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It is widely admitted that structured nonparametric modeling that circumvents the curse of dimensionality
is important in nonparametric estimation. In this paper we show that the same holds for semi-parametric
estimation. We argue that estimation of the parametric component of a semi-parametric model can be im-
proved essentially when more structure is put into the nonparametric part of the model. We illustrate this for
the partially linear model, and investigate efficiency gains when the nonparametric part of the model has an
additive structure. We present the semi-parametric Fisher information bound for estimating the parametric
part of the partially linear additive model and provide semi-parametric efficient estimators for which we
use a smooth backfitting technique to deal with the additive nonparametric part. We also present the finite
sample performances of the proposed estimators and analyze Boston housing data as an illustration.

Keywords: partially linear additive models; profile estimator; semi-parametric efficiency; smooth
backfitting

1. Introduction

Structured nonparametric models such as additive models are known to circumvent the curse of
dimensionality and allow reliable estimation when a full nonparametric model does not work. In
the present paper we show that a similar assertion applies for semi-parametric models: structural
modeling of the nonparametric part can lead to accurate estimation of the parametric part even in
situations where otherwise only very poor, unreliable or unstable estimates would be available.
We show this by comparing the partially linear and the partially linear additive model. In particu-
lar, we demonstrate that using an additive model for the nonparametric part in the partially linear
model can lead to drastic gains of efficiency in the estimation of the parametric components.
This holds if the dimension of the nonparametric covariates is high, or the parametric covariates
can be approximated by non-additive transformations of the nonparametric covariates. In the ex-
treme of the latter case, if the approximation is exact, then estimation of the parametric part in the
partially linear model breaks down. If the approximation is very crude, one sees large efficiency
gains by using additive models for the nonparametric part.

Suppose we observe the i.i.d. copies (Y 1,X1,Z1), . . . , (Y n,Xn,Zn) of a random vector
(Y,X,Z), where X = (X1, . . . ,Xp)� ∈ R

p and Z = (Z1, . . . ,Zd)� ∈ R
d . The partially linear

model assumes

Y = m0 + X�β + m(Z1, . . . ,Zd) + ε, (1)
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where β is an unknown p-vector and m is an unknown d-variate function. The partially linear
additive model puts an additive structure to the nonparametric function m:

Y = m0 + X�β + m1(Z1) + · · · + md(Zd) + ε. (2)

These models exclude the interesting case where X or Z includes some endogeneous variables
of Y , but they simplify our discussion on semi-parametric efficiency. We believe that our results
can be extended to the corresponding semi-parametric models with time series data by following,
for example, the arguments in [7].

For identifiability of the additive component functions mj , we put the constraints Emj(Zj ) =
0, 1 ≤ j ≤ d . We assume that (X,Z) has a joint density q with respect to ν = ν1 × ν2, where
ν1 is a σ -finite measure and ν2 is the Lebesgue measure on each support of X and Z, and that
the marginal density of Z (with respect to ν1), denoted by qZ, has compact support, say [0,1]d .
The model (2) enjoys the advantages of both the partially linear model (1) and the nonparamet-
ric additive model to the fully nonparametric model. It accommodates discrete covariates since
we only require that ν1 is a σ -finite measure, and also interaction effects between covariates
by putting them into the parametric part. By the additive structure in the nonparametric part it
avoids the curse of dimensionality, but retains the flexibility of the model. It also renders easy
interpretation of the individual role of each covariate.

We discuss semi-parametric efficient estimation of the parameter β in the model (2). We
present the semi-parametric Fisher information bound and provide an estimator that achieves
the efficiency bound. Semi-parametric efficient estimation when d = 1 has been studied by Bhat-
tacharya and Zhao [1], Cuzick [5] and Schick [17]. Their works can be easily extended to the
model (1) for d > 1. Comparing the Fisher information bounds for the models (1) and (2), we find
that the information bound under the model (2) is smaller than the bound under the model (1).
In our semi-parametric model (2), we do not specify the distribution of the error term ε or the
distribution q of the covariates. We show that one can do as well without knowing those distrib-
utions.

