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We study the problem of testing composite hypotheses versus composite alternatives, using a convex duality
approach. In contrast to classical results obtained by Krafft and Witting (Z. Wahrsch. Verw. Gebiete 7 (1967)
289–302), where sufficient optimality conditions are derived via Lagrange duality, we obtain necessary and
sufficient optimality conditions via Fenchel duality under compactness assumptions. This approach also
differs from the methodology developed in Cvitanić and Karatzas (Bernoulli 7 (2001) 79–97).

Keywords: composite hypotheses; convex duality; generalized Neyman–Pearson lemma; randomized test

1. Introduction

The problem of hypothesis testing is well understood in the classical case of testing a simple
hypothesis versus a simple alternative. Suppose one wants to discriminate between two proba-
bility measures P (the “null hypothesis”) and Q (the “alternative hypothesis”). In the classical
Neyman–Pearson formulation, one seeks a randomized test ϕ :� → [0,1] which is optimal, in
that it minimizes the overall probability E

Q[1 − ϕ] of not rejecting P when this hypothesis is
false, while keeping below a given significance level α ∈ (0,1) the overall probability E

P [ϕ] of
rejecting the hypothesis P when in fact it is true.

In this classical framework, an optimal randomized test ϕ̃ always exists and can be calculated
explicitly in terms of a reference probability measure R, with respect to which both measures are
absolutely continuous (for instance, R = (P +Q)/2). This test has the randomized 0–1 structure

ϕ̃ = 1{L>z} + δ · 1{L=z} (1.1)

which involves the likelihood ratio L = (dQ/dR)/(dP/dR) of the densities of the null and the
alternative hypotheses, the quantile z = inf{z ≥ 0: P(L > z) ≤ α} and the number δ ∈ [0,1]
which enforces the significance-level requirement without slackness, that is, E

P [ϕ̃] = α.
The problem becomes considerably more involved when the hypotheses are composite, that

is, when one has to discriminate between two entire families of probability measures; likelihood
ratios of mixed strategies then have to be considered. This type of problem also arises in the
financial mathematics context of minimizing the expected hedging loss in incomplete or con-
strained markets; see, for example Cvitanić [7], Schied [22] and Rudloff [21]. It was shown by
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Lehmann [15], Krafft and Witting [14], Baumann [4], Huber and Strassen [13], Österreicher [18],
Witting [25], Vajda [24] and Cvitanić and Karatzas [8], that duality plays a crucial role in solving
the testing problem. Most of these papers deal with Lagrange duality; they prove that the typical
0–1 structure of (1.1) is sufficient for optimality and that it is both necessary and sufficient if a
dual solution exists. An important question then is to decide when a dual solution will exist and
to describe it when it does.

The most recent of these papers, Cvitanić and Karatzas [8], takes a different duality approach.
Methods from non-smooth convex analysis are employed and the set of densities in the null
hypothesis is enlarged in order to obtain the existence of a dual solution, which again plays a
crucial role.

In the present paper, we shall use Fenchel duality. One advantage of this approach is that
as soon as one can prove the validity of strong duality, the existence of a dual solution follows.
We shall show that strong duality holds under certain compactness assumptions. This generalizes
previous results insofar as no need to enlarge the set of densities arises, a dual solution is obtained
and thus necessary and sufficient conditions for optimality ensue.

In Section 2, we introduce the problem of testing composite hypotheses. Section 3 gives an
overview of the duality results, which are established and explained in detail in Section 4. In Sec-
tion 5, the imposed assumptions are discussed and possible extensions are given. A comparison
of the results and methods of this paper with those in the existing literature can be found in the
last sections, notably Section 6.

2. Testing of composite hypotheses

Let (�, F ) be a measurable space. A central problem in the theory of hypothesis testing is to
discriminate between a given family P of probability measures (composite “null hypothesis”)
and another given family Q of probability measures (composite “alternative hypothesis”) on this
space.

Suppose that there exists a reference probability measure R on (�, F ), that is, a probabil-
ity measure with respect to which all probability measures P ∈ P and Q ∈ Q are absolutely
continuous. We shall use the notation Z� ≡ d�/dR for the Radon–Nikodym derivative of a
finite measure � which is absolutely continuous with respect to the reference measure and
E

�[Y ] := ∫
�

Y d� = ∫
�

Z�Y dR for the integral with respect to such � of an F -measurable
function Y :� → [0,∞). Finally, we shall denote the sets of these Radon–Nikodym derivatives
for the composite null hypothesis and for the composite alternative hypothesis, respectively, by

ZP := {ZP | P ∈ P } and ZQ := {ZQ | Q ∈ Q}.
Both ZP and ZQ are subsets of the non-negative cone L

1+ and of the unit ball in the Banach
space L

1 ≡ L
1(�, F ,R). We assume that � × ZP � (ω,Z) 	−→ Z(ω) ∈ [0,∞) is measurable

with respect to the product σ -algebra F ⊗ B, where B is the σ -algebra of Borel subsets of ZP .
We shall denote by 	 the set of all randomized tests, that is, of all Borel-measurable functions

ϕ :� → [0,1] on (�, F ). The interpretation is as follows: if the outcome ω ∈ � is observed and
the randomized test ϕ is used, then the null hypothesis P is rejected with probability ϕ(ω). Thus,
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E
P [ϕ] = ∫

�
ϕ(ω)P (dω) is the overall probability of type I error (of rejecting the null hypothesis,

when in fact it is true) under a scenario P ∈ P , whereas E
Q[1 − ϕ] is the overall probability of

type II error (of not rejecting the null hypothesis, when in fact it is false) under the scenario
Q ∈ Q.

