1 sup
θ∈�

sup
u∈R

∣∣∣∣Pθ,δ0

{ √
n

τ(θ)
(̂bn − b0) ≤ u

}
− �(u)

∣∣∣∣ = O

(
logn√

n

)
.

The log factor in this Berry–Esseen bound is the price we pay for estimating b0 by a simple two-
step procedure, easy to implement, where we first estimate ρ̂n and τ̂ 2

n and then we use the least-
squares criterion Mn(b) = Tn(b; ρ̂n, τ̂

2
n ). We feel that the log factor could be removed by using

a direct approach where the three parameters are estimated simultaneously, but the investigation
of this idea with Markov chain data is left for future work.

6. Conclusion

In this paper, we study the Berry–Esseen theorem for M-estimators (or minimum contrast esti-
mators) of some parameter α0 on the real line. The estimators are defined from a criterion based
on a functional F(α,Xn−1,Xn) of the observation process {Xn}n≥0. Our approach to derive such
bounds relies on Pfanzagl’s method originally proposed for i.i.d. observations [20]. In a first step,
Theorem 1 in [20] is extended to obtain Berry–Esseen bounds for M-estimators based on any
sequence of observations satisfying suitable conditions. In a second step, the specific case of
V -geometrically ergodic Markov observations is considered. We show that such Markov frame-
work allows us to apply our general result provided that F and related functionals F ′,F ′′ satisfy
suitable domination conditions. This result covers those reported in [19,21], which are proved
under much stronger moment conditions. We argue that the domination conditions used in the
present paper give an almost optimal treatment of Berry–Esseen bounds for V -geometrically
ergodic Markov chains. This is possible due to the operator-type procedure developed in [12].

There are several possible extensions of our results. A straightforward one is to follow the
lines of the proof [20], Theorem 2, and to consider an estimator of the standard deviation in
the Berry–Esseen bounds when this standard deviation depends on θ only through α0. The de-
tails are omitted. Next, for more effective bounds, we need to carefully evaluate the constants
involved throughout the paper. This is a direction of future work. Finally, there is no doubt that
the operator-type procedure in [12] could be further used in statistical applications with Markov
models, in particular with strongly ergodic Markov chains. This is under investigation.

Appendix A: Complements for the proof of Theorem 1

The reader is referred to Proposition 2 and its proof for the notation and the definitions used
throughout this part. The following lemma gives key properties of the random functions g±.

Lemma A.1. The following properties hold true.

1. If νn,θ := √
n(̂αn − α0)/τ(θ), then An ⊂ {g−(νn,θ ) ≤ 0 ≤ g+(νn,θ )}.
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2. For ω ∈ Dn,θ , g± are increasing on the interval (−2
√

lnn,2
√

lnn) provided that

√
n ≥ 2cW

m

[
4σ 2m

√
lnn

σ 1
+ √

nωn

]
. (A.1)

Proof. We can write from assumptions (A5) and (A3)

|nM ′
n(α0) + (̂αn − α0)nM ′′

n (α0)| = |nM ′
n(̂αn) − (̂αn − α0)nRn(α0, α̂n)|

≤ nrn + n|̂αn − α0||Rn(α0, α̂n)|
≤ nrn + n|̂αn − α0|[|̂αn − α0| + ωn]Wn.

If ω ∈ An, then

|nM ′
n(α0) + (̂αn − α0)nM ′′

n (α0)| ≤ n|̂αn − α0|2cW + nωn |̂αn − α0|cW + nrn.

This last inequality is rewritten as

n[M ′
n(α0) − rn] + τ(θ)

√
n[M ′′

n (α0) − sign(νn,θ )cWωn]νn,θ − τ(θ)2cWν2
n,θ ≤ 0

and

n[M ′
n(α0) + rn] + τ(θ)

√
n[M ′′

n (α0) + sign(νn,θ )cWωn]νn,θ + τ(θ)2cWν2
n,θ ≥ 0,

with νn,θ := √
n(̂αn − α0)/τ(θ). Since 0 < τ(θ) ≤ σ , we obtain that

g−(νn,θ ) ≤ 0 and g+(νn,θ ) ≥ 0.

