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The method of estimation in Scott and Wild (Biometrika 84 (1997) 57–71 and J. Statist. Plann. Inference
96 (2001) 3–27) uses a reparametrization of the profile likelihood that often reduces the computation times
dramatically. Showing the efficiency of estimators for this method has been a challenging problem. In this
paper, we try to solve the problem by investigating conditions under which the efficient score function and
the efficient information matrix can be expressed in terms of the parameters in the reparametrized model.
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1. Introduction

In a series of papers, Scott and Wild [12,13] developed methods of reparametrization of profile
likelihood that can be applied to a variety of response-selective sampling designs. The advantage
of the methods is that they often give us computationally efficient estimators. The (statistical)
efficiency of these methods has been demonstrated in special cases by several authors. For ex-
ample, Breslow, Robins and Wellner [3] considered case-control sampling where either a case or
control is selected by a randomization device with known selection probabilities, and the covari-
ates of the resulting case or control are measured. In the case of two-phase, outcome-dependent
sampling, Breslow, McNeney and Wellner [2] applied the missing value theory of Robins, Rot-
nitzky and Zhao [11] and Robins, Hsieh and Newey [10]. Here, individuals in the population are
selected at random and their status (e.g., case or control) is determined. Then, with a probability
depending on their status, the covariates are measured. The unobserved covariates are treated as
missing data. Lee and Hirose [8] used the profile likelihood method to derive a semi-parametric
efficiency bound, and then showed that this bound coincides with the asymptotic variance of the
Scott–Wild estimator, hence demonstrating the efficiency of the estimator.

In Lee and Hirose [8], it was demonstrated that, in the case of the Scott–Wild estimator, it is
possible to reparametrize the least favorable submodel so that the efficient score function and the
efficient information matrix can be expressed in terms of the parameters in the reparametrized
model.

The aim of this paper is to investigate conditions under which a reparametrization of the least
favorable submodel yields an efficient estimation.
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We consider an S-vector of semi-parametric models (P1, . . . , PS) where, for each s =
1, . . . , S,

Ps = {ps(x;β,η): β ∈ �β ⊂ Rm,η ∈ �η}
is a probability model on the sample space Xs with the parameter of interest β , an m-dimensional
parameter, and the nuisance parameter η, which may be an infinite-dimensional parameter. Let
(β0, η0) be the true value of (β, η). We assume �β is a compact set containing an open neigh-
borhood of β0 in Rm, and �η is a convex set containing η0 in a Banach space B. We refer to the
S-vector of semi-parametric models (P1, . . . , PS) as the multisample model.

Under the model, we observe S independent samples Xs1, . . . ,Xsns (s = 1, . . . , S), where
Xs1, . . . ,Xsns are independently and identically distributed (i.i.d.) according to the model Ps .
Let n = ∑S

s=1 ns . We assume the sample size proportions (n1/n, . . . , nS/n) converge to weight
probabilities (w1, . . . ,wS): (

n1

n
, . . . ,

nS

n

)
→ (w1, . . . ,wS), (1.1)

where ws > 0 and
∑S

s=1 ws = 1.
The log-likelihood for the multisample data is

�n(β,η) =
S∑

s=1

ns∑
i=1

logps(Xsi;β,η). (1.2)

The paper is organized as follows: In the rest of Section 1, we give examples of semi-
parametric multisample models. In Section 2, we introduce the least favorable submodel in
multisample models and in Section 3, we present the main result of conditions under which
reparametrization gives efficient estimators in multisample models. In Section 4, we give a nu-
merical example and use the result developed in the paper to show that the estimators in the
example are efficient.

1.1. Examples

The idea of multisample data is familiar from elementary statistics; for example, the well-known
two-sample t -test and the one-way ANOVA for comparing several means both involve multiple
samples. Following are several semi-parametric examples.

Example 1 (Biased sampling model). Vardi [14] developed the method of estimation in the S-
sample biased sampling model with known selection bias weight functions. The following setup
and notation are from [6].

Suppose that non-negative weight functions w1(x), . . . ,wS(x) are given and let G(x) be an
unknown distribution function on a sample space X . Define the corresponding biased sampling
model by

ps(x;G) = ws(x)g(x)

Ws(G)
(s = 1, . . . , S),



588 Y. Hirose and A. Lee

where g(x) = dG(x)/dμ with respect to Lebesgue measure μ and Ws(G) = ∫
X ws(x)dG(x).

The S-sample biased sampling model generates S independent samples

Xs1, . . . ,Xsns ∼ ps(x;G) (s = 1, . . . , S).

Gilbert, Lele and Vardi [5] considered an extension of this model that allows the weight func-
tion to depend on an unknown finite-dimensional parameter θ .

Suppose a set of non-negative weight functions w1(x, θ), . . . ,wS(x, θ) depend on θ . The semi-
parametric biased sampling model is defined by

ps(x; θ,G) = ws(x, θ)g(x)

WS(θ,G)
(s = 1, . . . , S),

where Ws(θ,G) = ∫
X ws(x, θ)dG(x). Gilbert [4] provides a large sample theory of this exam-

ple.

