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In this paper we investigate undirected discrete graphical tree models when all the variables in the sys-
tem are binary, where leaves represent the observable variables and where all the inner nodes are unob-
served. A novel approach based on the theory of partially ordered sets allows us to obtain a convenient
parametrization of this model class. The construction of the proposed coordinate system mirrors the combi-
natorial definition of cumulants. A simple product-like form of the resulting parametrization gives insight
into identifiability issues associated with this model class. In particular, we provide necessary and sufficient
conditions for such a model to be identified up to the switching of labels of the inner nodes. When these
conditions hold, we give explicit formulas for the parameters of the model. Whenever the model fails to
be identified, we use the new parametrization to describe the geometry of the unidentified parameter space.
We illustrate these results using a simple example.

Keywords: binary data; central moments; conditional independence; cumulants; general Markov models;
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1. Introduction

Discrete graphical models have become a very popular tool in the statistical analysis of multivari-
ate problems (see, e.g., [7,19]). When all the variables in the system are observed, they exhibit
a useful modularity. In particular, it is possible to estimate all the conditional probabilities that
parametrize such models, maximum likelihood estimates are simple sample proportions and a
conjugate Bayesian analysis is straightforward. However, if the values of some of the variables
are unobserved, then the resulting model for the observed variables often becomes very complex,
making inference much more difficult.

The complicated structure of models with hidden variables usually leads to difficulties in es-
tablishing the identifiability of their parameters (see, e.g., [1]). In this paper, we show how alge-
braic and combinatorial techniques can help. We focus on graphical models where the underlying
graph is a tree and all the inner nodes represent hidden variables. In the computational biology
literature, these models are called the general Markov models (see, e.g., [14]), tree models or tree
decomposable distributions (cf. [10]). Building on results of Chang [4], in this paper we analyze
issues associated with identifiability of such a tree model when all its variables are binary, paying
particular attention to the geometry of the unidentified space. In particular, we obtain necessary
and sufficient conditions for this model to be locally identified, which gives a stronger version
of Theorem 4.1 in [4]. When these conditions are satisfied, we also obtain exact formulae for its
parameters in terms of the marginal distribution over the observed variables.
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Figure 1. The tripod tree model.

Our strategy is to define a new parametrization of this model class. The new coordinate sys-
tem is based on moments rather than conditional probabilities. This helps us to exploit various
invariance properties of tree models, which, in turn, enables us to express the dependence struc-
ture implied by the tree more elegantly. Furthermore, because the parametrization is based on
well-understood moments, the implied dependence structure becomes more transparent.

The motivation of this methodology sprung from the study of the tripod tree model, which
is the simplest naive Bayes model. The model is a graphical model given in Figure 1, where
the black nodes represent three observed variables, X1,X2,X3, and the white node indicates a
hidden variable H that remains hidden; that is, its values are never directly observed. We assume
all the variables in the system have values in {0,1}. For α = (α1, α2, α3) ∈ {0,1}3 let pα =
P(X1 = α1,X2 = α2,X3 = α3). This model would usually be parametrized using conditional
probabilities. In this case we would write

pα =
1∑

i=0

θ
(h)
i θ

(1)
α1|iθ

(2)
α2|iθ

(3)
α3|i , (1)

where θ
(h)
i = P(H = i) and θ

(j)
αj |i = P(Xj = αj |H = i). It can be seen that there are seven free

parameters needed to specify pα , namely: θ
(h)
1 together with θ

(j)

1|i for i = 0,1 and j = 1,2,3.
However, the definition of this model given in (1) becomes more transparent when expressed

in terms of moments. It is easy to check that there is a one-to-one correspondence between
the probabilities pα for α ∈ {0,1}3 and the four central moments μij = E(Xi − λi)(Xj − λj )

for i, j = 1,2,3 and μ123 = E(X1 − λ1)(X2 − λ2)(X3 − λ3) supplemented by the three means
λi = EXi for i = 1,2,3 (cf. Appendix A.1).

Let μ̄h = 1 − 2θ
(h)
1 , μ̄i = 1 − 2λi and ηh,i = θ

(i)
1|1 − θ

(i)
1|0 for i = 1,2,3. We can now write an

explicit isomorphism between the original seven parameters (θ
(h)
1 , (θ

(i)
1|0, θ

(i)
1|1)) and new parame-

ters (μ̄h, (μ̄i), (ηh,i)) for i = 1,2,3. Thus, in [15], it is shown that in the new coordinate system,
together with the new parameters, the model class is equivalently given by

λi = 1
2 (1 − μ̄i) for i = 1,2,3,

μij = 1
4 (1 − μ̄2

h)ηh,iηh,j for all i �= j ∈ {1,2,3} and (2)

μ123 = 1
4 (1 − μ̄2

h)μ̄hηh,1ηh,2ηh,3.
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The product-like form of this parametrization enables us to see various interesting constraints
on the observed nodes. For example, by multiplying formulae for μ12,μ13 and μ23 in (2) together
we can see that μ12μ13μ23 ≥ 0 must hold. It also allows us to find explicit formulae for the
parameters of the model in terms of the marginal distribution on the set of observed variables.
For example, when μ12μ13μ23 �= 0 by substituting (2) for all the observed moments, we see that

μ̄2
h = μ2

123

μ2
123 + 4μ12μ13μ23

, η2
h,i = μ2

123 + 4μ12μ13μ23

μ2
jk

for i = 1,2,3. (3)

Now a similar parametrization is known for general naive Bayesian models; see the Appendix
in [6]. The new parametrization for this model class was used in [13] to approximate a marginal
likelihood where the sample size was large, in [6] to understand the local geometry of the model
class and in [2] to provide the full description of these models in terms of the defining equations
and inequalities.

Naive Bayesian models are a particular example of general Markov models. The class of tree
models is somewhat more complicated than the naive Bayesian models and needs new tools to
examine its geometry. In this paper, we investigate the moment structures induced by tree models
using the theory of partially ordered sets and Möbius functions. Similar methods were used in
the combinatorial theory of cumulants (see [12,17]) for a poset of all partitions of a finite set. To
our knowledge, this paper is the first to use more general posets in statistical analysis, although a
similar approach can be found in the theory of free probability (see, e.g., [18]).

The paper is organized as follows. In Section 2 we define and analyze the moment structures
of the class of models under consideration. In Section 3 we define tree-cumulants, which form a
new coordinate system for this model class. In Section 4 we reparametrize the model and show
that the induced parametrization on the observed margin has an elegant product-like form. We
apply this reparametrization in Section 5, analyzing the local geometry of the tree models and the
geometry of the subsets of the parameter space that give the same set of marginal distributions
on the set of observed variables. In Section 6 we illustrate this method using a simple general
Markov model given by a tree with two hidden nodes.

2. Independence models on trees

In this section, we introduce models defined by global Markov properties on trees.

2.1. Preliminaries on trees

A graph G is an ordered pair (V ,E) consisting of a non-empty set V of nodes (or vertices) and
a set E of edges, each of which is an element of V ×V . An edge (u, v) ∈ E is directed if the pair
(u, v) is ordered and we represent the edge by an arrow from u to v. If (u, v) is not an ordered
pair, then we say that (u, v) is an undirected edge. Graphs with only (un)directed edges are called
(un)directed. If e = (u, v) is an edge of a graph G, then u and v are called adjacent and e is said
to be incident with u and v. If v ∈ V , the degree of v is denoted by deg(v), and is the number
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of edges incident with v. A path in a graph G is a sequence of nodes (v1, v2, . . . , vk) such that,
for all i = 1, . . . , k − 1, vi and vi+1 are adjacent. If, in addition, v1 = vk , then the path is called
a cycle. A graph is connected if each pair of nodes in G can be joined by a path.

A (directed) tree T = (V ,E) is a connected (directed) graph with no cycles. A node of T of
degree one is called a leaf. A node of T that is not a leaf is called an inner node. An edge e of
T is inner if both nodes incident with e are inner nodes. A connected subgraph of T is a subtree
of T . A rooted tree, T r , is a directed tree that has one distinguished node called the root, denoted
by the letter r , and edges that are directed away from r . Let T r be a rooted tree. For every node v

of T r we let pa(v) denote the set of nodes u such that (u, v) ∈ E. If v is the root, then pa(v) = ∅.
Otherwise pa(v) is a singleton.

For any W ⊆ V we define T (W) as the minimal subtree of T whose set of nodes contains W .
We say that T (W) is the subtree of T spanned on W . Henceforth, denote the edge set of T (W)

by E(W) and its set of nodes by V (W). If T is rooted, then let r(W) denote the unique node v

of T (W) such that pa(v) ∩ V (W) is the empty set.
Let T = (V ,E) be a tree where e = (u, v) denotes one of its edges. Then contracting e results

in another tree, denoted by T/e, with the edge e removed and its incident nodes u and v identified.
Similarly, for any E′ ⊆ E we denote the tree obtained from T by contracting all edges in E′ by
T/E′. If v ∈ V such that degv = 2, then to suppress v we simply contract one of the edges
incident with v. The resulting tree is denoted by T/v.

2.2. Models defined by global Markov properties

In this paper, we always assume that random variables are binary, taking either value 0 or 1.
The vector Y has as its components all variables in the graphical model, that is, both hidden and
observed variables. Denote the subvector of Y of observed variables by X and the subvector of
hidden variables by H .

Let T = (V ,E) be an undirected tree. For any three disjoint subsets A,B,C ⊆ V we say that
C separates A and B in T , denoted by A ⊥T B|C, if each path from a node in A to a node
B passes through a node in C. For any A ⊆ V let YA denote the subvector of Y = (Yv)v∈V

with elements indexed by A, that is, YA = (Yv)v∈A. We are interested in statistical models for Y

defined by global Markov properties (GMP) on T . By definition (see, e.g., [7], Section 3.2.1),
these models are specified through the set of conditional independence statements of the form:

{YA ⊥⊥ YB |YC : for all A,B,C ⊂ V s.t. A ⊥T B|C}. (4)

Let M̃T denote the space of probability distributions of (X,H) satisfying the global Markov
properties on T . We now let MT denote the space of marginal probability distribution on X

induced from distributions over (X,H), which are in M̃T .

2.3. Models for rooted trees

We next present the parametric formulation of the models presented in the previous section.
A Markov process on a rooted tree T r is a collection of random variables, {Yv: v ∈ V }, such that
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for each α = (αv)v∈V ∈ {0,1}V
pα(θ) =

∏
v∈V

θ
(v)
αv |αpa(v)

, (5)

where pa(r) is the empty set, θ = (θ
(v)
αv |αpa(v)

) and

θ
(v)
αv |αpa(v)

= P
(
Yv = αv|Ypa(v) = αpa(v)

)
.