There have been a few works on the model (2). Opsomer and Ruppert [13] obtained a
√

n-
consistent estimator of β by a backfitting method with undersmoothing. Recently Liang et al.
[8] and Carroll et al. [4] studied the model with measurement error and repeated measurements,
respectively. But they did not discuss semiparametric efficiency. The model (1) has been stud-
ied more often; see [19], among others. Most studies, however, are rather focused on the cases
where there is only a single-dimensional (or at most low-dimensional) nonparametric function m.
This is because high-dimension costs higher-order smoothness in theory and poor small sample
performances in practice.

2. Semi-parametric efficiency

To avoid unnecessary complexity, we assume m0 = 0. We also assume that ε is independent with
(X,Z), and that g, the density of ε, is symmetric and is absolutely continuous with respect to the
Lebesgue measure, having a derivative g′ and finite Fisher information

∫
(g′)2/g < ∞. Below,

we give a heuristic argument for deriving the semi-parametric efficiency and present a rigorous
statement in a theorem.
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Suppose that g is known and p = 1. We write m(z) = m1(z1) + · · · + md(zd) and adopt the
convention mj(z) = mj(zj ). The logarithm of the joint density of (Y,X,Z) as a function of
the parameters is given by �(β,m; (y, x, z)) = logg(y − xβ − m(z)), neglecting those terms
that do not depend on (β,m), and the log-likelihood of (β,m) by

∑n
i=1 �(β,m; (Y i,Xi,Zi )).

Let H denote the space of all additive functions m such that m(z) = m1(z1) + · · · + md(zd),
Emj(Zj ) = 0 and Em(Z)2 < ∞.

Calculation of the Fisher information in a semi-parametric model is made locally: fix a value
(β0,m0) of the parameter (β,m) and think of all ‘regular’ parametric submodels {(β,mβ) :β ∈
R} passing through (β0,m0), where mβ0 = m0 and the mapping β �→ mβ is Fréchet differen-
tiable as a function from R to H. Define ϕ = g′/g. Then, each finite-dimensional submodel
{(β,mβ) :β ∈ R} has the score function

d�(β,mβ)/dβ|β=β0 = ∂�(β,m0)/∂β|β=β0 + ∂�(β0,m)/∂m|m=m0(δ)

= ϕ(ε)X + ϕ(ε)δ(Z),

where δ = ∂mβ/∂β|β=β0 ∈ H is the tangent of the mapping β �→ mβ at β0, and ∂�/∂m denotes
the Fréchet derivative of � with respect to m. This gives the Fisher information for estimating β

in each submodel as I(δ) ≡ E[ϕ(ε)X + ϕ(ε)δ(Z)]2.
The Fisher information at (β0,m0) ∈ R× H in the full semi-parametric model typically equals

to the Fisher information at (β0,m0) ∈ R× H in the most difficult parametric submodel that gives
minimal I(δ). Theorem 1 below demonstrates that this is the case with our problem. The least
favorable direction δ∗ that minimizes I(δ) over δ ∈ H is the solution of the following integral
equation: for all δ ∈ H,

0 = E[ϕ(ε)X + ϕ(ε)δ∗(Z)]ϕ(ε)δ(Z)

= Ig · E[(
E(X|Z) + δ∗(Z)

)
δ(Z)

]
,

where Ig = ∫
(g′)2/g. This shows that δ∗ = −
(E(X|Z = ·)|H), where 
(·|H) denotes the pro-

jection operator onto H, and that the ‘curve’ m∗
β corresponding to the least favorable submodel

equals m∗
β = (β0 − β)
(E(X|Z = ·)|H) + m0. The Fisher information for the least favorable

submodel is thus given by I(δ∗) = Ig · E[X − 
(E(X|Z)|H)]2, where, with a slight abuse of
notation, we write 
(E(X|Z = ·)|H)(Z) = 
(E(X|Z)|H).