The second statement is proved as follows for g+. Note that a+ > 0 and g+ is continuous. If
we restrict v < 0, the minimum of this quadratic function g+(v) is achieved at

vmin = − b+

2a+ = −τ(θ)
√

n[M ′′
n (α0) − cWωn]

2σ 2cW

,

or at the origin if vmin ≥ 0. Now, if ω ∈ Dn,θ and n satisfies condition (A.1), it is easy to check
that

vmin < −2
√

lnn

and g+ is strictly increasing on (0,∞). Hence, g+ is increasing on (−2
√

lnn,2
√

lnn). Similar
arguments apply for g−. �

Lemma A.2. We have for n large enough and |u| < 2
√

lnn

E−
n,θ,u ∩ Bn,θ ⊂ Dn,θ,u ∩ Bn,θ ⊂ E+

n,θ,u ∩ Bn,θ . (A.2)
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Proof. It is understood below that ω ∈ Bn,θ . Since Bn,θ ⊂ En,θ ∩ Dn,θ and |u| < 2
√

lnn, the
second statement in Lemma A.1 guarantees that for n large enough

√
n(̂αn − α0)/τ(θ) ≤ u �⇒ g+(√

n(̂αn − α0)/τ(θ)
) ≤ g+(u).

Since Bn,θ ⊂ An, the first assertion in Lemma A.1 yields g+(
√

n(̂αn − α0)/τ(θ)) ≥ 0 so that
g+(u) ≥ 0 when

√
n(̂αn − α0)/τ(θ) ≤ u. This proves the second inclusion in (A.2).

Next, assume that g−(u) ≥ 0. Since g− is increasing, we have

√
n(̂αn − α0)/τ(θ) > u �⇒ g−(√

n(̂αn − α0)/τ(θ)
)
> g−(u) ≥ 0.

Since Bn,θ ⊂ An, we know from Lemma A.1 that g−(
√

n(̂αn − α0)/τ(θ)) ≤ 0 which is in con-
tradiction with the above inequality. Thus, g−(u) ≥ 0 gives

√
n(̂αn − α0)/τ(θ) ≤ u. �

Appendix B: Complements for the proof of Lemma 1

A first step to control the constants in Lemma 2 is to study the resolvent map (z − Qθ)
−1 of the

transition kernel Qθ acting on Bγ .

Lemma B.1. Let δ, r be such that κγ < r < 1 and 0 < δ < 1 − r . Then, for any z ∈ C such that
|z| > r and |z − 1| > δ, the operator z − Qθ is invertible on Bγ , and we have:

Hγ (δ, r) := sup{‖(z − Qθ)
−1‖γ , θ ∈ �, |z| > r, |z − 1| > δ} < ∞.

Proof. Let g ∈ Bγ , and let us write hθ = g −πθ (g)1E . Since πθ (hθ ) = 0, it follows from (VG2)
that ‖Qn

θhθ‖γ ≤ Cγ κn
γ ‖hθ‖γ . Now assume |z| > r . Then

∑
k≥0

|z|−(k+1)‖Qk
θhθ‖γ ≤ Cγ

κγ

∑
k≥0

(
κγ

r

)k+1

‖hθ‖γ ≤ Cγ

r − κγ

‖hθ‖γ .

Thus, ψθ := ∑
k≥0 z−(k+1)Qk

θhθ is absolutely convergent in Bγ , we have (z − Qθ)ψθ = hθ and
‖ψθ‖γ ≤ Cγ ‖hθ‖γ /(r − κγ ). Besides, if z 	= 1, then we clearly have

(z − Qθ)

(
πθ (g)

z − 1
1E

)
= πθ(g)1E.

Now assume |z| > r and |z − 1| > δ. Then the function fθ := (πθ (g)/(z − 1))1E + ψθ is
such that (z − Qθ)fθ = g. Thus (z − Qθ)

−1g = fθ . From (21), we obtain |πθ (g)| ≤ πθ (|g|) ≤
πθ (V

γ )‖g‖γ ≤ b1‖g‖γ and ‖hθ‖γ = ‖g − πθ (g)1E‖γ ≤ (1 + b1)‖g‖γ . This gives: ‖fθ‖γ ≤
(b1/δ)‖g‖γ +Cγ (1+b1)‖g‖γ /(r −κγ ), hence Hγ (δ, r) ≤ [b1/δ + Cγ (1 + b1)/(r − κγ )] < ∞.

�

Second, the constants involved in the Doeblin–Fortet inequality and the weak continuity con-
dition of the Keller–Liverani theorem are proved to be uniform in θ and to depend on ξ only via
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the constant Cξ of (Dm0 ). We appeal to [14], Remark, page 145, and to the improvements given
in [15]. In the context of strongly ergodic Markov chains, the hypotheses resulting from [14,15]
are stated in [12], Section 4, and used here with the auxiliary norm ‖f ‖1 := sup |f |/V on Bγ .
In the sequel, for 0 < γ < γ ′ ≤ 1, we denote by L(Bγ , Bγ ′) the space of the bounded linear
operators from Bγ to Bγ ′ , and by ‖ · ‖γ,γ ′ the associated operator norm (with the convention
‖ · ‖γ = ‖ · ‖γ,γ when γ ′ = γ ).