Since θ
(r)
0 + θ

(r)
1 = 1 and θ

(v)
0|i + θ

(v)
1|i = 1 for all v ∈ V \ {r} and i = 0,1, the set of param-

eters consists of exactly 2|E| + 1 free parameters: we have two parameters, θ
(v)
1|0 , θ

(v)
1|1 , for

each edge (u, v) ∈ E and one parameter, θ
(r)
1 , for the root. We denote the parameter space by

�T = [0,1]2|E|+1.
Suppose that T r has n leaves representing a binary random vector, X = (X1, . . . ,Xn), and let

�2n−1 =
{
p ∈ R

2n

:
∑
β

pβ = 1,pβ ≥ 0

}
(6)

with indices β ranging over {0,1}n be the probability simplex of all possible distributions of X.
Equation (5) induces a polynomial map, fT :�T → �2n−1, obtained by marginalization over all
the inner nodes of T , giving the marginal mass function pβ(θ) as

pβ(θ) =
∑

H

∏
v∈V

θ
(v)
αv |αpa(v)

. (7)

Here, H denotes the set of all α ∈ {0,1}V such that the restriction to the leaves of T is equal to β .
The image of this map is, by definition, the general Markov model on T r (cf. [14], Section 8.3,
[10]).

Standard theory in graphical models tells us that the Markov process on T r is equal to M̃T

and, consequently, that the general Markov on T r model is equal to MT . Indeed, since T r is
a perfect directed graph (see Section 2.1.3 in [7]), by [7], Theorem 3.28, the Markov properties
are equivalent to the factorization with respect to the undirected version of T r , which is just T .
Since T is decomposable, by [7], Proposition 3.19, the factorization according to T is equivalent
to the global Markov properties on T .

In this paper, we often focus on trivalent trees, that is, trees such that every inner node has
degree three. This is an important subclass because, by the well-known lemma below (see, e.g.,
[10], Section 2), the nodes of valency two in a given tree add nothing to the model class MT .

Lemma 2.1. Let T be a tree. Let v ∈ V be a node of degree two and let T ′ = T/v be the tree
obtained from T by suppressing v. Then P ∈ MT if and only if P ∈ MT ′ .

Corollary 2.2. Let T be a tree and let i, j, k be any three leaves of T . The marginal model on
(Xi,Xj ,Xk) induced from MT and denoted by MT (ijk) is equivalent to the tripod tree model
where the tripod tree is given in Figure 1.
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In addition, the model corresponding to any tree is a submodel of a model corresponding to a
trivalent tree. To show this, we need the following definition.

Definition 2.3. Let T be any tree. A trivalent expansion of T , denoted by T ∗, is any tree T ∗ =
(V ∗,E∗) whose each inner node has degree at most three and there exists a set of inner nodes
E′ ⊆ E∗ such that T = T ∗/E′.

Lemma 2.4. Let T be a tree and T ∗ = (V ∗,E∗) its trivalent expansion with E′ ⊆ E∗ such that
T = T ∗/E′. Then MT ⊆ MT ∗ .

Proof. Let p be a point in MT . Then p = fT (θ) for some θ ∈ �T . Identifying edges of T ∗
and T in the obvious way, we can write E∗ = E′ ∪ E. Define θ∗ ∈ �T ∗ as follows. For all
αu,αv ∈ {0,1}

θ∗(v)
αv |αu

= θ
(v)
αv |αu

for every (u, v) ∈ E,
(8)

θ∗(v)
αv |αu

= δαuαv for every (u, v) ∈ E′,

where δij denotes the Kronecker’s delta. It is now simple to check that fT ∗(θ∗) = p. It follows
that p ∈ MT ∗ . �

For these reasons, we can usually safely restrict our attention to trivalent trees.

2.4. Moments and conditional independence

Let X = (X1, . . . ,Xn) be a random vector and for each β = (β1, . . . , βn) ∈ N
n denote Xβ =∏

i X
βi

i . We shall denote EXβ by λβ and EUβ by μβ , where Ui = Xi − EXi . When β ∈ {0,1}n,
it is often convenient to use an alternate notation. Thus, for subsets I ⊆ [n] := {1,2, . . . , n}, we
let λI = E(

∏
i∈I Xi), μI = E(

∏
i∈I Ui). Note that λei

, where ei is the standard basis vector in
R

n, can also be denoted by λi for i = 1, . . . , n.
The model MT in the previous section is given in terms of the probabilities as the image of

the map in (7). We find it convenient to change these coordinates. Let [n]≥2 denote all subsets of
[n] with at least two elements. Denote by Cn the set of values of all the means λ1, . . . , λn together
with central moments μI such that I ∈ [n]≥2 for all possible probabilities in �2n−1. There exists
a polynomial isomorphism, fpμ :�2n−1 → Cn, with the inverse denoted by fμp (for details see
Appendix A.1). Consequently, we can express any distribution in the general Markov model in
terms of its central moments and means.

For any two sets A,B let AB denote A ∪ B . If XA ⊥⊥ XB , then μIJ = μIμJ for all non-
empty I ⊆ A, J ⊆ B . However, when all variables are binary, we also have a converse result.
Thus, if for all non-empty I ⊆ A, J ⊆ B we have that μIJ = μIμJ , then XA ⊥⊥ XB . Indeed, the
independence expressed in terms of moments (see, e.g., Feller [5], page 136) gives

XA ⊥⊥ XB ⇐⇒ Cov(f (XA), g(XB)) = 0 for all f ∈ L2(XA), g ∈ L2(XB). (9)
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Since our variables are binary, all the functions of XA and XB are just polynomials with square-
free monomials. Equivalently, every function of XA or XB can be written as a polynomial with
square-free monomials in UA or UB , respectively. For instance, because X1,X2 ∈ {0,1},

X10
1 X3

2 = X1X2 = (U1 + λ1)(U2 + λ2) = U1U2 + λ2U1 + λ1U2 + λ1λ2.

Since the covariance is a bilinear form, Settimi and Smith [16] concluded that the independence
can be checked only on these monomials and (9) can be rewritten as

XA ⊥⊥ XB ⇐⇒ Cov(Uα
A,U

β
B) = 0 for all α ∈ {0,1}|A|, β ∈ {0,1}β. (10)

However, Cov(Uα
A,U

β
B) = 0 holds for each non-zero α ∈ {0,1}|A| and β ∈ {0,1}|B| if and only if

μIJ = μIμJ for each I ⊆ A, J ⊆ B .
We can generalize the result above. For a random variable Ha let λa = EHa and Ua = Ha −λa .

For each I ⊆ [n] let UI = ∏
i∈I Ui and

ηa,I = E(UIUa)/Var(Ha). (11)

Note that under this notation Var(Ha) = λa(1 − λa).

Proposition 2.5. Let Ha be a non-degenerate random variable. With the notation above, we have
XA ⊥⊥ XB |Ha if and only if for all non-empty I ⊆ A, J ⊆ B

μIJ = μIμJ + λa(1 − λa)ηa,I ηa,J ,
(12)

ηa,IJ = μIηa,J + ηa,IμJ + (1 − 2λa)ηa,I ηa,J .

Proof. The definition of independence given in (10) induces a condition for XA ⊥⊥ XB |Ha . Thus,
for each I ⊆ A, J ⊆ B we have

Cov(UI ,UJ |Ha = 0) = Cov(UI ,UJ |Ha = 1) = 0, (13)

so, in particular,

λa Cov(UI ,UJ |Ha = 1) + (1 − λa)Cov(UI ,UJ |Ha = 0) = 0,
(14)

Cov(UI ,UJ |Ha = 0) − Cov(UI ,UJ |Ha = 1) = 0.

Moreover, for any I ⊆ [n], one has E(UI |Ha) = μI + ηa,IUa , and hence

Cov(UI ,UJ |Ha) = μIJ − μIμJ + (ηa,IJ − ηa,IμJ − μIηa,J )Ua − ηa,I ηa,J U2
a . (15)

Equation (12) now follows from substituting (15) into (14). �
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3. Tree posets and tree cumulants

In this section, we use the theory of partially ordered sets to propose a further change of coor-
dinates. In the new coordinate system it is possible to parametrize the marginal model MT in
a product form (see Proposition 4.1) in contrast to the complicated polynomial mapping given
in (7).

3.1. The poset of edge partitions

Let T = (V ,E) be a tree with n leaves. We identify the set of leaves of T with the set [n]. For
any e ∈ E we let T \ e denote the forest obtained from T by removing e, that is, the subgraph
of T given as a collection of disjoint trees with the set of nodes given by V and the set of edges
given by E \ e. Similarly, for any E′ ⊆ E, we let T \ E′ denote the forest obtained by removing
all the edges in E′. An edge split is a partition of the set of leaves, [n], of T into two non-empty
sets induced by removing an edge e from E and restricting [n] to the connected components of
T \ e. By an edge partition, we mean any partition B1|B2| · · · |Bk of the set of leaves induced
by considering connected components of T \ E′ for some E′ ⊆ E. Call each subset Bi in this
partition a block.

Henceforth let 
T denote the poset of all edge partitions of the set of leaves induced by edges
of T . The ordering is induced from the ordering of the poset of all partitions of the set of leaves
(see [20], Example 3.1.1.d). Thus, for two partitions, π = B1| · · · |Bk and ν = C1| · · · |Cl , we
write π ≤ ν if every block of π is contained in one of the blocks of ν. To make this more explicit,
define the following equivalence relation on the subsets of E. For E1,E2 ⊆ E we say E1 ∼ E2
if and only if removing E1 induces the same partition of the set of leaves [n] as removing E2.
For example, in Figure 1 the partition, 1|2|3, can be obtained either by removing any two edges
or by removing all them. However, the only way to obtain the partition, 12|3, is by removing the
edge incident with the third leaf.

Let Eπ denote the element of the equivalence class of subsets of E inducing the partition π ,
which is maximal with respect to inclusion. Suppose that π ∈ 
T is obtained by removing edges
in the subset of the set of edges Eπ and ν ∈ 
T is obtained by removing edges in Eν . Write
π ≤ ν if and only if Eπ ⊇ Eν and call π a subpartition of ν.