The above arguments can be generalized to the case where p > 1. Writing ηj = 
(E(Xj |Z =
·)|H) and η = (η1, . . . , ηp)�, the least favorable direction equals δ∗ = −η so that the Fisher
information matrix for the least favorable submodel equals I(δ∗) = Ig ·E[X−η(Z)][X−η(Z)]�.
In the following theorem we show that the Fisher information I(δ∗) given above is indeed the
semi-parametric information bound, as defined in [3], in our original semi-parametric model
where the error density g and the density q of the covariate (X,Z) are not specified. To state
the theorem, let G denote the set of all symmetric and absolutely continuous (with respect to
the Lebesgue measure) functions g such that Ig < ∞. Let Q be an arbitrary class of density
functions q . For the spaces of m, we consider Hilbert spaces defined by

H(q) =
{

m ∈ L2(q) :m(z) =
d∑

j=1

mj(zj ) and Emj(Zj ) = 0 for all 1 ≤ j ≤ d

}
,
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where L2(q) denotes the space of functions m : Rd → R such that Eqm(Z)2 < ∞ and Eq means
the expectation under the density q . The semi-parametric model (2) under study is then expressed
as P = {p(·;β,m,g, q) :β ∈ R

p,m ∈ H(q), g ∈ G, q ∈ Q}. Let (β0,m0, g0, q0) be a fixed point
where we are calculating the semi-parametric Fisher information. Denote by P0 the distribution
corresponding to (β0,m0, g0, q0), and by I (P0|β, P ) the semi-parametric Fisher information
at P0 for estimating β under the model P . In the theorem below, the ‘efficient score’ �∗ for
estimating β is the score for β at β0 in the least favorable parametric submodel that is indexed
only by β and passes through P0. Let E0 denote the expectation under P0.

Theorem 1. The efficient score at P0 for estimating β is given by

�∗(x, z, y;P0|β, P )

= −[x − η(z)]g0
′

g0

(
y − x�β0 − m0(z)

)
,

where η = (
[E0(Xj |Z = ·)|H(q0)])pj=1. The information bound at P0 for estimating β equals

I (P0|β, P ) = Ig0 · E0[X − η(Z)][X − η(Z)]�.

A proof of Theorem 1 can be found in an extended version of this paper that can be downloaded
from http://stat.snu.ac.kr/theostat/papers/BEJ296_ExtendedVersion.pdf.

Let PPL ⊃ P denote the semi-parametric model (1). One can show I (P0|β, PPL) = Ig0 ·
E0[X − E0(X|Z)][X − E0(X|Z)]� using the arguments to derive I (P0|β, P ). Note that
I (P0|β, P ) ≥ I (P0|β, PPL) by the property of conditional expectation, and that the equality
I (P0|β, P ) = I (P0|β, PPL) holds if E0(Xj |Z = z) are additive for all 1 ≤ j ≤ d . According
to the theory of semi-parametric efficiency, the minimal asymptotic variance that any regular
estimator of β can achieve equals the inverse of the Fisher information matrix. The inequality
I (P0|β, P ) ≥ I (P0|β, PPL) implies I (P0|β, P )−1 ≤ I (P0|β, PPL)−1, with equality holding if
E0(Xj |Z = z) are all additive.

Theorem 2. Suppose I (P0|β, PPL) is positive definite. Then, I (P0|β, P )−1 < I (P0|β, PPL)−1

unless E0[η(Z)−E0(X|Z)][η(Z)−E0(X|Z)]� = O, where O is the p×p matrix with all entries
being zero, and A < B means that B − A is non-negative definite and A �= B .

Theorem 2 tells that using an additive model for the nonparametric part can lead to drastic
gains of efficiency in the estimation of the parametric components. The efficiency gains occur if
the parametric covariates X are approximated by non-additive transformations of the nonpara-
metric covariates Z. If the approximation is exact, then estimation of the parametric part in the
partially linear model (1) breaks down since I (P0|β, PPL) = O, while it does not with the par-
tially linear additive model (2). If the approximation is very crude, one has large efficiency gains
by using additive models for the nonparametric part.

http://stat.snu.ac.kr/theostat/papers/BEJ296_ExtendedVersion.pdf
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3. Semi-parametric efficient estimation

Let β0 and m0 denote the true parameter values. In this section we present the semi-parametric
efficient estimator of β0 that achieves the minimal asymptotic variance I (P0|β, P )−1. The con-
struction is based on a smooth backfitting technique and a profiling method. The latter is basically
for estimating the least favorable curve, and is applied to the Gaussian error model to produce an
initial estimator of β0 to be used in the construction of the semi-parametric efficient estimator.