The following examples are semi-parametric multisample models that all have the same un-
derlying data-generating process on the sample space Y × X , called the full data model,

Q = {p(y, x; θ,G) = f (y|x; θ)g(x): θ ∈ �,G ∈ G},
where f (y|x; θ) is a conditional density of Y given X that depends on a finite dimensional pa-
rameter θ and G(x) is an unspecified distribution function of X that is an infinite-dimensional
nuisance parameter (g(x) is the density of G(x)). We assume the set � is a compact set contain-
ing a neighborhood of the true value θ0 and G is the set of all distribution functions of x. Unless
stated otherwise, Y may be a discrete or continuous variable.

Example 2 (Case-control study). We assume that Y takes values in {1, . . . , S}. In a case-control
study, due to the design, we do not observe a random sample from the full data model Q. Instead,
for each s = 1, . . . , S, we observe ns -samples from the conditional distribution P(X|Y = s). By
Bayes’ theorem, the density of P(X|Y = s) is

f (s|x; θ)g(x)∫
f (s|x; θ)dG(x)

.

The case-control study is a special case of the semi-parametric biased sampling model of Exam-
ple 1 with weight functions ws(x, θ) = f (s|x; θ) (s = 1, . . . , S).

Example 3 (Missing data). Instead of observing full data (Y,X) from the full data model Q for
all individuals, we observe (Y,X) for n0-samples and observe Y for n1-samples. The result is
the multisample data

(x01, y01), . . . , (x0n0 , y0n0), y11, . . . , y1n1

from a multisample model with densities

p0(y, x; θ, g) = f (y|x; θ)g(x)
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and

p1(y; θ, g) =
∫

f (y|x; θ)g(x)dx.

This example is not a special case of Example 1.

Example 4 (Standard stratified sampling and two-phase, outcome-dependent sampling). For

a partition of the sample space Y × X = ⋃S
s=1 Ss , let

Qs(θ,G) =
∫

f (y|x; θ)1(y,x)∈Ss
dy dG(x)

be the probability of (Y,X) belonging to stratum Ss .
In standard stratified sampling, for each s = 1, . . . , S, a random sample of size ns is taken from

the conditional distribution

ps(y, x; θ,G) = f (y|x; θ)g(x)1(y,x)∈Ss

Qs(θ,G)

of (Y,X) given stratum Ss . This is a more general version of the semi-parametric biased sampling
model of Example 1 with weight functions ws(y, x, θ) = f (y|x; θ)1(y,x)∈Ss

(s = 1, . . . , S).
Lawless, Kalbfleisch and Wild [7] discussed variations of the two-phase, outcome-dependent

sampling design (the variable probability sampling designs (VPS1, VPS2) and the basic stratified
sampling design (BSS)). For all sampling schemes (VPS1, VPS2 and BSS), we have ms fully
observed units and ns − ms subjects where the only information retained is the identity of the
stratum, s = 1, . . . , S. The corresponding likelihood is

L(θ,G) =
{

S∏
s=1

ms∏
i=1

f (ysi |xsi; θ)g(xsi)

}{
S∏

s=1

Qs(θ,G)ns−ms

}
. (1.3)

We interpret the observed data from two-phase, outcome-dependent sampling as data from a
multisample model with densities

p1(y, x; θ,G) = f (y|x; θ)g(x)

and

p2(s; θ,G) = Qs(θ,G).

This example is not a special case of Example 1.

2. The least favorable submodel

The log-likelihood function for a single observation in the multisample model is

�(s, x;β,η) = logps(x;β,η) (x ∈ Xs , s = 1, . . . , S). (2.1)
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The expectation with respect to the density ps(x;β,η) is denoted by Es,β,η.
We assume that there is a differentiable function β → η̂β such that

η̂β0 = η0 (2.2)

and

�̇∗(s, x) = ∂

∂β

∣∣∣∣
β=β0

�(s, x,β; η̂β) (2.3)

is the efficient score function (definition of the efficient score function in the multisample model
is given in Appendix A). We call the model

ps(x;β, η̂β) (β ∈ �β, s = 1, . . . , S),

the least favorable submodel for the multisample model (P1, . . . , PS).

Remark 2.1. Under mild regularity conditions with the assumption that

η̂β = arg max
η∈�η

S∑
s=1

wsEs,β0,η0{logps(X;β,η)}

exists for all β in some neighborhood of β0, (2.3) is the efficient score function due to [9]. The
definition of the least favorable submodel given above includes this as a special case but we do
not limit our consideration only in this case.

Our approach uses the method in Scott and Wild [12,13] to find a candidate function η̂β as
well as Theorem A.2 in Appendix A to verify that (2.3) with the candidate function gives the
efficient score function. In the next example we illustrate this procedure.

2.1. Example: Stratified sampling (continued)

Stratified sampling was introduced in Example 4.
Let

Qs|X(x; θ) =
∫

f (y|x; θ)1(y,x)∈Ss
dy.

For each s = 1, . . . , S, let Fs0 be the cumulative distribution function for the density
ps(y, x; θ0, g0) at the true value (θ0, g0). The expected likelihood in the model is

S∑
s=1

wsEs,0{logps(y, x; θ, g)} =
S∑

s=1

ws

∫
logps(y, x; θ, g)dFs0(y, x).