An interval, [π,ν], for π and ν in 
T , is the set of all elements δ such that π ≤ δ ≤ ν. The
poset 
T forms a lattice (cf. [20], Section 3.3). To show this, we define π ∨ν ∈ 
T (π ∧ν ∈ 
T )
as an element in 
T obtained by removing Eπ ∩ Eν (Eπ ∪ Eν ). We have π ∨ ν ≥ π , π ∨ ν ≥ ν

(π ∧ ν ≤ π , π ∧ ν ≤ ν) and, if there exists another δ ∈ 
T such that δ ≥ π , δ ≥ ν (δ ≤ π , δ ≤ ν),
then δ ≥ π ∨ ν (δ ≤ π ∧ ν). The element π ∨ ν (π ∧ ν) is called the join (the meet) of π and ν.
The poset 
T has a unique minimal element, 1|2| · · · |n, induced by removing all edges in E and
the maximal one with no edges removed, which is equal to a single block, [n]. The maximal and
minimal element of a lattice will be denoted by 1̂ and 0̂, respectively.

The number of elements in these posets is typically large. However, the key concepts can be
presented using a simpler poset. Let 
̃T denote a subposet of 
T containing partitions obtained
by removing only inner edges and consider, for example, the two different trivalent trees T and
T ′, both with six leaves, given below
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Their associated posets, 
̃T and 
̃T ′ , are, respectively,

So, for example, 12|34|56 is an edge partition in 
̃T and is a subpartition of any other edge
partition ν ∈ 
̃T . It can be obtained by removing either any two inner edges from (a, b), (b, c)

and (b, d), or all of them. Since, for π = 12|34|56, there are no subpartitions of π, it follows that
π is the minimal element of 
̃T . In 
̃T ′ , there is only one way to obtain this partition. Namely,
by removing (a, b) and (c, d). However, note that this partition is not minimal in 
̃T ′ because
12|3|4|56 < π .

For any poset 
 a Möbius function m
 :
 × 
 → R is defined by m
(π,π) = 1 for ev-
ery π ∈ 
, m
(π, ν) = −∑

π≤δ<ν m
(π, δ) for π < ν in 
 and is zero otherwise (cf. [20],
Section 3.7). Recall that for any W ⊂ V , T (W) denotes the subtree of T spanned on W (see
Section 2.1). We denote m
T (W)

:= mW and m
T
:= m, and let 0̂W and 1̂W denote the minimal

and the maximal element of 
T (W), respectively. For any partition π ∈ 
T the interval [0̂,π]
has a natural structure of a product of posets for blocks of π , namely

∏
B∈π 
T (B), where the

product is over all blocks B of π . By Proposition 3.8.2 in [20], the Möbius function on the prod-
uct of posets

∏
B∈π 
T (B) can be written as a product of Möbius functions for each of the posets


T (B). Thus, for ν ≤ π in 
T

m(ν,π) =
∏
B∈π

mB(νB, 1̂B), (16)

where νB ∈ 
T (B) is the restriction of ν ∈ 
T to the block containing only elements from B ⊂
[n] (it is well defined since ν ≤ π ) and πB = 1̂B for each B .
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In the next section, we will use the Möbius function of the poset of tree partitions to derive a
useful change of coordinates on MT .

3.2. An induced change of coordinates

Assume that each inner node of T has degree at most three and consider a map, fμκ : Rn ×R
2n →

R
n ×R

2n
, where the coordinates in the domain are denoted by λ1, . . . , λn and μI for I ⊆ [n] and

the coordinates in the image are denoted by λ1, . . . , λn and κI for I ⊆ [n]. The map is defined as
the identity on the first n coordinates corresponding to the means and

κI =
∑

π∈
T (I)

mI (π, 1̂I )
∏
B∈π

μB for all I ⊆ [n]. (17)

It is easy to prove that the Jacobian of fμκ is equal to 1, so, in particular, this is constant. To
see this, order the variables in such a way that the first n coordinates both in KT and Cn are
λ1, . . . , λn and let κI precede κJ (μI precede μJ ) as long as I ⊂ J . The Jacobian matrix of fμκ

is then lower triangular with each of its diagonal entries equal to 1. It follows that the modulus
of its determinant is always 1.

The map, fμκ , is a regular polynomial map with a regular polynomial inverse fκμ. Therefore,
it gives a change of coordinates from the central moments with means to a coordinate system
given by λ1, . . . , λn and κI for I ⊆ [n]. Its inverse map is given by

μI =
∑

π∈
T (I)

∏
B∈π

κB for all I ∈ [n]≥2. (18)

To show (18), define two functions on 
T (I): α(π) = ∏
B∈π μB and β(π) = ∏

B∈π κB . For each
π ∈ 
T (I), by (17),

β(π) =
∏
B∈π

κB =
∏
B∈π

( ∑
νB∈
T (B)

mB(νB, 1̂B)
∏

C∈νB

μC

)

=
∑
ν≤π

∏
B∈π

mB(νB, 1̂B)
∏
C∈ν

μC,

where ν is an element of 
T (I) such that its restriction to each of the blocks B ∈ π is equal
to νB . By the product formula in (16), we have

∏
B∈π mB(νB, 1̂B) = mI (ν,π). Therefore,

β(π) = ∑
ν≤π mI (ν,π)α(ν) for all π ∈ 
T (I). Equation (18) now follows on applying the

Möbius inversion formula in Proposition 3.7.1 in [20].
Denote KT = fμκ(Cn). Since KT is contained in a subset of R

n × R
2n

given by κ∅ = κ1 =
· · · = κn = 0, a system of coordinates on KT is given by λi for i = 1, . . . , n and κI for I ∈ [n]≥2.
This system of coordinates is called tree cumulants. The name is justified by (17) because one of
the definitions of classical cumulants is the following. Let 
(I) denote the set of all partitions of
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I = {i1, . . . , ik} ∈ [n]≥2 (see [20], Example 3.1.1.d). Then, for all k > 1

Cum(Xi1, . . . ,Xik ) =
∑

π∈
(I)

m
(I)(π, 1̂I )
∏
B∈π

μB, (19)

where the product is over all blocks of π . Moreover, for every π ∈ 
(I)

m
(I)(π, 1̂I ) = (−1)|π |−1(|π | − 1)!,
where |π | denotes the number of blocks in π . Note that the usual definition of cumulants uses
non-central moments instead of central moments in (19). It can be shown that both definitions
are equivalent for all cumulants of order greater than one because the classical cumulants are
translation invariant. The definition in (19) is thus essentially the same as (17) but with a different
defining poset (cf. [12,17]).

Using a basic result in the theory of lattices, Lemma 3.2 shows that certain features of classical
cumulants are also shared by tree cumulants (cf. Section 2.1 of [8]).

Lemma 3.1 (Corollary in [11], Section 5). Let L be a finite lattice and let π0 �= 1̂ in L. Then,
for any ν in L ∑

π∧π0=ν

m(π, 1̂) = 0.

Lemma 3.2. Let T be a tree with n leaves. Whenever there exists an edge split C1|C2 ∈ 
T of
the set of leaves [n] such that XC1 ⊥⊥ XC2 , then κ1···n = 0.

Proof. Let π0 be the split C1|C2 such that XC1 ⊥⊥ XC2 . It follows that μ1···n is equal to μC1μC2 .
More generally, for any I ∈ [n]≥2,

μI = μC1∩IμC2∩I .

Consequently, for any partition π ∈ 
T∏
B∈π

μB =
∏

B∈π∧π0

μB. (20)

Using (17) and (20), we obtain

κ1···n =
∑

π∈
T

m(π, 1̂)
∏
B∈π

μB =
∑

π∈
T

m(π, 1̂)
∏

B∈π∧π0

μB.

Since π ∧ π0 ≤ π0, by grouping all partitions π ∈ 
T giving the same partition, after taking the
meet with π0, we can rewrite the sum as

κ1···n =
∑

π∈
T

m(π, 1̂)
∏

B∈π∧π0

μB =
∑
ν≤π0

( ∑
π∧π0=ν

m(π, 1̂)

) ∏
B∈π∧π0

μB.

However, this is zero since by Lemma 3.1 each of
∑

π∧π0=ν m(π, 1̂) is zero. �



Tree cumulants and the geometry of binary tree models 301

4. The induced parametrization

We now define a new parameter space, �T , with |V | + |E| parameters denoted by ηu,v for all
(u, v) ∈ E and μ̄v for all v ∈ V . The map between the two parameter spaces is given by

ηu,v = θ
(v)
1|1 − θ

(v)
1|0 for all (u, v) ∈ E and

(21)
μ̄v = 1 − 2λv for each v ∈ V,

where λv is a polynomial in the original parameters in �T . The details are given in Appendix A.2,
where the inverse map is given by (36). It follows that the change of parameters between �T and
�T is a polynomial isomorphism.

It can be checked that if Var(Yu) > 0, then ηu,v = E(UuUv)/Var(Yu) is the regression coeffi-
cient of Yv on Yu. Therefore, ηu,v , defined above, coincides with the definition of ηu,v in (11). If
Var(Yu) = 0, then the formula in (11) is not well defined; however, (21) always is.

Proposition 4.1 below motivates the whole section and demonstrates why our new coordinate
system is particularly useful. Henceforth let Mκ

T = (fμκ ◦ fpμ)(MT ) ⊆ KT .

Proposition 4.1. Let T = (V ,E) be a rooted tree with n leaves such that each inner node has
degree at most three. Then Mκ

T is given as the image of ψT :�T → KT . Here ψT is defined by
λi = 1

2 (1 − μ̄i) for i = 1, . . . , n and

κI = 1

4

(
1 − μ̄2

r(I )

) ∏
v∈V (I)\I

μ̄
deg(v)−2
v

∏
(u,v)∈E(I)

ηu,v for each I ∈ [n]≥2, (22)

where the degree is taken in T (I) = (V (I ),E(I)) and r(I ) denotes the root of T (I) (cf. Sec-
tion 2.1).

The proof is given in Appendix B.
By Lemma 2.4 we can obtain the parametrization of MT for any non-trivalent tree T = (V ,E)

using a parametrization for its trivalent expansion T ∗ = (V ∗,E∗). Let E′ be the subset of inner
nodes of E∗ given in Definition 2.3, so that T ∗/E′ = T . Let {V ∗} denote the equivalence classes
of subsets of V ∗ such that v ∼ v′ if and only if v becomes identified with v′ in T in the process
of contracting E′ in T ∗. There exists a natural identification of V with {V ∗}. Let {v} denote
the equivalence class of v ∈ V ∗ or the corresponding node in T . In particular, since E′ is a set
of inner edges, the class {i} of every leaf i ∈ [n] can be naturally identified with i and hence
{V ∗ \ [n]} = {V ∗} \ [n].