3.1. Smooth backfitting methods

The smooth backfitting method, introduced by Mammen, Linton and Nielsen [10], is known to
be a powerful technique for estimating additive regression functions. Since our profiling method
involves smooth backfitting for non-additive functions, we discuss some properties of the method
when the target function is not additive.

Let W be a random variable and {Wi} be a random sample distributed as W . The smooth
backfitting estimator, m̂add

W (z) ≡ m̂add
W,0 + m̂add

W,1(z1) + · · · + m̂add
W,d(zd), with responses Wi and

regressors Zi , are defined as the solution of following integral equations:

m̂add
W,j = m̃W,j −

d∑
l=1,�=j


̂j (m̂
add
W,l) − m̂add

W,0, 1 ≤ j ≤ d, (3)

with the constraints 〈m̂add
W,j ,1〉 = 0 for 1 ≤ j ≤ d . Here, m̂add

W,0 = n−1 ∑n
i=1 Wi and m̃W,j (zj )

denotes the marginal regression kernel estimator obtained by regressing Wi on Zi
j only. The

operator 
̂j stands for a projection onto a Hilbert space equipped with a scalar product 〈·, ·〉;
see [23] for details. For example, in the case where m̃W,j (zj ) are the local constant mar-
ginal estimators, 〈g,h〉 = ∫

g(z)h(z)q̂Z(z)dz, with q̂Z(·) being the kernel estimator of the de-
sign density qZ. Smoothing to the direction of Zj is done by the boundary corrected kernel
Khj

(u, v) = cj (v)h−1
j K0((u− v)/hj ), where K0 is a base kernel function, hj is the bandwidth,

and cj (v) is a factor that gives
∫

Khj
(u, v)du = 1.

Let mW(z) = E(W |Z = z). We do not assume that mW is an additive function. Define madd
W =

madd
W,1 +· · ·+madd

W,d to be the projection of mW onto the space of additive functions H(qZ). Then,

E[mW(Z) − E(W) − madd
W (Z)]δ(Z) = 0 for any δ ∈ H(qZ). The additive function madd

W (z) plays
the role of the target function that the smooth backfitting estimator m̂add

W (z) aims at. Lu et al. [9]
discussed the property of the smooth backfitting estimators under non-additive regression models
in the context of spatial data analysis. However, they treated only the case where the bandwidth is
asymptotic to n−1/5. Below, we give a uniform expansion of the smooth backfitting estimator for
a wider range of the bandwidths, after tedious asymptotic calculation following the lines of the
arguments in [10]. To state the theorem, let ε = W −E(W)−madd

W (Z) and define εi accordingly.
Let m̃ε,j (zj ) and m̃LL

ε,j (zj ) denote, respectively, the local constant and linear estimators with

responses εi and the scalar regressors Zi
j . Let hj be the bandwidth associated with Zj . The

theorem relies on the following assumptions.
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Assumptions A.

A1. For 1 ≤ j �= k ≤ d , qZj ,Zk
are bounded away from zero and infinity on its support,

[0,1]2, and have continuous partial derivatives.
A2. The base kernel function K0 is symmetric, supported on a compact support and has

bounded derivative.
A3. The functions madd

W,j ’s are twice continuously differentiable.
A4. E|W − mW(Z)|r0 < ∞ for some r0 > 5/2.

Theorem 3. Assume that the conditions A1–A4 hold, and that hj are asymptotic to n−α for
1/5 ≤ α < 1/2. Then, for 1 ≤ j ≤ d, it holds that

sup
zj ∈[0,1]

|m̂add
W,j (zj ) − madd

W,j (zj ) − hja1,j,n(zj ) − h2
j a2,j (zj ) − m̃ε,j (zj )| = op((nhj )

−1/2)

in the local constant case, and that

sup
zj ∈[0,1]

|m̂add
W,j (zj ) − madd

W,j (zj ) − h2
j a3,j (zj ) − m̃LL

ε,j (zj )| = op((nhj )
−1/2)

in the local linear case, for some functions a1,j,n that are uniformly bounded and non-zero only
for zj ∈ [0, chj ) ∪ (1 − chj ,1] for some constant 0 < c < ∞, and for some functions a2,j and
a3,j that are continuous.