For each θ , the method in Scott and Wild [12,13] finds a maximizer ĝθ (x) of log-
likelihood under the assumption that the support of the distribution of X is finite; that is,
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SUPP(X) = {v1, . . . , vK}. Let (g1, . . . , gK) = {g(v1), . . . , g(vK)}. Then logg(x) and Qs(θ, g)

can be expressed as logg(x) = ∑K
k=1 1x=vk

loggk and Qs(θ, g) = ∫
Qs|X(x; θ)g(x)dx =∑K

k=1 Qs|X(vk; θ)gk .
To find the maximizer (g1, . . . , gK) of the expected log-likelihood

S∑
s=1

ws

∫
logps(y, x; θ, g)dFs0 =

S∑
s=1

ws

[∫
{logf (y|x; θ) + logg(x)}dFs0 − logQs(θ, g)

]

at θ , differentiate this expression with respect to gk and set the derivative equal to zero,

∂

∂gk

S∑
s=1

ws

∫
logps(y, x; θ, g)dFs0 =

S∑
s=1

ws

{∫
1x=vk

dFs0

gk

− Qs|X(vk; θ)

Qs(θ, g)

}
= 0.

The solution gk to the equation is

ĝθ (vk) = gk =
∑S

s=1 ws

∫
1x=vk

dFs0∑S
s=1 wsQs|X(vk; θ)/Qs(θ, g)

.

The form of the function motivates us to prove the following result.

Lemma 2.1 (The least favorable submodel). For θ ∈ �, let

ĝθ (x) = f ∗
0 (x)∑S

s=1 wsQs|X(x; θ)/Q̂s(θ)
, (2.4)

where

f ∗
0 (x) =

S∑
s=1

ws

Qs|X(x; θ0)g0(x)

Qs(θ0, g0)
, (2.5)

and

Q̂s(θ) =
∫

Qs|X(x; θ)ĝθ (x)dx (s = 1, . . . , S). (2.6)

Then the efficient score function is given by

�̇∗(s, y, x) = ∂

∂θ

∣∣∣∣
θ=θ0

logps(y, x; θ, ĝθ ). (2.7)

Proof. In Appendix B, we show that
∑S

s=1 ws

∫
logps(y, x; θ, ĝθ )dFs0 satisfies conditions

(A.1) and (A.2) in Theorem A.2 in Appendix A so that the claim follows from this theorem. �

Remark 2.2. Note that equations (2.4) and (2.6) are consistent at θ = θ0: (2.4) and (2.5) im-
ply that ĝθ0(x) = g0(x) if Q̂s(θ0) = Qs(θ0, g0). On the other hand, if ĝθ0(x) = g0(x), we have
Q̂s(θ0) = ∫

Qs|X(x; θ0)g0(x)dx = Qs(θ0, g0) by (2.6).
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3. Main result

Suppose there is a finite-dimensional, vector-valued function β → qβ such that the density for
the least favorable submodel is of the form

ps(x;β, η̂β) = p∗
s (x;β,qβ) for all β ∈ �β (s = 1, . . . , S), (3.1)

where the function p∗
s (x;β,q) is twice continuously differentiable with respect to (β, q) and q

is a finite-dimensional parameter. Further, suppose

S∑
s=1

ws

∫
p∗

s (x;β,q)dx = 1 for all (β, q) ∈ �β × Dq, (3.2)

where �β and Dq are neighborhoods of β0 and qβ0 , respectively. Then the model

p∗
s (x;β,q) (β ∈ �β,q ∈ Dq, s = 1, . . . , S),

is called a reparametrized model for the least favorable submodel. The score functions for β

and q in the reparametrized model are denoted by �̇1(s, x;β,q) = (∂/∂β) logp∗
s (x;β,q) and

�̇2(s, x;β,q) = (∂/∂q) logp∗
s (x;β,q), respectively.

Remark 3.1. In general, we may not have the condition∫
p∗

s (x;β,q)dx = 1 for all (β, q) ∈ �β × Dq (s = 1, . . . , S).

Therefore, there is no guarantee that each p∗
s (x;β,q) is a probability model. However, (3.2)

ensures that the linear combination
∑S

s=1 wsp
∗
s (x;β,q) acts like a probability model. This looks

like a mixture model. The main differences between the multisample model and the mixture
model are data and asymptotics. For example, the log-likelihood and the information matrix in
the mixture model are, respectively,

n∑
i=1

log

{
s∑

s=1

wsps(xi;β,q)

}

and ∫ (
(∂/∂(β, q))

∑S
s=1 wsps(x;β,q)∑S

s=1 wsps(x;β,q)

)⊗2 ∑
s

wsps(x;β,q)dx,

while the log-likelihood and the information matrix in the multisample model are given by, re-
spectively, (1.2) and

S∑
s=1

ws

∫ (
(∂/∂(β, q))ps(x;β,q)

ps(x;β,q)

)⊗2

ps(x;β,q)dx.
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Remark 3.2. Note that, since qβ0 = η̂β0 = η0, we have ps(x;β0, η0) = p∗
s (x;β0, qβ0) (s =

1, . . . , S). Therefore, for the reparametrized model, the notation Es,0, s = 1, . . . , S is used for
the expectations at the true value (β0, qβ0).