Lemma 4.2. Let T be any tree and T ∗ be its trivalent expansion. If κ∗
I for I ∈ [n]≥2 are tree

cumulants of T ∗, then Mκ
T is given in KT ∗ as the image of a map that is the identity on the

coordinates corresponding to μ̄i for i = 1, . . . , n and, for each I ∈ [n]≥2,

κ∗
I = 1

4

(
1 − μ̄2

r(I )

) ∏
v∈V (I)\I

μ̄
deg(v)−2
v

∏
(u,v)∈E(I)

ηu,v, (23)
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where T (I) = (V (I ),E(I)) is the subtree of T spanned on I .

Proof. By Lemma 2.4 and equation (8), MT ⊆ MT ∗ is the image fT ∗(�T ), where �T is the
subset of �T ∗ given by setting θ∗(v)

αv |αu
= δαuαv for every edge (u, v) ∈ E′ and θ∗(v)

αv |αu
= θ

(v)
αv |αu

otherwise. In the new parameters, �T is isomorphic to the subset of �T ∗ given by

η∗
u,v = ηu,v for all (u, v) /∈ E′,

η∗
u,v = 1 for all (u, v) ∈ E′ and (24)

μ̄∗
v = μ̄{v} for all v ∈ V ∗.

Denote the root of T ∗ by r∗. We show (23) for I = [n]. The general case can be proved with an
obvious change in notation. By Proposition 4.1, the model MT ∗ is parametrized by

κ∗
1···n = 1

4
(1 − μ̄∗2

r∗ )
∏

v∈V ∗\[n]
μ̄

∗deg(v)−2
v

∏
(u,v)∈E∗

η∗
u,v. (25)

Since E∗ = E ∪ E′ by applying (24),
∏

(u,v)∈E∗ η∗
u,v becomes

∏
(u,v)∈E ηu,v , where we have

identified E with E∗ \ E′. For every w ∈ V ∗, whenever deg{w} ≥ 3, we have that deg{w} =
|{w}| + 2. Therefore, if deg{w} ≥ 3, then the degree of each v ∈ {w} in T ∗ equals 3. Hence∑

v∈{w}
(degv − 2) =

∑
v∈{w}

1 = |{w}| = deg{w} − 2.

It follows that, after applying (24),
∏

v∈{w} μ̄
∗degv−2
v becomes μ̄

deg{w}−2
{w} . The last statement

is also true if deg{w} = 2. For, in this case, degw = 2 in T ∗ and w is the only element in
{w}. Moreover, E′ is necessarily contained in the set of inner edges of T ∗. It follows that∏

v∈V ∗\[n] μ̄
∗deg(v)−2
v in (25) becomes∏

{w}∈{V ∗}\[n]
μ̄

deg({w})−2
{w} =

∏
v∈V \[n]

μ̄
deg(v)−2
v .

In addition, {r∗} becomes the root of T denoted by r . Therefore, (25) becomes

κ∗
1···n = 1

4
(1 − μ̄2

r )
∏

v∈V \[n]
μ̄

deg(v)−2
v

∏
(u,v)∈E

ηu,v,

which is exactly (23) for I = [n]. �

Remark 4.3. For every v ∈ V the variance Var(Yv) is zero if and only if μ̄2
v = 1. Hence, in the

case when μ̄2
v < 1, the variable Yv is non-degenerate. In phylogenetics it is usually assumed

that μ̄2
r < 1 for the root r of T and ηu,v �= 0 for all (u, v) ∈ E (cf. Conditions (M1) and (M2)

in Section 8.2, [14]). It is shown in Section 8.2 in [14] that (M1) and (M2) imply the weaker
condition μ̄2

v < 1 for all v ∈ V . Over the subset of �T on which this weaker condition holds, we
can apply another smooth transformation on both the parameter and model space. This leads to
a further simplification of the parametrization in (22) presented in Appendix A.3.
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5. Singularities and the geometry of unidentified subspaces

The identifiability of general Markov models can be addressed here geometrically. For any q ∈
MT the preimage �̂T := f −1

T (q), that is, the set of parameter values that is consistent with the
known probability model q , is called the q-fiber. In this section, we analyze the geometry of
these fibers, determining when they are finite and thus when the model is locally identifiable. We
will also be interested in when the fibers are smooth subsets of �T and when they are singular.
We use methods similar to the ones presented in a different context by Moulton and Steel in [9],
Section 6. The results in this section generalize similar results for the naive Bayes models (cf.
[6], Theorem 7).

First we analyze the geometric description of �T . This gives a set of implicit inequalities con-
straining each q-fiber. Simple linear constraints defining �T become only slightly more compli-
cated when expressed in the new parameters. The choice of parameter values is not free anymore
in the sense that the constraining equations for each of the parameters involve the values of other
parameters. By (36), �T is given by μ̄r ∈ [−1,1] and for each (u, v) ∈ E

−(1 + μ̄v) ≤ (1 − μ̄u)ηu,v ≤ (1 − μ̄v),
(26)

−(1 − μ̄v) ≤ (1 + μ̄u)ηu,v ≤ (1 + μ̄v).

For p̂ ∈ MT let �̂ = [μ̂ij ] ∈ R
n×n be the covariance matrix of the observed variables labelled

by the leaves of T computed with respect to p̂. We show that the geometry of the p̂-fiber, denoted
by �̂T , is determined by zeros in �̂. Let λ̂i be the expected value of Xi . Then, for every point in
the p̂-fiber, we have μ̄i = μ̂i = 1 − 2λ̂i for all i = 1, . . . , n. Without loss we always assume that
λ̂i (1 − λ̂i ) �= 0 (or, equivalently, that μ̂2

i �= 1) for all i = 1, . . . , n.
It is easier to analyze the geometry of p̂-fibers in �T . Therefore transform �̂ to �T using the

mapping fθω. The image of this map, denoted by �̂T , is isomorphic to �̂T . Let κ̂ij denote the
corresponding second-order tree cumulants in the point fpκ(p̂). Since κij = μij for all i, j ∈ [n],
from (22) for any ω0 = ((μ̄0

v), (η
0
u,v)) ∈ �̂T we have that

μ̂ij = μij (ω0) = 1

4

(
1 − (

μ̄0
r(ij)

)2) ∏
(u,v)∈E(ij)

η0
u,v. (27)

We say that that an edge, e ∈ E, is isolated relative to p̂ if μ̂ij = 0 for all i, j ∈ [n] such that
e ∈ E(ij). We denote the set of all edges of T that are isolated relative to p̂ by Ê ⊆ E. We define
the p̂-forest T̂ as the forest obtained from T by removing edges in Ê so that T̂ = T \ Ê. Hence,
the set of vertices of T̂ is equal to the set of vertices of T and the set of edges is equal to E \ Ê.

We illustrate this construction in the example below. Let T be the tree given in Figure 2 and
assume that the covariance matrix contains zeros given in the provided 7 × 7 matrix, where the
asterisks mean any non-zero values such that the matrix is positive semidefinite. It can be checked
that Ê = {(b, c), (c, d), (c, e), (e,6), (e,7)} and these edges are depicted as dashed lines. The
forest, T̂ , is obtained by removing the edges in Ê.

We now define relations on Ê and E \ Ê. For two edges, e, e′, with either {e, e′} ⊂ Ê or
{e, e′} ⊂ E \ Ê, write e ∼ e′ if either e = e′ or e and e′ are adjacent and all the edges that are
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�̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0

∗ 0 0 0 0
∗ ∗ 0 0

∗ 0 0
∗ 0

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 2. An example of a tree and a sample covariance matrix. The dashed lines depict the edges isolated
with respect to p̂.

incident with both e and e′ are isolated relative to p̂. We now construct the transitive closure
of ∼ restricted to pairs of edges in Ê to form an equivalence relation on Ê. Consider a graph
with nodes representing elements of Ê and put an edge between e, e′ whenever e ∼ e′. Then
the equivalence classes correspond to connected components of this graph. In the same way, we
take the transitive closure of ∼ restricted to the pairs of edges in E \ Ê to form an equivalence
relation in E \ Ê. We will let [Ê] and [E \ Ê] denote the set of equivalence classes of Ê and
E \ Ê, respectively. For the tree from the example above, [Ê] is one element given by a subtree
of T spanned on {b, d,6,7} and

[E \ Ê] = {{(1, a)}, {(2, a)}, {(a, b), (b,3)}, {(d,4), (d,5)}}.
By construction, all the inner nodes of T have either degree zero in T̂ or the degree is strictly

greater than one. The following lemma shows that whenever the degree of an inner node in T̂ is
not zero, the node represents a non-degenerate random variable.

Lemma 5.1. Let p̂ ∈ MT . If v ∈ V is an inner node of T such that deg(v) ≥ 2 in the p̂-forest
T̂ , then the variable Hv cannot be degenerate.

Proof. By construction, if deg(v) ≥ 2 in T̂ , then there exists i, j ∈ [n] such that μ̂ij �= 0 and
v lies on the path between i and j . Suppose that Hv is degenerate. Then the global Markov
properties in (4) imply that Xi ⊥⊥ Xj . But then μ̂ij = 0 and we obtain the contradiction. �

We now list some basic statements, partly based on Lemma 6.4 in [9], which follow directly
definitions above.

Remark 5.2. Let T = (V ,E) be a tree with n leaves, let MT be the corresponding general
Markov model and suppose that p̂ ∈ MT .

(i) The edges in any equivalence class of [Ê] form a connected subgraph of T . If T is
trivalent, then this subgraph is either a single edge or a trivalent tree.

(ii) If each inner node of T has degree at least two in T̂ , then all the equivalence classes in
[Ê] are just single edges. If each inner node has degree at least three in T̂ , then all equivalence
classes in [E \ Ê] are single edges.
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(iii) The edges in any equivalence class in [E \ Ê] can be ordered so that they form a path
in T .

(iv) Every connected component of T̂ is either a single node or a tree with its set of leaves
contained in [n].

Lemma 5.3. Let E(uv) ⊂ E be any path as in Remark 5.2(iii), which is an element of [E \ Ê].
Then the quantities μ2

uv and η2
u,v are constant on �̂T and non-zero. It is possible to determine

their values from p̂.

Proof. First note that the degree of each inner node on the path between u and v in T̂ must be
exactly two. Moreover, the degree of both u and v in T̂ must be at least three unless u or v is a
leaf. Consider the case when both u and v are inner nodes of T . In this case, these nodes have
degrees at least three in T̂ and we can find four leaves i, j, k, l such that u separates i from j in
T̂ , v separates k and l and {u,v} separates {i, j} from {k, l} as in the graph below.