A proof of Theorem 3 can be found in an extended version of this paper that can be downloaded
from http://stat.snu.ac.kr/theostat/papers/BEJ296_ExtendedVersion.pdf.

3.2. Profiling with Gaussian error models

We apply a profiling technique to remove the infinite-dimensional parameter m in the estimation
of β0. For a general framework of profiling approaches to semi-parametric models, we refer to
[18]. See also [12] for a more recent work on profile likelihood.

Define m̂add
X = (m̂add

X1
, . . . , m̂add

Xp
)�. We note that m̂add

X is an estimator of η and m̂add
Y is an

estimator of β0�η + m0. For each given β , let m̂add(z;β) = ∑d
j=1 m̂add

j (zj ;β) be the smooth

backfitting estimator obtained by taking Y i − Xi�β = Xi�(β0 − β) + m0(Zi ) + εi as responses
and Zi as covariates. Recall that the least favorable curve is given by m∗(·,β) ≡ η�(β0 − β) +
m0. Thus, we may regard m̂add(·;β) as an estimator of the least favorable curve m∗(·,β). Since
m̂add(z;β) = m̂add

Y (z) − m̂add
X (z)�β by the fact that the smooth backfitting operation is linear in

response vectors, the estimated profile likelihood based on the Gaussian error model is given by

−
n∑

i=1

[Y i − Xi�β − m̂add(Zi;β)]2 = −
n∑

i=1

[
Y i − m̂add

Y (Zi ) − (
Xi − m̂add

X (Zi )
)�

β
]2

.

http://stat.snu.ac.kr/theostat/papers/BEJ296_ExtendedVersion.pdf
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The estimator that maximizes the above Gaussian profile likelihood is then given by

β̂ =
(

n∑
i=1

X̃iX̃i�
)−1( n∑

i=1

X̃i Ỹ i

)
,

where X̃i = Xi − m̂add
X (Zi ) and Ỹ i = Y i − m̂add

Y (Zi ).

Theorem 4. Suppose that the assumptions A1–A4 hold with W = Y and Xj , 1 ≤ j ≤ p. Also,
assume that E[exp(|Xj − E(Xj |Z)|)|Z] < C a.s. for some C > 0, 1 ≤ j ≤ p. If the bandwidths
hj are asymptotic to n−α for 1/5 ≤ α < 1/2, then it holds that

√
n(β̂ − β0)

d⇒ N
(
0,var(ε)

[
E

(
X − η(Z)

)(
X − η(Z)

)�]−1)
.

A proof of Theorem 4 is given in the Appendix. We note that the asymptotic variance of the
estimator β̂ is larger than I (P0|β, P )−1. This can be seen directly from a projection property.
In fact, var(ε) ≥ I−1

g and the equality hold if g is Gaussian. This means that the estimator β̂
achieves the semi-parametric efficiency in the reduced model where g is specified as a Gaussian
density. It is also interesting to see what happens if η0(X,Z) ≡ E0(Y |X,Z) does not belong to
the partially linear additive model of the form (2). In this case, our estimator of η0 converges to
η∗, which is the L2(q)-projection of η0 onto the space

F = {f ∈ L2(q) | f (x, z) = β�x + m(z), β ∈ R
p, m ∈ H}. (4)

3.3. Adapting to unknown error density

In this subsection, we construct the semi-parametric efficient estimator that achieves the mini-
mal asymptotic variance discussed in Section 2. We follow the approach adopted by Bickel [2],
Schick [16,17], Park [14], Cuzick [5] and Bhattacharya and Zhao [1]. Write I = I (P0|β, P ) and
define β∗

n = β0 − I−1n−1 ∑n
i=1[Xi − η(Zi )]ϕ(ε). Then, the random sequence β∗

n achieves the
efficiency bound. We plug some estimators of the unknown quantities into β∗

n. We estimate the
error density g by using the ‘pseudo’ errors ε̂i ≡ Ỹ i − X̃i�β̂ , where β̂ is the Gaussian profile es-
timator constructed in Section 3.2. In particular, we take ĝ(t) = b + (na)−1 ∑n

i=1 L((t − ε̂i )/a)

and ĝ′(t) = dĝ(t)/dt , where a and b are positive constants that depend on the sample size n, and
L is a symmetric differentiable density function. Define

Î =
(

n−1
n∑

i=1

X̃iX̃i�
)(

n−1
n∑

i=1

ϕ̂(ε̂i )2

)
,

where ϕ̂ is the ‘symmetrized’ estimator of ϕ defined by ϕ̂(e) = [(ĝ′/ĝ)(e)− (ĝ′/ĝ)(−e)]/2. Our
semi-parametric efficient estimator is then given by

β̃ = β̂ − Î−1 1

n

n∑
i=1

X̃i ϕ̂(ε̂i ).
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Assumptions B.