For a measurable function f (s, x;β,q), define the centering of f (s, x;β,q) by

f c(s, x;β,q) = f (s, x;β,q) − Es,0{f (s, x;β0, qβ0)}.
The function f c(s, x;β,q) is called the centered f (s, x;β,q).

Theorem 3.1 (Efficiency in a reparametrized model). We assume that the least favorable sub-
model and the corresponding reparametrized model are as in (2.2), (2.3), (3.1) and (3.2). Further,
assume that

∂

∂q

∣∣∣∣
q=qβ

S∑
s=1

wsEs,0{logp∗
s (x;β,q)} = 0 for β ∈ �β (3.3)

and
∑S

s=1 wsEs,0(�̇
c
2�̇

cT
2 ) is non-singular. Then the efficient score function and the efficient in-

formation matrix in the original multisample model (P1, . . . , Ps) are given by

�̇∗(s, x) = �̇c
1 −

{
S∑

s=1

wsEs,0(�̇
c
1�̇

cT
2 )

}{
S∑

s=1

wsEs,0(�̇
c
2�̇

cT
2 )

}−1

�̇c
2 (3.4)

and

I ∗ =
S∑

s=1

wsEs,0(�̇
c
1�̇

cT
1 )

(3.5)

−
{

S∑
s=1

wsEs,0(�̇
c
1�̇

cT
2 )

}{
S∑

s=1

wsEs,0(�̇
c
2�̇

cT
2 )

}−1{ S∑
s=1

wsEs,0(�̇
c
2�̇

cT
1 )

}
,

where �̇c
1(s, x;β,q) and �̇c

2(s, x;β,q) are the centered score functions for β and q in the
reparametrized model, respectively.

Proof. By (2.3) and (3.1), the efficient score function is given by

�̇∗(s, x) = ∂

∂β

∣∣∣∣
β=β0

logp∗
s (x;β,qβ) = �̇1(s, x;β0, qβ0) + q̇T

β0
�̇2(s, x;β0, qβ0). (3.6)

Since Es,β0η0{�̇∗(s,X)} = 0 (s = 1, . . . , S), we have

Es,β0η0{�̇1(s, x;β0, qβ0)} + q̇T
β0

Es,β0η0{�̇2(s, x;β0, qβ0)} = 0 (s = 1, . . . , S). (3.7)

Therefore, (3.6) and (3.7) imply

�̇∗(s, x) = �̇c
1(s, x;β0, qβ0) + q̇T

β0
�̇c

2(s, x;β0, qβ0). (3.8)
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By differentiating (3.2) with respect to q , for all (β, q) ∈ �β × Dq , we have

S∑
s=1

ws

∫
�̇2(s, x;β,q)p∗

s (x;β,q)dx = 0.

In particular, for all β ∈ �β ,

S∑
s=1

ws

∫
�̇2(s, x;β,qβ)p∗

s (x;β,qβ)dx = 0.

By differentiating with respect to β at β0,

S∑
s=1

ws

∫ (
∂

∂β

∣∣∣∣
β=β0

�̇2(s, x;β,qβ)

)
p∗

s (x;β0, qβ0)dx

= −
S∑

s=1

ws

∫
�̇2(s, x;β0, qβ0)

(
∂

∂β

∣∣∣∣
β=β0

p∗
s (x;β,qβ)

)
dx.

By the first equality in (3.6), this equation is equivalent to

S∑
s=1

wsEs,0

{
∂

∂β

∣∣∣∣
β=β0

�̇2(s, x;β,qβ)

}
= −

S∑
s=1

wsEs,0(�̇2�̇
∗T ). (3.9)

By differentiating (3.3) with respect to β at β0, we get

0 = ∂

∂β

∣∣∣∣
β=β0

∂

∂q

∣∣∣∣
q=qβ

S∑
s=1

wsEs,0{logp∗
s (x;β,q)} =

S∑
s=1

wsEs,0

{
∂

∂β

∣∣∣∣
β=β0

�̇2(s, x,β, qβ)

}

= −
S∑

s=1

wsEs,0(�̇2�̇
∗T ) = −

S∑
s=1

wsEs,0(�̇
c
2�̇

∗T ),

where we used (3.9) and Es,0{�̇∗(s,X)} = 0 (s = 1, . . . , S).
Therefore, the centered score function �̇c

2(s, x;β0, qβ0) and the efficient score function �̇∗(s, x)

are uncorrelated. Since �̇∗ = �̇c
1 + q̇T

β0
�̇c

2 (cf. (3.8)), by the projection theorem (Theorem A.1 in
Appendix A), we have

q̇T
β0

�̇c
2 = −

{
S∑

s=1

wsEs,0(�̇
c
1�̇

cT
2 )

}{
S∑

s=1

wsEs,0(�̇
c
2�̇

cT
2 )

}−1

�̇c
2.