Furthermore, by construction, μ̂ij , μ̂kl, μ̂ik, μ̂j l are all non-zero. Consider the marginal models
for T (ijk) and T (ikl). By Corollary 2.2, these are equivalent to models associated with tripod
trees as in Figure 1. Hence, from (3) we have that

μ̄2
u = μ̂2

ijk

μ̂2
ijk + 4μ̂ij μ̂ikμ̂jk

, μ̄2
v = μ̂2

ikl

μ̂2
ikl + 4μ̂ikμ̂ilμ̂kl

. (28)

These equations are well defined since μ̂ij μ̂ikμ̂jk > 0 and μ̂ikμ̂ilμ̂kl > 0. Consider the quantity
μ̂ikμ̂j l

μ̂ij μ̂kl
and substitute (27) for each of the terms. A simple rearrangement now gives that

μ̂ikμ̂j l

μ̂ij μ̂kl

= 1 − μ̄2
u

1 − μ̄2
v

η2
u,v(ω),

where ηu,v(ω) = 1−μ̄2
r(uv)

1−μ̄2
u

∏
(w,w′)∈E(uv) ηw,w′ . Therefore, substituting for μ̄2

u, μ̄2
v using (28) im-

plies that η2
u,v is constant on �̂T and non-zero. Its value can be determined as a function of p̂.

Also the value of μ2
uv is constant since μ2

uv = 1
16 (1 − μ̄2

u)
2η2

u,v .
If either u or v is a leaf of T , then the argument is very similar. Thus, if u is a leaf, then

consider any two leaves i, j of T such that v separates u, i, j in T̂ . In particular, as in (28),

μ̄2
v = μ̂2

uij

μ̂2
uij + 4μ̂uiμ̂uj μ̂ij

.
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Moreover, ηu,v(ω) must be determined, since from (27)

μ̂uiμ̂uj

μ̂ij

= 1

4
(1 − μ̄2

v)η
2
u,v(ω),

from which it follows that η2
u,v has to be constant on the p̂-fiber. �

The following theorem shows that the geometry of the p̂-fiber �̂T is determined by the zeros
of the covariance matrix �̂.

Theorem 5.4 (The geometry of the p̂-fiber – the smooth case). Let p̂ ∈ MT . If each of the
inner nodes of T has degree at least three in the p̂-forest T̂ , then the p̂-fiber is a finite set of
points of cardinality 2|V |−n. If each of the inner nodes of T has degree at least two in T̂ , then
the p̂-fiber is diffeomorphic to a disjoint union of polyhedra. In particular, it is a manifold with
corners. Its dimension is 2l2, where l2 is the number of degree-2 nodes in T̂ .

The proof is given in Appendix C.
If T is trivalent, then the p̂-fiber is finite if and only if for all i, j ∈ [n] μij �= 0. The proof

of Theorem 5.4 provides explicit formulae for the parameters in this case when the p̂-fiber is a
finite number of points.

Corollary 5.5. Let T be a tree such that each inner node has degree at least three and let
p̂ ∈ MT . Consider the p̂-forest T̂ . If every inner node of T has degree at least three in T̂ , then,
by Remark 5.2(ii), both [Ê] and [E \ Ê] consist of singletons. In this case, every point in the
p̂-fiber satisfies

μ̄i = μ̂i for all i = 1, . . . , n,
(29)

ηu,v = 0 for all (u, v) ∈ [Ê].
Moreover, for any inner node v of T , if i, j, k ∈ [n] are any three leaves separated by v in T such
that μ̂ij μ̂ikμ̂jk �= 0, then

μ̄2
v = μ̂2

ijk

μ̂2
ijk + 4μ̂ij μ̂ikμ̂jk

for any terminal edge (v, i) ∈ E \ Ê, where v is an inner node and i ∈ [n] is a leaf of T . Let j, k

be any two leaves such that v separates i, j, k and μ̂jk �= 0. Then

η2
v,i = μ̂2

ijk + 4μ̂ij μ̂ikμ̂jk

μ̂2
jk

.

Moreover, for any inner edge (u, v) ∈ E \ Ê let i, j, k, l ∈ [n] be any four leaves of T such that
u separates i and j in T̂ , v separates j and k in T̂ and (u, v) separates {i, j} from {k, l} in T̂ .
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Then

η2
u,v = μ̂2

il

μ̂2
ij

μ̂2
ijk + 4μ̂ij μ̂ikμ̂jk

μ̂2
ikl + 4μ̂ikμ̂il μ̂kl

.

Remark 5.6. The choice of signs of the μ̄v and ηu,v in Corollary 5.5 is not completely free and
has to be consistent with signs of tree cumulants via (22) (see Appendix D).

The singular case when there is at least one degree-zero inner node is more complicated. We
begin with an example.

Example 5.7. Let T = (V ,E) be the tripod tree rooted in the inner node as in Figure 1 and
let p̂ ∈ MT . The degree of h in the p̂-forest T̂ is less than two if and only if μ̂ij = 0 for
all i �= j = 1,2,3. In this situation, Ê = E and the p̂-fiber �̂T is given as a subset of �T

by equations for the sample means μ̄i = μ̂i for i = 1,2,3 together with the three additional
equations

(1 − μ̄2
h)ηh,1ηh,2 = 0, (1 − μ̄2

h)ηh,1ηh,3 = 0, (1 − μ̄2
h)ηh,2ηh,3 = 0.

Geometrically, in the subspace given by μ̄i = μ̂i for i = 1,2,3, this is a union of two three-
dimensional hyperplanes {μ̄h = ±1} and three planes given by {ηh,1 = ηh,2 = 0}, {ηh,1 = ηh,3 =
0} and {ηh,2 = ηh,3 = 0} subject to the additional inequality constraints defining �T and given
by (26). In particular, it is not a regular set since it has self-intersection points given by 1 − μ̄2

h =
ηh,1 = ηh,2 = ηh,3 = 0.

This geometry is mirrored in the general case. We first need two definitions. We say that a
node v ∈ V is non-degenerate (with respect to p̂) if either v is a leaf of T or degv ≥ 2 in T̂ .
Otherwise, we say that the node is degenerate with respect to p̂. The set of all nodes that are
degenerate with respect to p̂ is denoted by V̂ . By Lemma 5.1, for all v ∈ V \ V̂ , Var(Yv) �= 0,
where the variance is computed with respect to p̂. Hence v is non-degenerate if and only if Yv is
a non-degenerate random variable.

We define the deepest singularity of �̂T as

�̂deep := {ω ∈ �̂T : ηu,v = 0, μ̄2
v = 1 for all (u, v) ∈ Ê, v ∈ V̂ }. (30)

Theorem 5.8 (The geometry of the p̂-fiber – the singular case). If V̂ is non-empty, then the p̂-
fiber is a singular variety given as a union of intersecting smooth manifolds in R

|V |+|E| restricted
to �T . Their common intersection locus restricted to �T is given by �̂deep, which lies on the
boundary of �T .

The proof is given in Appendix C.



308 P. Zwiernik and J.Q. Smith

Figure 3. The quartet tree.

6. Example: The quartet tree model

In this section, we study the first non-trivial example: the quartet tree model given by the tree in
Figure 3. The model is parametrized as in (7) by the root distribution and conditional probabilities
attached to each of the edges. We set the values of the parameters to θ

(r)
1 = 0.8, θ

(1)
1|0 = 0.8,

θ
(1)
1|1 = 0.3, θ

(2)
1|0 = 0.7, θ

(2)
1|1 = 0.3, θ

(a)
1|0 = 0.8, θ

(a)
1|1 = 0.3, θ

(3)
1|0 = 0.7, θ

(3)
1|1 = 0.3, θ

(4)
1|0 = 0.7,

θ
(4)
1|1 = 0.3. Using (7) we can then calculate the corresponding probabilities over the observed

nodes that are given in the third column in the table below. The change of coordinates fpλ

presented in Appendix A.1 and fμκ in Section 3.2 gives the corresponding non-central moments
and tree cumulants that are shown in Table 1. Formula (21) enables us to calculate the values for
the new parameters as: ηr,1 = 0.5, ηr,2 = 0.4, ηr,a = 0.5, ηa,3 = 0.4, ηa,4 = 0.4 and μ̄1 = −0.4,
μ̄2 = −0.24, μ̄3 = −0.16, μ̄4 = −0.16, μ̄r = −0.6, μ̄a = −0.4. It is easy to verify that (22)

Table 1. Moments and tree cumulants for a
probability assignment in MT

α I pα λI κI

0000 ∅ 0.0444 1.0000 0
0001 4 0.0307 0.5800 0
0010 3 0.0307 0.5800 0
0011 34 0.0403 0.3700 0.0336
0100 2 0.0346 0.6200 0
0101 24 0.0323 0.3724 0.0128
0110 23 0.0323 0.3724 0.0128
0111 234 0.0547 0.2422 −0.0020
1000 1 0.0482 0.7000 0
1001 14 0.0491 0.4220 0.0160
1010 13 0.0491 0.4220 0.0160
1011 134 0.0875 0.2750 −0.0026
1100 12 0.0828 0.4660 0.0320
1101 124 0.0979 0.2853 −0.0038
1110 123 0.0979 0.2853 −0.0038
1111 1234 0.1875 0.1875 0.0006
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holds in this example. For instance,

κ1234 = 1
4 (1 − μ̄2

r )μ̄r μ̄aηr,1ηr,2ηr,aηa,3ηa,4 = 0.0006,

which equates with the value in the table. In general, higher-order tree cumulants tend to be very
small.

If we have only tree cumulants K ∈ Mκ
T , we can still identify the parameters of the model up

to the label switching on the inner nodes using Corollary 5.5. Recall that if |I | ≤ 3, then κI = μI

so, for example,

μ̄2
r = μ2

123

μ2
123 + 4μ12μ13μ23

= 0.36,

η2
r,1 = μ2

123 + 4μ12μ13μ23

μ2
23

= 0.25,

η2
r,a = μ2

14

μ2
12

μ2
123 + 4μ12μ13μ23

μ2
134 + 4μ13μ14μ34

= 0.25.

Note that the entries in Table 1 can be computed in several different ways. However, by Corol-
lary 5.5 this does not matter. For instance, to compute μ̄r we picked 1,2,3 as three leaves sepa-
rated by r . If, instead of 1,2,3, we used 1,2,4, the answer would be the same since

μ̄2
r = μ2

124

μ2
124 + 4μ12μ14μ24

= 0.36.