B1. The error ε has an absolutely continuous and symmetric density g with respect to the
Lebesgue measure, μ, and Ig = ∫

(g′2/g)dμ < ∞.
B2. The kernel L is a symmetric density function with three bounded and Lipschitz continu-

ous derivatives.
B3. The sequences a and b converge to zero, as n → ∞, and satisfy n1/2hjb(a2 ∧b2) → ∞

and a2/{hj (logn)2} → ∞ for all 1 ≤ j ≤ d .

Theorem 5. Assume that the conditions of Theorem 4 and the assumptions B1–B3 hold. Then,√
n(β̃ − β0)

d⇒ N(0, I (P0|β, P )−1).

A proof of Theorem 5 is given in the Appendix. For a choice of the bandwidth a in ĝ, one
can devise a data-driven choice along the lines of Park [15]. For h, one can follow the approach
of Mammen and Park [11]. In this adaptation step, misspecification of the model may result in a
meaningless estimator. This is in contrast to the estimation in the initial step where the procedure
estimates the projection of the mean function onto the model space F at (4). The reason is that
the residuals from the initial step include not only the pure errors but also the deviation of the
true regression function from its projection onto F . These residuals mislead estimation of the
score function.

4. Numerical properties

We generated 500 random samples of the size n = 400. We used Epanechnikov kernel for
the regression and the Gaussian density kernel for the estimation of the score function. We
applied a local constant version of smooth backfitting. We took m1(z1) = sin{2π(z1 − 0.5)}
and m2(z2) = z2 − 0.5 + sin{2π(z2 − 0.5)}. We set m0 = 3, β1 = 1.5 and β2 = 0.8. We drew
(Z1,Z2) from N2((0.5,0.5)�,�) truncated to [0,1]2, where � = {(1 − ρ)I + ρ11�}/4. We
generated X1 = CZ1(1 − 2Z2) + U for some constant C, where U ∼ N(0,0.5), and X2 from
Bernoulli(p(X1,Z1,Z2)), where p(X1,Z1,Z2) = g(exp((Z1 + Z2)/2) + sin(2πZ1) − X2

1) and
g(t) = exp(t)/(1 + exp(t)). Note that E(X1|Z = ·) is orthogonal to the space of additive func-
tions.

We compared the Gaussian profile estimator (SAM), given in Section 3.2, and the profile
kernel estimator (PL), given in [19], which is for the partial linear model without the additive
structure. For this, we generated ε from N(0,1) and set ρ = 0. In the case where p = 1, that
is, X2 does not enter the model, the theoretical value of the ratio of the asymptotic variance of
SAM to that of PL equals 1/(1 + 0.1707C2). The empirical values from our simulation study
for the bandwidth pair (h1, h2) that gave the best mean square error (MSE) were 0.7818,0.5868
and 0.4082 for C = 1,2 and 3, respectively, which nearly coincided with the theoretical values.
We tried other values of ρ, but the lesson was the same. In the case where p = 2 and d = 5 with
(Z1, . . . ,Z5) from N5((0.5, . . . ,0.5)�,�) truncated to [0,1]5 and mj(zj ) = z2

j for 3 ≤ j ≤ 5,
we took C = 1 and found that SAM beat PL for all bandwidth choices that we tried. The Gaussian
profile estimator was stable while PL broke down for small bandwidths. The best MSE of SAM
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Figure 1. Mean square errors of SAM and ASAM.

and that of PL, respectively, for various choices of the bandwidth pair (h1, h2) were 0.0032 and
0.0051 for β1 and 0.0186 and 0.0269 for β2.