The rest of the claims follow by substituting this expression into (3.8). �
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Remark 3.3. Under the usual regularity conditions, the solution (β̂n, q̂n) to the system of the
score equations, ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S∑
s=1

ni∑
i=1

�̇1(s,Xsi; β̂n, q̂n) = 0,

S∑
s=1

ni∑
i=1

�̇2(s,Xsi; β̂n, q̂n) = 0,

is asymptotically distributed as{
n1/2(β̂n − β0)

n1/2(q̂n − q0)

}
∼ N

{(
0
0

)
,�−1

}
,

where

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S∑
s=1

wsEs,0(�̇
c
1�̇

cT
1 ),

S∑
s=1

wsEs,0(�̇
c
1�̇

cT
2 )

S∑
s=1

wsEs,0(�̇
c
2�̇

cT
1 ),

S∑
s=1

wsEs,0(�̇
c
2�̇

cT
2 )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Then the asymptotic variance of n1/2(β̂n − β0) is given by (I ∗)−1, where I ∗ is the efficient
information for β given by (3.5) (cf. Bickel et al. [1], page 28). In this case, the estimator β̂n

is efficient. This efficiency of the estimator based on the reparametrization is demonstrated in a
numerical example given in Section 4.

3.1. Example: Stratified sampling (continued)

In this section, we illustrate the use of Theorem 3.1 to derive the expressions of the efficient score
function and the efficient information bound in terms of the parameters in a reparametrized form
of the least favorable submodel in the stratified sampling example.

Lemma 2.1 gives the least favorable submodel with densities

ps(y, x; θ, ĝθ ) = f (y|x; θ)1(y,s)∈Ss
ĝθ (x)

Q̂s(θ)
(s = 1, . . . , S),

where ĝθ is given by (2.4). By replacing Q̂(θ) = (Q̂1(θ), . . . , Q̂S−1(θ), Q̂S(θ)) with q =
(q1, . . . , qS−1,1), we consider a reparametrized model of the form

p∗
s (y, x; θ, q) = f (y|x; θ)1(y,s)∈Ss

ĝθ,q(x)

qs

(s = 1, . . . , S), (3.10)

where

ĝθ,q(x) = f ∗
0 (x)∑S

s=1 wsQs|X(x; θ)/qs

(3.11)
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with f ∗
0 (x) given by (2.5).

The true value of (θ, q) is

(θ0, q0) =
(

θ0,

(
Q1(θ0, g0)

QS(θ0, g0)
, . . . ,

QS−1(θ0, g0)

QS(θ0, g0)
,1

))
.

Let Dq be some neighborhood of q0.
We will demonstrate that the conditions in Theorem 3.1 are satisfied, so that we can apply

the theorem to identify the efficient score function and the efficient information matrix in the
example.

First, we will show that

S∑
s=1

ws

∫
p∗

s (y, x; θ, q)dy dx = 1 for all (θ, q) ∈ �0 × Dq.

For any (θ, q), since Qs|X(x; θ) = ∫
f (y|x; θ)1(y,s)∈Ss

dy,

S∑
s=1

ws

∫
p∗

s (y, x; θ, q)dy dx =
S∑

s=1

ws

∫
f (y|x; θ)1(y,s)∈Ss

ĝθ,q(x)

qs

dy dx

=
S∑

s=1

ws

∫
Qs|X(x; θ)ĝθ,q(x)

qs

dx

=
∫ S∑

s=1

ws

Qs|X(x; θ)

qs

ĝθ,q(x)dx

=
∫

f ∗
0 (x)dx (by (3.11))

= 1.

Second, we will show that for all θ ∈ �0,

∂

∂q

∣∣∣∣
q=Q̂(θ)

S∑
s=1

wsEs,0{logps(y, x; θ, q)} = 0. (3.12)

For j = 1, . . . , S − 1, the derivative is

∂

∂qj

S∑
s=1

wsEs,0{logps(y, x; θ, q)}

= − ∂

∂qj

S∑
s=1

wsEs,0

{
log

S∑
s′=1

ws′
Qs′|X(x; θ)

qs′
+ logqs

}
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=
S∑

s=1

wsEs,0

{
wjQj |X(x; θ)/q2

j∑S
s′=1 ws′Qs′|X(x; θ)/qs′

}
− wj

qj

=
S∑

s=1

ws

∫
wjQj |X(x; θ)/q2

j∑S
s′=1 ws′Qs′|X(x; θ)/qs′

Qs|X(x; θ0)g0(x)

Qs(θ0, g0)
dx − wj

qj

=
∫

wjQj |X(x; θ)/q2
j f ∗

0 (x)∑S
s′=1 ws′Qs′|X(x; θ)/qs′

dx − wj

qj

(by (2.5))

= wj

q2
j

(∫
Qj |X(x; θ)ĝθ,q(x)dx − qj

)
.

Therefore, at q = (q1, . . . , qS−1,1) = (
Q̂1(θ)

Q̂S(θ)
, . . . ,

Q̂S−1(θ)

Q̂S(θ)
,1), we have (3.12).