Finally, in Appendix D we show that in this case we have exactly four possible distinct choices
for combinations of signs of these parameters. The first one is the original one with all ηu,v > 0,

which we denote by ω:

ηr,1 = 0.5, ηr,2 = 0.4, ηr,a = 0.5, ηa,3 = 0.4, ηa,4 = 0.4,

μ̄r = −0.6, μ̄a = −0.4,

where we omit μ̄i for i = 1,2,3,4 since these are constant for all points in �̂T . We obtain
three remaining points by using local sign switching as defined in Appendix D, which are
(ηr,1, ηr,2, ηr,a, ηa,3, ηa,4, μ̄r , μ̄a) = (−0.5,−0.4,−0.5,0.4,0.4,0.6,−0.4) or (0.5,0.4,−0.5,

−0.4,−0.4,−0.6,0.4) or (−0.5,−0.4,0.5,−0.4,−0.4,−0.6,−0.4).

7. Discussion

The reparametrization of Bayesian tree models with hidden variables given herein has illumi-
nated the structure of these tree models and has enabled us to establish some identifiability re-
sults. However, the applicability of the new coordinate system reaches far beyond understanding
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identifiability. Some additional results will be presented in forthcoming papers where we gen-
eralize both results of [2] and [15], obtaining the full semi-algebraic description of this model
class, and results of [13], on the asymptotic approximation of the marginal likelihood integrals.

The results given here can be extended in a straightforward way to the case when all hidden
variables are binary but all leaf variables are arbitrary. It is less clear how the methods extend
to tree models for arbitrary finite discrete random variables, or more generally, to other discrete
graphical models. However, the extension to Gaussian models on trees appears to be straightfor-
ward.

The definition of tree cumulants in (17) can be generalized using other posets than 
T . This
opens many interesting possibilities to investigate more general coordinate systems for binary
models. They all share certain useful properties of classical cumulants. In particular, Lemma 3.2
is true if the poset of tree partitions is replaced by any other lattice of partitions. We will report
on this result in a forthcoming paper.

Appendix A: Change of coordinates

A.1. From probabilities to central moments

Let �2n−1 be the set of all possible probability distributions of a binary vector X = (X1, . . . ,Xn)

as defined in (6). Let Cn be the set of all possible central moments μI for I ∈ [n]≥2 and means
λ1, . . . , λn. In this section, we show that there exists a polynomial isomorphism between �2n−1
and Cn.

First, perform a change of coordinates from the raw probabilities p = [pα] to the non-central
moments λ = [λα] for α = (α1, . . . , αn) ∈ {0,1}n. This is a linear map fpλ : R2n → R

2n
, where

λ = fpλ(p) is defined as follows:

λα =
∑

α≤β≤1

pβ for any α ∈ {0,1}n, (31)

where 1 denotes the vector of ones and the sum is over all binary vectors β such that α ≤ β ≤
1 in the sense that αi ≤ βi ≤ 1 for all i = 1, . . . , n. In particular, λ0 = 1 for all probability
distributions. Therefore, the image Ln = fpλ(�2n−1) is contained in the hyperplane defined by
λ0 = 1. The map, fpλ :�2n−1 → Ln, is invertible and hence we can obtain coordinates on Ln

given by λα for all α ∈ {0,1}n such that α �= 0. The inverse of fpλ is the map, fλp = f −1
pλ : Ln →

�2n−1, and is given by

pα =
∑

α≤β≤1

(−1)|β−α|λβ for α = (α1, . . . , αn) ∈ {0,1}n. (32)

The linearity of the expectation implies that the central moments can be expressed in terms of
non-central moments. In particular,

μα =
∑

0≤β≤α

(−1)|β|λα−β

n∏
i=1

λβi
ei

for α ∈ {0,1}n, (33)



Tree cumulants and the geometry of binary tree models 311

where |β| = ∑
i βi . Using these equations, we can transform variables from the non-central mo-

ments [λα] to another set of variables given by all the means λe1, . . . , λen , where e1, . . . , en are
standard basis vectors in R

n, and central moments [μα] for α ∈ {0,1}n. The polynomial map-
ping fλμ : R2n → R

n × R
2n

is the identity on the first n variables corresponding to the means
λe1, . . . , λen and is defined by (33) on the remaining variables. The image of fλμ is contained in
the subspace H ⊂ R

n × R
2n

given by μe1 = · · · = μen = 0. It is easy to show (see, e.g., equa-
tion (5), [3]) that the inverse of fλμ : R2n → H is given as fμλ = f −1

λμ : H → R
2n

defined by

λα =
∑

0≤β≤α

μα−β

n∏
i=1

λβi
ei

for α ∈ {0,1}n. (34)

Let Cn denote fλμ(Ln). Then Cn is contained in H and μ0 = 1. We have, therefore, obtained
coordinates of Cn given by λe1, . . . , λen together with μα for all α ∈ {0,1}n such that |α| ≥ 2.

A.2. A reparametrization for general Markov models

Let T = (V ,E) be a rooted tree with n leaves and root r . Note that for a tree 1+2|E| = |V |+|E|
so the number of free parameters in (5) and (7) is |V | + |E|. We define a polynomial map fθω :
R

|V |+|E| → R
|V |+|E| from the original set of parameters of �T given by the root distribution and

the conditional probabilities for each of the edges to a set of parameters given as follows:

ηu,v = θ
(v)
1|1 − θ

(v)
1|0 for each (u, v) ∈ E and

(35)
μ̄v = 1 − 2λv for each v ∈ V,

where λv = EYv is a polynomial in the original parameters θ of degree depending on the path
from the root to v. Let (r, v1, . . . , vk, v) be a directed path in T . Then

λv =
∑

α∈{0,1}k+1

θ
(v)
1|αk

θ
(vk)
αk |αk−1

· · · θ(r)
αr

.

Let �T = fθω(�T ). The inverse map fωθ :�T → �T has the following form. For each edge
(u, v) ∈ E we have

θ
(v)
1|0 = 1 − μ̄v

2
− ηu,v

1 − μ̄u

2
,

(36)

θ
(v)
1|1 = 1 − μ̄v

2
+ ηu,v

1 + μ̄u

2

and θ
(r)
1 = 1−μ̄r

2 .
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A.3. The non-degenerate case

In this section, we derive the submodel of Mκ
T = ψT (�T ), defined as the image of ψT con-

strained to the subset �0
T of �T given by μ̄2

v < 1 for all v ∈ V . We define a smooth transforma-
tion on �0

T that enables us to change coordinates from ((μ̄v), (ηu,v)) to ((ρ̄v), (ρuv)), where

ρ̄v = 2μ̄v√
1 − μ̄2

v

, ρuv =
√

1 − μ̄2
u

1 − μ̄2
v

ηu,v. (37)

It is easily checked that this map is invertible since

μ̄v = ρ̄v√
4 + ρ̄2

v

, ηu,v =
√

4 + ρ̄2
u

4 + ρ̄2
v

ρuv. (38)

The inequality constraints defining �0
T are given by (26) and the fact that μ̄v ∈ (−1,1) for all

v ∈ V . To express this in terms of the new coordinates, let tv be defined by

tv =
√

1 +
(

ρ̄v

2

)2

+ ρ̄v

2
∈ (0,∞). (39)

Then (26) becomes

−tutv ≤ ρuv ≤ tu

tv
,

(40)

− 1

tutv
≤ ρuv ≤ tv

tu
.

Transform the tree cumulants to a new coordinate system given by ρ̄1, . . . , ρ̄n and

ρI = 2|I |κI∏
i∈I

√
1 − μ̄2

i

for all I ∈ [n]≥2, (41)

so that ρij is the correlation between Xi and Xj . The change of coordinates on �0
T and KT

induces a new parametrization of M0
T . The parametrization is given by the identity on the first n

coordinates corresponding to ρ̄i for i = 1, . . . , n and

ρI =
∏

v∈V (I)\I
ρ̄

deg(v)−2
v

∏
(u,v)∈E(I)

ρuv for all I ∈ [n]≥2. (42)

In particular, each ρI has an attractive monomial form. To prove (42), simply substitute (38) and
(41) into (22) to obtain

ρI

∏
i∈I

1√
4 + ρ2

i

= 1

4 + ρ2
r(I )

∏
v∈V (I)\I

(
ρ̄v√

4 + ρ̄2
v

)degv−2 ∏
(u,v)∈E(I)

√
4 + ρ̄2

u

4 + ρ̄2
v

ρuv
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or, equivalently,

ρI =
∏

v∈V (I)\I
ρ̄

degv−2
v

∏
(u,v)∈E(I)

ρuv

× 1

4 + ρ2
r(I )

∏
v∈V (I)

(
1√

4 + ρ̄2
v

)degv−2 ∏
v∈V (I)

√
4 + ρ̄2

pa(v)

4 + ρ̄2
v

.

Next, we show that the term in the second line of the equation above is equal to one. This follows
from the fact that every v ∈ V (I) apart from the root is a parent of exactly deg(v) − 1 nodes and
has one parent; the root has no parents and is a parent of deg(r(I )) nodes.

Appendix B: Proof of Proposition 4.1

It suffices to prove (22) for I = [n] because the general result for I ⊂ [n] obviously follows by
restriction to the subtree T (I) since each inner node of T (I) has degree at most three. The proof
proceeds by induction with respect to the number of leaves of T . First, we show that the result is
true for n = 2. Since by definition κ12 = μ12 we need to prove that

μ12 = 1

4
(1 − μ̄2

r )
∏

(u,v)∈E

ηu,v, (43)

where r is the root of T . If any of the nodes of V represents a degenerate random variable, then
the global Markov properties in (4) imply that X1 ⊥⊥ X2. In this case, the left-hand side of (43) is
zero. However, as we show next, one of the factors on the right-hand side of (43) must vanish as
well. We prove this by contradiction. Suppose that both μ̄2

r �= 1 and ηu,v �= 0 for all (u, v) ∈ E.
By Remark 4.3, this implies that all the nodes of T represent non-degenerate random variables,
which leads to contradiction.

So assume now that every random variable in the system is non-degenerate. From (12), by
taking I = {1}, J = {2}, we have

μ12 = 1
4 (1 − μ̄2

r )ηr,1ηr,2

so it suffices to show that

(1 − μ̄2
r )ηr,1 = (1 − μ̄2

r )
∏

(u,v)∈E(r1)

ηu,v and

(44)
(1 − μ̄2

r )ηr,2 = (1 − μ̄2
r )

∏
(u,v)∈E(r2)

ηu,v.

If r = 1 or r is a parent of 1, then the first equation in (44) is trivially satisfied. Assume that
the length of the path between r and 1 is greater than one. Let (r, hm,hm−1, . . . , h1,1) be the
directed path E(r1) joining r with 1. Then, because Yr ⊥⊥ Y1|Yh1 , by (12) we have that

1
4 (1 − μ̄2

r )ηr,1 = μr1 = 1
4 (1 − μ̄2

h1
)ηh1,rηh1,1. (45)
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Similarly, because Yr ⊥⊥ Yhk
|Yhk+1 for each k = 1, . . . ,m − 1, then again by (12)

1
4 (1 − μ̄2

hk
)ηhk,r = 1

4 (1 − μ̄2
hk+1

)ηhk+1,rηhk+1,hk
.