Next, we compared SAM with the semi-parametric efficient estimator (ASAM). For this, we
considered the case where p = d = 2,C = 1 and ρ = 0.8, and generated ε from N(0,1), t -
distribution with degree of freedom 3, and 1

2N(−1.5,0.62) + 1
2N(1.5,0.62). For ASAM, we

took b = 0.01, and six different choices of a: ai = 0.3 + 0.1i,0 ≤ i ≤ 5, for N(0,1) and t (3)

errors and ai = 0.1+0.1i,0 ≤ i ≤ 5, for the Gaussian mixture error. We used 36 different choices
for the bandwidth pair (h1, h2) ∈ {0.05,0.10, , . . . ,0.30}2. Figure 1 is for the estimators of β1.
Each box-plot was obtained from the 36 values of MSE that corresponded to the 36 bandwidth
pairs (h1, h2). For ASAM, the value of a is indicated on the horizontal scale. The figure suggests
that the values of the MSE of ASAM are far smaller than those of SAM for the entire range of the
bandwidth a, under t (3) and the Gaussian mixture error models. The box-plots for the Gaussian
error model are not given here since SAM and ASAM gave similar performance. The results for
β2 are not reported either since they give a similar lesson.

5. Boston housing data

We applied the semi-parametric efficient estimators to Boston housing data as an illustration.
As in [6,22], we took the median price in 1,000 USD (MEDV) as the response Y . Also, we
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chose as covariates X1, X2 and Z1, . . . ,Z6, respectively, the eight variables LSTAT (percentage
values of lower status population), CHAS (a dummy variable that takes the value 1 if the tract
borders Charles River; 0 otherwise), CRIM (per capita crime rate), RM (average numbers of
rooms per dwelling), NOX (nitric oxides concentration), PTRATIO (pupil–teacher ratios), DIS
(weighted distances to five Boston employment centers) and TAX (full-value property tax rate
per 10,000 USD). The logarithms of LSTAT, DIS and TAX were taken to reduce sparse areas,
as in [22]. We chose the model Y = m0 + β1X1 + β2X2 + ∑6

j=1 mj(Zj ) + ε. In the data set,
there were 16 cases for which Y took the maximal value 50. These may be censored responses
that one may remove from analysis. Indeed, an initial analysis showed a strong asymmetry in
the distribution of the residuals, which led us to exclude the 16 cases for further analysis. For
additive regression, we applied local constant smooth backfitting with the Epanechnikov kernel
and bandwidths hj chosen by a rule of thumb.

With SAM, we obtained β̂1 = −6.203 and β̂2 = 0.985. Their estimated standard errors were
0.420 and 0.597, respectively. This suggests that β̂2 is not strongly significant while β̂1 is. The
generalized R2 was 0.862. For ASAM, in the estimation of the score function, we used a band-
width a that was obtained by R function bw.SJ(). With ASAM, we got β̃1 = −6.172 and
β̃2 = 1.366, and their estimated standard errors were 0.399 and 0.567, respectively. Thus, with
ASAM, both the estimated coefficients are strongly significant. This may be an indication that a
Gaussian error model is not appropriate for the data set. The generalized R2 was almost the same
as in the analysis with SAM.

Appendix

Proof of Theorem 4. We only treat the case with local constant smooth backfitting. The case
with local linear smooth backfitting can be dealt with similarly. We prove

n−1/2
n∑

i=1

X̃i (Ỹ i − X̃i�β0) − n−1/2
n∑

i=1

(
Xi − η(Zi )

)
εi = op(1). (5)

Write �(z) = m0(z) − m̂add(z;β0). The left-hand side of equation (5) equals C1 + C2 + C3,
where C1 = n−1/2 ∑n

i=1(X
i − η(Zi ))�(Zi ), C2 = n−1/2 ∑n

i=1(η(Zi ) − m̂add
X (Zi ))εi , and C3 =

n−1/2 ∑n
i=1(η(Zi ) − m̂add

X (Zi ))�(Zi ). Write �(z) = �0 + ∑d
j=1 �j(zj ). By Theorem 3, stan-

dard techniques of kernel smoothing, integration by part and the representation of m0 and
m̂add(z;β0) as a solution of an integral equation with differentiable kernel (see equation (3)),
we have

sup
z∈[0,1]d

|�(z)| = op(δn), sup
zj ∈[0,1]