By Theorem 3.1, the efficient score function and the efficient information matrix in the exam-
ple are calculated by (3.4) and (3.5), respectively, where the score functions are given by

�̇1(s, y, x; θ, q) = (∂/∂θ)f (y|x; θ)

f (y|x; θ)
−

∑S
s′=1 ws′(∂/∂θ)Qs′|X(x; θ)/qs′∑S

s′=1 ws′Qs′|X(x; θ)/qs′

and �̇2(s, y, x; θ, q) = {�̇21(s, y, x; θ, q), . . . , �̇2(S−1)(s, y, x; θ, q)}, where

�̇2j (s, y, x; θ, q) = wj

q2
j

{
Qj |X(x; θ)∑S

s′=1 ws′Qs′|X(x; θ)/qs′
− qj

}
(j = 1, . . . , S − 1).

Here verification of the non-singularity of
∑S

s=1 wsEs,0(�̇
c
2�̇

cT
2 ) is omitted.

4. Numerical example: Stratified sampling with
logistic regression

Here we compare the maximum likelihood estimator (MLE) and estimators based on reparametri-
zations of the least favorable submodel, and demonstrate that the estimators based on reparametri-
zations are statistically as efficient as the MLE and computationally more efficient.

The data in the Table 1 were taken from Scott and Wild [12,13] and were the case-control
sampling part of the study of people under 35 in Northern Malawi. Cases are those with new cases
of leprosy and controls are those without leprosy. The variable “Scar” indicates the presence or
absence of a BCG vaccination scar (1 = present, 0 = absent).
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Table 1. Leprosy data

Scar = 0 Scar = 1 Total

Age Case Control Case Control Case Control

2.5 1 24 1 31 2 55
7.5 11 22 14 39 25 61

12.5 28 23 22 27 50 50
17.5 16 5 28 22 44 27
22.5 20 9 19 12 39 21
27.5 36 17 11 5 47 22
32.5 47 21 6 3 53 24

Total 260 260

Let x = (x1, x2) with x1 = Scar and x2 = 100(Age+7.5)−2. We consider a stratified sampling
(case-control sampling) with the logistic regression model

f (y|x;α,β) = exp{y(α + xT β)}
1 + exp(α + xT β)

(y ∈ {0,1}, x ∈ R2) (4.1)

and the partition Y × X = ({0} × X ) ∪ ({1} × X ), where α ∈ R and β ∈ R2. In this case, with
s = 0,1,

Qs(α,β,g) =
∫

f (y = s|x;α,β)g(x)dx

and

Qs|X(x,α,β) = f (y = s|x;α,β).

From (3.10) and (3.11), a reparametrized model for the multisample model is

p∗
s (x;α,β,ρ1) = (q0/qs)f (y = s|x; θ)∑1

s′=0 ws′(q0/qs′)Qs′|X(x;α,β)
f ∗

0 (x)

= exp{s(α + logρ1 + xT β)}
w0 + w1 exp{(α + logρ1 + xT β)}f

∗
0 (x),

where ρ0 = q0/q0 = 1 and ρ1 = q0/q1. The parameters in the model are not identifi-
able and the parameters α and ρ1 cannot be estimated separately. By the proof in the
stratified sampling example in Section 3.1, the efficient information bound for (α,β) is
given by (3.5) in Theorem 3.1 with �̇1(s, x;α,β,ρ1) = {∂/∂(α,β)} logp∗

s (x;α,β,ρ1) and
�̇2(s, x;α,β,ρ1) = {∂/∂ρ1} logp∗

s (x;α,β,ρ1). The estimator (α̂, β̂, ρ̂1) based on this non-
identifiable reparametrization is the maximizer of the log-likelihood �n(α,β,ρ1) =∑1

s=0
∑ns

i=1 logp∗
s (xsi;α,β,ρ1).
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To gain identifiability of the parameters, we let α∗ = α + logρ1, and the model is further
reparametrized as

p∗
s (x;α∗, β) = exp{s(α∗ + xT β)}

w0 + w1 exp{(α∗ + xT β)}f
∗
0 (x).

If we treat the parameters α and g in the original model as nuisance parameters, Theo-
rem 3.1 gives the efficient information bound for an estimator of the parameter β: it is
(3.5) in Theorem 3.1 with �̇1(s, x;α∗, β) = (∂/∂β) logp∗

s (x;α∗, β) and �̇2(s, x;α∗, β) =
(∂/∂α∗) logp∗

s (x;α∗, β). The proof is similar to the one for the stratified sampling ex-
ample given above and, therefore, we omit it. The estimator (α̂∗, β̂) based on this iden-
tifiable reparametrization is the maximizer of the log-likelihood for the data �n(α

∗, β) =∑1
s=0

∑ns

i=1 logp∗
s (xsi;α∗, β).

If X takes values in {v1, . . . , vK}, let gk = g(vk), k = 1, . . . ,K . Then the log-likelihood for
a single observation in the model can be written as

logps(x;α,β,g) = logf (y = s|x;α,β) +
K∑

k=1

1{x=vk} loggk − log
K∑

k=1

f (y = s|vk;α,β)gk.

The MLE (α̂, β̂, ĝ), where ĝ = (ĝ1, . . . , ĝK), is the maximizer of the log-likelihood �n(α,β,g) =∑1
s=0

∑ns

i=1 logps(xsi;α,β,g).
For each case (non-identifiable reparametrization, identifiable reparametrization and maxi-

mum likelihood), let θ1 be the parameter of interest and θ2 be the nuisance parameter. Then an
estimated variance of the estimator (of the parameter of interest) is given by the formula (3.5) ex-
cept that each

∑
s wsEs,0(�̇

c
i �̇

cT
j ) (i, j = 1,2) is replaced with the corresponding second-degree

partial derivative −n−1(∂2/∂θi ∂θT
j )�n.