Substituting this expression for all subsequent k = 1, . . . ,m − 1 into (45) we can now conclude
that

1
4 (1 − μ̄2

r )ηr,1 = 1
4 (1 − μ̄2

hm
)ηhm,rηhm,hm−1 · · ·ηh2,h1ηh1,1. (46)

But since 1
4 (1 − μ̄2

hm
)ηhm,r = μrhm = 1

4 (1 − μ̄2
r )ηr,hm , equation (46) implies that

(1 − μ̄2
r )ηr,1 = (1 − μ̄2

r )
∏

(u,v)∈E(r1)

ηu,v. (47)

The second equation in (44) is proved simply by changing the index from 1 to 2 above.
Now assume the proposition is true for all k ≤ n − 1 and let T be a tree with n leaves. If one

of the inner nodes of T is degenerate, then by the global Markov properties in (4) there exists
an edge split C1|C2 of the set of leaves such that XC1 ⊥⊥ XC2 . The left-hand side is zero by
Lemma 3.2. Again, by Remark 4.3, if both μ̄2

r �= 1 and ηu,v �= 0 for all (u, v) ∈ E, then μ̄2
v �= 1

for all v ∈ V . Hence, on the right-hand side of equation (43), either μ̄2
r = 1 or one of the ηu,v

vanishes. Consequently, (43) is satisfied.
We assume now that all the inner nodes of T represent non-degenerate random variables. As

n ≥ 3, we can always find two leaves separated from all the other leaves by an inner node. We
shall call such a pair an extended cherry. Denote the leaves by 1,2 and the inner node by a. Let
A = {3, . . . , n} and let T (aA) be the minimal subtree of T spanned a ∪ A. Note that the global
Markov properties in (4) give that, for each C ⊆ A, we have (X1,X2) ⊥⊥ XC |Ha . Using (12), we
can conclude that

μ12C = μ12μC + 1
4 (1 − μ̄2

a)ηa,12ηa,C = μ12μC + ηa,12μaC. (48)

Let e ∈ E be the edge incident with a separating 1 and 2 from all other leaves, that is, such
that e induces the split ν = 12|1̂A. For each π ∈ 
T , if π is induced by removing Eπ ⊂ E, then
π ∧ ν is induced by removing Eπ ∪ e. Let ρ = 12|0̂A ∈ 
T . Since {1,2} forms an extended
cherry and all the inner nodes of T have degree at most three, it follows that a necessarily has
degree three in T and is a leaf of T (aA). The trimming map with respect to {1,2} is the map
[ρ, 1̂] → 
T (aA) such that π �→ π̃ is defined by changing the block 12C in π ∈ [ρ, 1̂] to aC.
Note that the trimming map constitutes an isomorphism of posets between [ρ, 1̂] and 
T (aA).

It follows from the definition of tree cumulants in (17) that

κ1···n =
∑

π∈[ρ,1̂]
m(π, 1̂)

∏
B∈π

μB +
∑

π /∈[ρ,1̂]
m(π, 1̂)

∏
B∈π

μB. (49)

The second summand in (49) is zero since every π ∈ 
T such that π /∈ [ρ, 1̂] necessarily contains
either 1 or 2 as one of the blocks and μ1 = μ2 = 0. Applying (48) to each μ12C for each π ∈
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[ρ, 1̂], we obtain ∏
B∈π

μB =
∏

B∈π∧ν

μB + ηa,12

∏
B∈π̃

μB

and hence

κ1···n =
∑

π∈[ρ,1̂]
m(π, 1̂)

∏
B∈π∧ν

μB + ηa,12

∑
π∈[ρ,1̂]

m(π, 1̂)
∏
B∈π̃

μB. (50)

The first summand in (50) can be rewritten as∑
δ∈[ρ,ν]

[( ∑
π∧ν=δ

m(π, 1̂)

) ∏
B∈δ

μB

]
. (51)

However, from Lemma 3.1, since ν �= 1̂, for each δ the sum
∑

π∧ν=δ m(π, 1̂) in (51) is zero. It
follows that

κ1···n = ηa,12

∑
π∈[ρ,1̂]

m(π, 1̂)
∏
B∈π̃

μB.

By Proposition 4 in [11], the Möbius function of [ρ, 1̂] is equal to the restriction of the Möbius
function on 
T to the interval [ρ, 1̂]. The trimming map constitutes an isomorphism between
[ρ, 1̂] and 
T (aA). Consequently, the Möbius function on [ρ, 1̂] is equal to the Möbius function
on 
T (aA). It follows that

κ1···n = ηa,12

( ∑
π∈[ρ,1̂]

m(π, 1̂)
∏
B∈π̃

μB

)

= ηa,12

( ∑
π∈
T (aA)

maA(π, 1̂aA)
∏
B∈π

μB

)
= ηa,12κaA.

Since X1 ⊥⊥ X2|Ha , by the second equation in Proposition 2.5, ηa,12 = μ̄aηa,1ηa,2. Since |aA| =
n − 1, by using the induction assumption

κaA = 1

4

(
1 − μ̄2

r(aA)

) ∏
v∈V (aA)\aA

μ̄
deg(v)−2
v

∏
(u,v)∈E(aA)

ηu,v,

where the degree is taken in T (aA). We have two possible scenarios: either r(aA) �= a or
r(aA) = a. In the first case, r(a1) = r(a2) = a and by (47)

ηa,1ηa,2 =
∏

(u,v)∈E(12)

ηu,v

and hence

κ1···n =
(

μ̄a

∏
(u,v)∈E(12)

ηu,v

)
κaA. (52)
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In the second case, either r(a1) = a and r(a2) = r or r(a1) = r and r(a2) = a and so

ηa,1ηa,2 = 1 − μ̄2
r

1 − μ̄2
a

μ̄a

∏
(u,v)∈E(12)

ηu,v.

Hence,

κ1···n =
(

1 − μ̄2
r

1 − μ̄2
a

∏
(u,v)∈E(12)

ηu,v

)
κaA. (53)

The degree of a in T is three and the degree of all the other inner nodes of T (12) is two. More-
over, E = E(aA) ∪ E(12) and V \ [n] = (V (aA) \ aA) ∪ (V (12) \ {1,2}). It follows that both
(52) and (53) satisfy (22).

Appendix C: Proofs of the theorems

Proof of Theorem 5.4. If each inner node of T has degree at least three in T̂ , then for each inner
node u it is possible to find i, j, k ∈ [n] separated by u in T̂ . So μ̂ij μ̂ikμ̂jk �= 0. Thus, by (28),
we can determine all values μ̄2

u = μ̂2
u �= 1. Since, by Remark 5.2(ii), all the equivalence classes

in [E \ Ê] are just single edges, we can identify all η2
u,v = η̂2

u,v �= 0 for all (u, v) ∈ E \ Ê by
Lemma 5.3.

We now show that, because all equivalence classes in [Ê] are singletons, ηw,w′ = 0 for every
(w,w′) ∈ Ê. By construction, for each (w,w′) ∈ Ê, either both w and w′ have degrees at least
three in T̂ or one of them is a leaf and the other has degree at least three in T̂ . Therefore, there
exist i, j ∈ [n] such that E(ij) ∩ Ê = {(w,w′)} by the construction of Ê. We have that μ̂ij = 0.
However, ηu,v = η̂u,v �= 0 for all (u, v) ∈ E \ Ê. Because μ̄2

r(ij) = μ̂2
r(ij) �= 1, it follows by (27)

that ηw,w′ = 0. Therefore, the values of all the parameters are fixed up to signs and in this case
�̂T is finite. The proof that there are exactly 2|V |−n points in this fiber is provided in Appendix D.

To prove the second statement of Theorem 5.4, first note that, since every inner node of T has
degree at least two in T̂ , it follows by Lemma 5.1 that for each v ∈ V , μ̄2

v < 1. This implies that
the p̂-fiber lies in �0

T ⊂ �T as defined in Appendix A.3. We can apply a smooth transformation
over this subset to a second space �′

T ⊆ R
|V |+|E| whose coordinates are given by ρ̄v for v ∈ V

and ρuv for (u, v) ∈ E. The map is defined by (37) and is invertible with the inverse defined in
(38).

To investigate the geometry of the p̂-fiber in �′
T , first list all the defining constraints. For

all i = 1, . . . , n we have that μ̄i = μ̂i because p̂ determines the sample means of the observed
nodes. Hence the value of ρ̄i is determined as well. Write ρ̄i = ρ̂i for all i = 1, . . . , n, where
ρ̂i is the image of μ̂i under (37). For each inner node v whose degree in T̂ is at least three, we
can find i, j, k ∈ [n] separated in T̂ by v. The value of μ̄2

v is determined by (28), which is well
defined because μ̂ij μ̂ikμ̂jk > 0. Therefore, the value of ρ̄2

v , for each v whose degree in T̂ is at

least three, is fixed ρ̄2
v = ρ̂2

v , where ρ̂2
v = 4μ̂2

v

1−μ̂2
v

by (37).
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Next, we show that for every (u, v) ∈ Ê we must have that ρuv = 0. This follows by essentially
the same argument as in the first part of the proof. Because the degrees of both u and v are at
least two, there exist i, j ∈ [n] such that E(ij) ∩ Ê = {(u, v)}. In particular, μ̂ij = 0 and so by
(27) ηu,v = 0. Moreover, for any path E(kl) in [E \ Ê] the value of ρ2

kl is constant by Lemma 5.3.
So write ρkl = ρ̂kl . By (42), we have that

ρ̂kl =
∏

(u,v)∈E(kl)

ρuv. (54)

Finally, for any degree-two node v the parameter ρ̄v can take any real value and each ρuv is
constrained to satisfy (40). This completes the list of constraints defining the image of the p̂-
fiber in �′

T .
We now show that this image is diffeomorphic to a union of polyhedra. Let ρ = ((ρ̄v), (ρuv))

be any point in the transformed p̂-fiber. Then ρ lies in a linear subspace L of R
|V |+|E| given

by ρuv = 0 for all (u, v) ∈ Ê. Since ρuv �= 0 for all (u, v) ∈ E \ Ê, we can define the following
further smooth change of coordinates on L. Let s :E → {−1,0,1} be any possible sign assign-
ment for (ρuv) such that s(u, v) = sgn(ρuv) and sgn(ρij ) = ∏

(u,v)∈E(ij) s(u, v) for all i, j ∈ [n]
(cf. Appendix D). Then s induces an open orthant R

|E\Ê|
s defined by s(u, v)ρuv > 0 for all

(u, v) ∈ E \ Ê. Moreover, the disjoint union of Us = R
|V | × R

|E\Ê|
s ⊂ L, for all possible sign

assignments s, covers the p̂-fiber, that is, each point of the p̂-fiber lies in one of the Us . Note also
that on each Us the sign of ρ̄v for all nodes of the degree at least three is fixed. This follows from
the fact that by (42)

ρijk = ρ̄v

∏
(u,w)∈E(ijk)

ρuw,

for any three leaves i, j, k ∈ [n] separated by v in T̂ . Since on each Us the signs of ρuw for all
(u,w) ∈ E(ijk) are fixed, the sign of ρ̄v also has to be fixed to match the sign of ρijk . We write
ρ̄v = ρ̂s

v on Us .
On each Us define a map to the space R

|V |+|E\Ê| with coordinates given by νuv for (u, v) ∈
E \ Ê and zv for v ∈ V . The map is a diffeomorphism defined as follows. We set

νuv = log(s(u, v)ρuv) for all (u, v) ∈ E \ Ê.