∣∣∣∣ d

dzj

�j (zj ) − hjbn,j (zj )

∣∣∣∣ = op(δn)

for some uniformly bounded non-random functions bn,j , where δn = n−a for some a ∈ (0,1/2−
α). These imply that δ−1

n � ∈ B(0,1) with probability tending to one, where B(0,1) denotes a
class of additive functions

∑d
j=1 gj (zj ) such that each gj is a real function defined on [0,1] and



746 K. Yu, E. Mammen and B.U. Park

satisfies supt,t ′∈[0,1] |gj (t) − gj (t
′)| ≤ |t − t ′|. The covering number with bracketing of B(0,1)

with respect to sup-norm, N[·](η) ≡ N[·](η,B(0,1),‖ · ‖∞), is bounded by (2η−1)d3dη−1
. De-

fine random functionals F(Xi
j ,Zi ) :B(0,1) → R by [F(Xi

j ,Zi )](g) = (Xi
j −ηj (Zi ))g(Zi ), and

Fj :B(0,1) → R by Fj = n−1/2 ∑n
i=1 F(Xi

j ,Zi ). Then, using Corollary 8.8 of van de Geer
[20] and the tail condition assumed in the theorem, one can show supg∈B(0,1) |Fjg| = Op(1).
Let C1,j denote the j th element of C1. Since P(|δ−1

n C1,j | > M) ≤ P(supg∈B(0,1) |Fjg| >

M) + P(δ−1
n � /∈ B(0,1)), we obtain C1,j = Op(δn) = op(1). One can prove C2 = op(1) us-

ing a truncation argument with Theorem 3 and applying the Chebyshev inequality conditioning
on (Xi ,Zi ). The fact that C3 = op(1) follows from P(Zi

j lies in [0, chj )∪ (1− chj ,1]) = O(hj )

for some constant 0 < c < ∞ and Theorem 3. �

Proof of Theorem 5. We will show that β̃ − β∗
n = op(n−1/2). It suffices to show

Î−1n−1
n∑

i=1

X̃i ϕ̂(ε̂i ) = β̂ − β0 + I−1n−1
n∑

i=1

[Xi − η(Zi )]ϕ(εi) + op(n−1/2). (6)

By Theorem 3 and standard techniques of kernel smoothing along with assumption B3, it holds
that, uniformly over i,

ϕ̂(ε̂i ) = ϕ̂(εi) − X̃i�(β̂ − β0)ϕ̂′(εi) − {m̂add(Zi; β̂) − m0(Zi )}ϕ̂′(εi) + op(n−1/2). (7)

Also, using the proof of Lemma 4.1 in [2] and standard calculus, one can show Î = I + op(1)

and n−1 ∑n
i=1 X̃iX̃i�ϕ̂′(εi) = −I + op(1). Thus, the proof of the theorem is completed if we

verify

n−1
n∑

i=1

X̃i{m̂add(Zi; β̂) − m0(Zi )}ϕ̂′(εi) = op(n−1/2); (8)

n−1
n∑

i=1

X̃i ϕ̂(εi) − n−1
n∑

i=1

{Xi − η(Zi )}ϕ(εi) = op(n−1/2). (9)

Proofs of (8) and (9) can be based on the following lemma, which follows from Corollary 2.7.4
in [21] and assumption B2 on L. Note that the moment condition on ε ensures the entropy bound.
To state the lemma, define

Cα
M(X ) =

{
f : X → R : sup

x
|f (x)| + sup

x,y

|f (x) − f (y)|α
|x − y| ≤ M

}

for a set X ⊂ R and a real number α ∈ (0,1]. Let ‖ · ‖g denote the L2 norm with respect to the
density g.

Lemma 1. Assume the conditions of Theorem 5. Then there exists a constant M such that,
with probability tending to one, b(a ∧ b)ϕ̂ ∈ C 1

M(R), [nhmaxa
6b/(logn)2]1/2(ϕ̂ − ϕn) ∈ C 1

M(R)
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and b(a2 ∧ b2)ϕ̂′ ∈ C 1
M(R). Moreover, there exist constants δ > 0 and C1 > 0 such that

logN[·](η, C 1
M(R),‖ · ‖g) ≤ C1η

−(2−δ). �
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