Estimates of regression coefficients and their standard error (SE) in these models are given
in Table 2. Note that in the maximum likelihood and non-identifiable reparametrization, the in-
tercept parameter is not identifiable. Its estimates and the corresponding SE are unreliable and
unstable. Therefore, we do not look at estimates of the intercept parameter in these models. The

Table 2. Model fitting results for the leprosy data

Maximum
likelihood

Reparametrization

Not identifiable Identifiable

Coef SE Coef SE Coef SE

Intercept 1.55720 94.52766 0.61334 8388784 – –
Age −0.30205 0.19737 −0.30211 0.19737 −0.30215 0.19736
Scar −4.30992 0.57891 −4.31017 0.57892 −4.30988 0.57889

Computation time 43.61 sec 2.80 sec 2.44 sec
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Table 3. Relative efficiency with respect to the maximum likelihood

Reparametrization

Not identifiable Identifiable

Age 0.99997 0.99992
Scar 1.00005 0.99994

Computation time 0.06421 0.05595

estimated coefficients of “Age” and “Scar” and their SE are very similar to each other among
these models. This is consistent with the prediction made by Theorem 3.1 that reparametrization
gives the semi-parametric efficiency bound that is achieved by the MLE.

Table 3 gives the relative efficiency of estimates in non-identifiable reparametrization and
identifiable reparametrization with respect to the maximum likelihood, along with the relative
efficiency in computation times (which is defined as the ratio of the corresponding computa-
tion times). The table indicates that these reparametrizations are statistically as efficient as, and
computationally more efficient than, the method of maximum likelihood.

5. Discussion

Theorem 3.1 gives conditions under which the efficient score function and the efficient infor-
mation matrix can be expressed in terms of the parameters in the reparametrized model, namely
(3.4) and (3.5), respectively. In Section 4, we demonstrated that Theorem 3.1 can be used to
show the efficiency of estimators based on non-identifiable and identifiable reparametrizations in
the logistic regression model, and that these estimators are computationally more efficient than
the MLE. The results of the paper can be used to find a reparametrization of the least favorable
submodel (or profile likelihood) that gives statistically and computationally efficient estimators
in multisample models.

Appendix A

We define the Hilbert space, projection and the efficient score function.

A.1. Hilbert space and the projection

Let H be the Hilbert space of m-dimensional measurable functions with zero mean and finite
variance:

H =
{

ψ(s, x): Es,0(ψ) = 0 (s = 1, . . . , S),

S∑
s=1

wsEs,0(ψ
T ψ) < ∞

}
.
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The covariance of ψ,φ ∈ H is defined by cov(ψ,φ) = ∑S
s=1 wsEs,0(ψφT ). We say ψ and φ are

uncorrelated if cov(ψ,φ) = 0. For a set of functions G in H, G⊥ is the set of all functions ψ ∈ H
with cov(ψ,φ) = 0 for all φ ∈ G . The projection 
(ψ |G) of ψ ∈ H onto a closed subspace G is
characterized by


(ψ |G) ∈ G and ψ − 
(ψ |G) ∈ G⊥.

For an arbitrary Banach space B, let B∗ be its dual. Let A : B → H be a bounded linear operator
and ψ ∈ H. The adjoint operator AT : H → B∗ of A : B → H is defined by the map

(AT ψ)(b) = 〈Ab,ψ〉 =
S∑

s=1

wsEs,0{(Ab)ψT }, b ∈ B.

Suppose that (AT A)−1 exists and let ψ ∈ H. By the projection theorem for an operator equa-
tion,


(ψ |A(B)) = A(AT A)−1AT ψ

is a projection of ψ onto the closure A(B) of the range of A.

A.2. The projection theorem

Theorem A.1 (The projection theorem). Suppose φ(s, x) is an l-dimensional vector of mea-
surable functions such that

(1) for s = 1, . . . , S, Es,0(φ) = 0;
(2)

∑S
s=1 wsEs,0(φ

T φ) < ∞;

(3) {∑S
s=1 wsEs,0(φφT )}−1 exists.

Let G = {Aφ: A ∈ Rm×l} be the closed subspace of H generated by φ. Then, for each ψ ∈ H,
the projection of ψ onto the closed subspace G is given by

π(ψ |G) =
{

S∑
s=1

wsEs,0(ψφT )

}{
S∑

s=1

wsEs,0(φφT )

}−1

φ.

Proof. The proof is similar to the one for the standard case. �

A.3. The efficient score function

Here, we give the definition of the efficient score function in a multisample model.
We assume the log-likelihood function for a single observation �(s, x;β,η) (defined by (2.1))

is continuously differentiable with respect to β for all β ∈ �β and Hadamard differentiable
with respect to η for all η ∈ �η. The score function �̇(s, x;β,η) for β and the score operator
A(s, x;β,η) for η in the multisample model are the derivatives of the log-likelihood function
with respect to β and η, respectively.
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The tangent space for η is the closure A(B) of range of the score operator A for η.
The uncorrelated complement of the score function �̇β with respect to the tangent space for η,

�̇∗ = �̇ − 
(�̇|A(B)),

is called the efficient score function in the multisample model (P1, . . . , PS).