Next, for every v ∈ V we substitute ρ̄v for tv as defined in (39). This is an invertible transforma-
tion because

ρ̄v = t2
v − 1

tv
,

which is well defined since tv > 0 for all v ∈ V . We then simply substitute tv for zv = log tv .
In this new coordinate system, the p̂-fiber restricted to Us is a union of polyhedra. The defining

constraints are as follows. First,

zi = ẑi for all leaves i = 1, . . . , n,
(55)

zv = ẑs
v for all v with degree at least three in T̂ .
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Here, ẑi , ẑ
s
v are real numbers obtained as images of ρ̂i , ρ̂s

v , respectively. Moreover, for each
E(kl) ∈ [E \ Ê] ∑

(u,v)∈E(kl)

νuv = log |ρ̂kl | (56)

subject to additional inequality constraints

νuv ≤ min{zu − zv, zv − zu} if s(u, v) = 1,

νuv ≤ min{zu + zv,−zu − zv} if s(u, v) = −1, for each (u, v) ∈ E \ Ê and (57)

zv > 0 for the inner nodes of degree 2.

These inequalities follow from (40). Since all these constraints are linear, they define a polyhe-
dron in R

|V |+|E\Ê|. Therefore the p̂-fiber is a disjoint union of subsets each of which is diffeo-
morphic to a polyhedron.

To show the dimension of each polyhedron is equal to 2l2, we must ensure that the dimension
of the smallest affine subspace containing this polyhedron is 2l2. Since zv > 0 for all v ∈ V it is
easily checked that the inequalities in (57) do not induce any equality. Therefore, the description
of the affine span is obtained from the description of the polyhedron (given by (55)–(57)) by
suppressing all inequalities in (57). The dimension of the ambient space is |V | + |E \ Ê|; the
codimension is given by the number of equations in (55) and (56). Hence the codimension is
equal to |V | − l2 + |[E \ Ê]|. For each E(kl) ∈ [E \ Ê] one has that |E(kl)| − 1 is equal to the
number of degree-two nodes in E(kl). By summing over all E(kl) it follows that |E \ Ê|− |[E \
Ê]| = l2. Therefore, the dimension of the polyhedron is given by

(|V | + |E \ Ê|) − (|V | − l2 + |[E \ Ê]|) = 2l2.

Since the dimension of the affine span of a polyhedron is equal to its dimension, the dimension
is equal to 2l2 as required. �

Proof of Theorem 5.8. Let V0 ⊆ V̂ and E0 ⊆ Ê and

�(V0,E0) = {ω ∈ �T : μ̄2
v = 1 for all v ∈ V0, ηu,v = 0 for all (u, v) ∈ E0}. (58)

We say that (V0,E0) is minimal for �̂ if for every point ω in �(V0,E0) and for every i, j ∈ [n]
such that μ̂ij = 0 we have that μij (ω) = 0 and furthermore that (V0,E0) is minimal with such a
property (with respect to inclusion on both coordinates).

To illustrate the motivation behind this definition, consider the tripod tree singular case in
Example 5.7. If T is rooted in the inner node, we have four minimal subsets of 2V̂ ×2Ê : ({h},∅),
(∅, {(h,1), (h,2)}), (∅, {(h,1), (h,3)}) and (∅, {(h,2), (h,3)}).

We now show that the p̂-fiber satisfies

�̂T =
⋃

(V0,E0)min.

�(V0,E0) ∩ �̂T . (59)
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The first inclusion “⊆” follows from the fact that if ω ∈ �̂T , then μij (ω) = μ̂ij for all i, j ∈ [n].
In particular, μij (ω) = 0 whenever μ̂ij = 0. Therefore, ω ∈ �(V0,E0) ∩ �̂T for (V0,E0) minimal.
The second inclusion is obvious.

For each minimal (V0,E0) the set �(V0,E0) ∩ �̂T is a union of disjoint manifolds in R
|V |+|E|

constrained to �T . To show this, consider first all the connected components Ti = (Vi,Ei) for
i = 1, . . . , k of T̂ except isolated inner nodes of T̂ . By Remark 5.2(iv), all these components
are trees with a set of leaves contained in [n]. The projection of the parameter space �T to
the parameters for the marginal model Mκ

Ti
is denoted by �i . It is therefore a projection of

�T on μ̄v for v ∈ Vi and ηu,v for (u, v) ∈ Ei . By Theorem 5.4, each component Ti induces a
manifold with corners in �i , denoted by �̂i . Hence there exists a manifold Mi in R

|Vi |+|Ei | such
that �̂i = Mi ∩ �i . The constraints on the remaining coordinates are given by: μ̄2

v = 1 for all
v ∈ V0 and ηu,v = 0 for (u, v) ∈ E0. These algebraic equations define a union M(V0,E0) of affine

subspaces in R
|V̂ |+|Ê| with coordinates given by μ̄v for v ∈ V̂ and ηu,v for (u, v) ∈ Ê.

For each (V0,E0), consider the union of manifolds M ⊂ R
|V |+|E| given as the Cartesian prod-

uct of M(V0,E0) and Mi for i = 1, . . . , k. The restriction of M to �T is exactly �(V0,E0) ∩ �̂T .
Now we have that⋂

(V0,E0)min.

(
M(V0,E0) × M1 × · · · × Mk

) =
( ⋂

(V0,E0)min.

M(V0,E0)

)
× M1 × · · · × Mk. (60)

However,
⋂

(V0,E0)min. M(V0,E0) is equal to

{
ω ∈ R

|V |+|E|: μ̄2
v = 1 for all v ∈ V̂ , ηu,v = 0 for all (u, v) ∈ Ê

}
,

where, after the restriction to �T , the intersection in (60) is equal to the deepest singularity. �

Appendix D: Sign patterns for parameters

Let p̂ ∈ MT such that each inner node of T has degree at least three in the corresponding
forest T̂ . By the proof of Theorem 5.4, there is a finite number of points θ ∈ �T such that
fT (θ) = p̂. By definition, this set of points is denoted by �̂T . Corollary 5.5 gives the formulae
for the parameters modulo signs, which suggests that |�̂T | = 2|V |+|E|. However, not all sign
choices are possible. Let m be the number of inner nodes of T . We will show that the number
of possible choices of signs is, in fact, equal to 2m, that is, |�̂T | = 2m. We also show how to
obtain all the points in �̂T given one of them. This construction becomes especially simple
when expressed in the new parameters defined by (35).

Let θ be a point in �̂T (�̂T is finite and non-empty) and let ω = fθω(θ). We assign signs
to each edge of T using the map s :E → {−1,0,1} such that for every (u, v) ∈ E, s(u, v) =
sgn(ηu,v), where ηu,v are parameters in ω. Let h be an inner node of T . On �̂T we define the
operation of local sign switching δh such that δh(ω) = ω′ where η′

u,v = −ηu,v if one of the ends
of (u, v) is in h and η′

u,v = ηu,v otherwise; μ̄′
h = −μ̄h and μ̄′

v = μ̄v for all v �= h. We have that
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μ̄′
i = μ̄i and hence λ′

i = λi for all leaves i = 1, . . . , n. Let now I ∈ [n]≥2. Then, from (22),

κI (ω
′) = 1

4

(
1 − μ̄2

r(I )

) ∏
v∈V (I)\I

(μ̄′
v)

deg(v)−2
∏

(u,v)∈E(I)

η′
u,v.

We have two cases: either h lies in V (I) or not. In the first case,

κI (ω
′) = (−1)deg(h)−2(−1)deg(h)κI (ω) = κI (ω).

In the second case, ω′ = ω and hence trivially κI (ω
′) = κI (ω). It follows that ω′ ∈ �̂T and

therefore the operator δh : �̂T → �̂T is well defined. The local sign switchings form a group G
that is isomorphic to the multiplicative group Zm

2 . By composing distinct local switchings we
obtain 2m different points in �̂T . Hence the orbit of ω in �̂T has exactly 2m elements.

It remains to show that there are no other orbits of G in �̂T . Let ω ∈ �̂T and let ω′ be a point
in �T such that (η′

u,v)
2 = ηu,v

2 for all (u, v) ∈ E and (μ̄′
v)

2 = μ̄2
v for all inner nodes v of T ,

which is a necessary condition for ω′ to be in �̂T . Assume that ω′ is not in the orbit of ω. We
will show below that this implies that ω′ cannot lie in the p̂-fiber. It will then follow that the orbit
of ω constitutes the whole �̂T and hence |�̂T | = 2m.

We proceed by contradiction. Thus, let ω′ ∈ �̂T and we want to show that ω′ = δ(ω) for some
δ ∈ G . Since ω can be replaced by any other point in its orbit, we can assume that sgn(μ̄v) =
sgn(μ̄′

v) for all v ∈ V . Since ω,ω′ ∈ �̂T , for every i, j, k ∈ [n] by (22) applied for κij and κijk ,
respectively, we have that∏

(u,v)∈E(ij)

s(u, v) =
∏

(u,v)∈E(ij)

s′(u, v),
∏

(u,v)∈E(ijk)

s(u, v) =
∏

(u,v)∈E(ijk)

s′(u, v).

It follows that
∏

(u,v)∈E(vi) s(u, v) = ∏
(u,v)∈E(vi) s

′(u, v) for each inner node v and leaf i. It
immediately implies that s(u, v) = s′(u, v) for all (u, v) ∈ E and hence ω = ω′. In this way we
have shown that ω′ is in the orbit of ω under G .
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