Lemma B.2. Let γ ∈ (0,1). We have:

(a) ∀θ ∈ �,∀t ∈ R,∀n ≥ 1,∀f ∈ Bγ ,‖Qθ(t)
nf ‖γ ≤ Cγ κn

γ ‖f ‖γ + b1‖f ‖1;

(b) ∀θ ∈ �,∀t ∈ R,‖Qθ(t) − Qθ‖γ,1 ≤ 22−γ Cξ
(1−γ )/m(Eγ + E1)|t |1−γ ‖f ‖γ ,

where Eγ := supθ∈� ‖Qθ‖γ ,E1 := supθ∈� ‖Qθ‖1 and Cγ , κγ , b1 are defined in (21) and (22).

Proof. By using the inequality ‖Qθ(t)
nf ‖γ ≤ ‖Qn

θ |f |‖γ , assertion (a) easily follows from (22)
and (21). To establish (b), let us recall that we have from (Dm0 ) (use V ≥ 1)

|ξ(θ, x, y)|1−γ ≤ C
(1−γ )/m
ξ

(
V (x) + V (y)

)1−γ

≤ 21−γ C
(1−γ )/m
ξ

(
V (x)1−γ + V (y)1−γ

)
.

Let f ∈ Bγ . From the definition of Qθ(t)f and the inequalities |f | ≤ V γ ‖f ‖γ , |eia − 1| ≤
2|a|1−γ , we obtain that

|(Qθ(t)f )(x) − (Qθf )(x)| ≤ ‖f ‖γ

∫
E

∣∣eitξ(α0,x,y) − 1
∣∣V (y)γ Qθ(x,dy)

≤ 22−γ Cξ
(1−γ )/m|t |1−γ ‖f ‖γ [V (x)1−γ (QθV

γ )(x) + (QθV )(x)],

from which we deduce (b). �

For the next lemma (used to prove Lemma 3), we introduce the following notation. For
any θ ∈ �, k ∈ N, t ∈ R, let us denote by Qθ,k(t) the operator associated with the kernel:
Qθ,k(t)(x,dy) = ikξ(α0, x, y)keitξ(α0,x,y)Qθ (x,dy) (x ∈ E).

Lemma B.3. Let 0 < γ < γ ′ ≤ 1 and k = 0, . . . ,m0:

(a) If γ + k/m < γ ′ ≤ 1, then the map t �→ Qθ,k(t) is continuous from R to L(Bγ , Bγ ′).
(b) If k ≤ m0 − 1 and γ + (k + 1)/m < γ ′ ≤ 1, then the map t �→ Qθ,k(t) is continuously dif-

ferentiable from R to L(Bγ , Bγ ′), and for all t ∈ R, (dQθ,k/dt)(t) is the operator in L(Bγ , Bγ ′)
associated to the kernel Qθ,k+1(t).

Finally, we have Qk,γ,γ ′ := sup{‖Qθ,k(t)‖γ,γ ′ , θ ∈ �, t ∈ R} < ∞, and Qk,γ,γ ′ depends on ξ

but only via the constant Cξ of (Dm0 ).
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Proof. Set �θ,k := Qθ,k(t)−Qθ,k(t0), and let 0 < ε ≤ 1 be such that γ + (k+ε)/m ≤ γ ′. Using
|eia − 1| ≤ 2|a|ε and (Dm0 ), we obtain for f ∈ Bγ :

|�θ,kf (x)| ≤ 2|t − t0|ε‖f ‖γ

∫
|ξ(α0, x, y)|k+εV (y)γ Qθ(x,dy)

≤ 21+(k+ε)/mCξ
(k+ε)/m|t − t0|ε‖f ‖γ

(
V (k+ε)/m(x)QθV

γ (x) + QθV
γ ′

(x)
)
.

Since the functions V −γ QθV
γ and V −γ ′

QθV
γ ′

are bounded on E uniformly in θ ∈ �, we
deduce that ‖�θ,kf ‖γ ′ ≤ Dξ |t − t0|ε‖f ‖γ , where Dξ is a positive constant depending on Cξ

(but independent of θ ). This gives (a). The proof of (b) is similar, using the operators Qθ,k(t) −
Qθ,k(t0) − (t − t0)Qθ,k+1(t0) and the inequality |eia − 1 − ia| ≤ 2|a|1+ε . �
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