A.4. Theorem to identify the efficient score function

To verify that the function given by (2.3) is the efficient score function, the following theorem
may be useful.

Theorem A.2. A path t → ηt is a continuously differentiable map in a neighborhood of 0 such
that ηt=0 = η0. Define αt = ηt − η0. If β → η̂β is a differentiable function such that

η̂β0 = η0 (A.1)

and, for each β ∈ �β , and for each path ηt ,

∂

∂t

∣∣∣∣
t=0

S∑
s=1

wsEs,0{logps(x;β, η̂β + αt )} = 0, (A.2)

then the function

�̇∗(s, x) = ∂

∂β

∣∣∣∣
β=β0

logps(x;β, η̂β) (A.3)

is the efficient score function.

Proof. Condition (A.2) implies that

0 = ∂

∂β

∣∣∣∣
β=β0

∂

∂t

∣∣∣∣
t=0

S∑
s=1

wsEs,0{logps(x;β, η̂β + αt )}
(A.4)

= ∂

∂t

∣∣∣∣
t=0

S∑
s=1

wsEs,0

{
∂

∂β

∣∣∣∣
β=β0

logps(x;β, η̂β + αt )

}
.

By differentiating the identity

S∑
s=1

ws

∫ {
∂

∂β
logps(x;β, η̂β + αt )

}
ps(x;β, η̂β + αt )dx = 0
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with respect to t at t = 0 and β = β0, we get

0 = ∂

∂t

∣∣∣∣
t=0,β=β0

S∑
s=1

ws

∫ (
∂

∂β
logps(x;β, η̂β + αt )

)
p(x;β, η̂β + αt )dx

=
S∑

s=1

wsEs,0

[
�̇∗(s, x)

{
∂

∂t

∣∣∣∣
t=0

logps(x;β0, ηt )

}]
(we used (A.3) and

η̂β0 + αt = ηt by (A.1)) (A.5)

+ ∂

∂t

∣∣∣∣
t=0

S∑
s=1

wsEs,0

{
∂

∂β

∣∣∣∣
β=β0

logps(x;β, η̂β + αt )

}

=
S∑

s=1

wsEs,0

[
�̇∗(s, x)

{
∂

∂t

∣∣∣∣
t=0

logps(x;β0, ηt )

}]
(by (A.4)).

Let c ∈ Rm be arbitrary. Then, it follows from (A.5) that the product c′�̇∗(s, x) is orthogonal to
the nuisance tangent space Ṗη, which is the closed linear span of score functions of the form
φ(s, x) = ∂

∂t

∣∣
t=0 logps(x;β0, ηt ). By (A.3) with (A.1) , we have

�̇∗(s, x) = ∂

∂β

∣∣∣∣
β=β0

logps(x;β,η0) + ∂

∂β

∣∣∣∣
β=β0

logps(x;β0, η̂β)

= �̇β(s, x) − ψ(s, x),

where �̇β(s, x) = ∂
∂β

∣∣
β=β0

logps(x;β,η0) and ψ(s, x) = − ∂
∂β

∣∣
β=β0

logps(x;β0, η̂β). Finally,

c′�̇∗(s, x) = c′�̇β(s, x)−c′ψ(s, x) is orthogonal to the nuisance tangent space Ṗη and c′ψ(s, x) ∈
Ṗη implies that c′ψ(s, x) is the orthogonal projection of c′�̇β(s, x) onto the nuisance tangent
space Ṗη. Since c ∈ Rm is arbitrary, the function �̇∗(s, x) given by (A.3) is the efficient score
function. �

Appendix B

B.1. Proof of Lemma 2.1

Proof. We show that
∑S

s=1 ws

∫
logps(y, x; θ, ĝθ )dFs0 satisfies conditions (A.1) and (A.2) in

Theorem A.2 in Appendix A so that the claim follows from this theorem.
Condition (A.1) is verified in Remark 2.2. Now we verify (A.2). Let gt (x) be a path in the space

of density functions with gt=0(x) = g0(x). Define αt (x) = gt (x) − g0(x) and write α′
0(x) =
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(d/dt)|t=0αt (x). Then

∂

∂t

∣∣∣∣
t=0

S∑
s=1

ws

∫
logps(y, x; θ, ĝθ + αt )dFs0

= ∂

∂t

∣∣∣∣
t=0

S∑
s=1

ws

[∫
log{ĝθ (x) + αt (x)}dFs,0 − logQs(θ, ĝθ + αt )

]

= ∂

∂t

∣∣∣∣
t=0

[∫
log{ĝθ (x) + αt (x)}f ∗

0 (x)dx −
S∑

s=1

ws logQs(θ, ĝθ + αt )

]

=
∫

α′
0(x)

ĝθ (x)
f ∗

0 (x)dx −
S∑

s=1

ws

∫
Qs|X(x; θ)α′

0(x)dx

Q̂s(θ)
= 0

by (2.4) and (2.5). �
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