We shall adopt the Neyman–Pearson point of view, whereby a type I error is viewed as the
more severe one and is not allowed to occur with probability that exceeds a given acceptable
significance level α ∈ (0,1), regardless of which scenario P ∈ P might materialize. Among all
randomized tests that observe this constraint,

s(ϕ) := sup
P∈P

E
P [ϕ] ≤ α, (2.1)

we then try to minimize the highest probability supQ∈Q(1 − E
Q[ϕ]) of type II error over all

scenarios in the alternative hypothesis. In other words, we look for a randomized test ϕ̃ that
maximizes the smallest power with respect to all alternative scenarios,

π(ϕ) := inf
Q∈Q

E
Q[ϕ],

over all randomized tests ϕ whose ‘size’ s(ϕ), the quantity defined in (2.1), does not exceed a
given significance level α.

Equivalently, we look for a test ϕ̃ ∈ 	 that attains the supremum

V := sup
ϕ∈	α

π(ϕ) = sup
ϕ∈	α

(
inf

Q∈Q
E

Q[ϕ]
)

(2.2)

of the power π(ϕ) over all generalized tests in the class

	α :=
{
ϕ ∈ 	

∣∣ sup
P∈P

E
P [ϕ] ≤ α

}
. (2.3)

When such a randomized test ϕ̃ exists, it will be called (max–min) optimal.

3. Duality

We shall denote by �+ the set of finite measures on the measurable space (ZP , B). We shall then
associate to the maximization problem of (2.2) the dual minimization problem

V ∗ := inf
Q∈Q
λ∈�+

D(Q,λ), (3.1)

where

D(Q,λ) := E
R

[(
ZQ −

∫
ZP

ZP dλ

)+]
+ αλ(ZP ). (3.2)
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Here, and in the sequel, we view
∫
ZP

ZP (ω)dλ as the integral with respect to the measure λ of
the continuous functional ZP � Z 	−→ (Z;ω) := Z(ω) ∈ R, for fixed ω ∈ �; see (4.10) below
for an amplification of this point.

The idea behind (3.1) and (3.2) is simple: we regard λ ∈ �+ as a ‘Bayesian prior’ distribution
on the set ZP of densities for the null hypothesis, whose effect is to reduce the composite null
hypothesis P to a simple one {P∗} with ZP∗ = ∫

ZP
ZP dλ and whose total mass λ(ZP ) < ∞

is a variable that enforces the constraint in (2.1). More precisely: for any given Q ∈ Q and any
ϕ ∈ 	α , we have the weak duality

E
Q[ϕ] = E

R[ϕZQ] = E
R

[
ϕ

(
ZQ −

∫
ZP

ZP dλ

)]
+ E

R

[
ϕ

∫
ZP

ZP dλ

]
(3.3)

≤ E
R

[(
ZQ −

∫
ZP

ZP dλ

)+]
+ αλ(ZP ) = D(Q,λ), λ ∈ �+,

since

E
R

[
ϕ

∫
ZP

ZP dλ

]
=

∫
�

ϕ(ω)

(∫
ZP

ZP (ω)dλ

)
dR(ω)

=
∫

ZP

(∫
�

ϕ(ω)ZP (ω)dR(ω)

)
dλ

holds by the Fubini–Tonelli theorems, and this last quantity is dominated by αλ(ZP ) on the
strength of (2.1). We now observe that equality holds in (3.3) if and only if both

ϕ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, if ZQ(ω) >

∫
ZP

ZP (ω)dλ,

0, if ZQ(ω) <

∫
ZP

ZP (ω)dλ,
for R-a.e. ω ∈ � (3.4)

and

E
R[ϕZP ] = α, for λ-a.e. ZP ∈ ZP (3.5)

hold. It follows from (3.3) that the inequality supϕ∈	α
E

Q[ϕ] ≤ D(Q,λ) holds for all λ ∈ �+
and Q ∈ Q so that in the notation of (2.2) and (3.1), we obtain

V ≤ V := inf
Q∈Q

(
sup

ϕ∈	α

E
Q[ϕ]

)
≤ V ∗. (3.6)

The challenge, then, it to turn this ‘weak’ duality into ‘strong’ duality. That is, to show
that: equalities V = V = V ∗ prevail in (3.6); the infimum in (3.1) is attained by some
(Q̃, λ̃) ∈ Q × �+; there exists a ϕ̃ ∈ 	α for which the triple (ϕ̃, Q̃, λ̃) satisfies (3.4), (3.5); for
this triple equality prevails in (3.3); and the first element ϕ̃ of this triple is optimal for the gener-
alized hypothesis-testing problem, that is, attains the supremum in (2.2). We shall carry out this
program, under appropriate conditions, throughout the remainder of the paper.
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When it exists, the measure λ̃ ∈ �+ is called the “least favorable distribution”. For explicit
computations of least favorable distributions in testing composite hypotheses against simple al-
ternatives (with Q a singleton), see Lehmann and Stein [16], Lehmann [15] and Reinhardt [19],
as well as Witting [25], pages 276–281 and Lehmann and Romano [17], Chapter 3. Here is an
example abridged from these last two sources.

Example 3.1. Consider random variables X1,X2, . . . ,Xn on (�, F ) and probability measures
on this space under which these variables are independent with common Gaussian distribution
N (ξ, σ 2). Thus, the random variables X = (1/n)

∑n
i=1 Xi and U = ∑n

i=1(Xi − X)2 are suffi-
cient for the vector of parameters (ξ, σ 2). For some given real numbers ξ1 and σ 2

1 > 0, σ 2
0 > 0,

we shall consider testing each of two composite hypotheses P (1), P (2) versus the simple alter-
native Q = {Q}; this latter corresponds to (ξ, σ 2) = (ξ1, σ

2
1 ). On the other hand, the hypoth-

esis P (1) corresponds to (ξ, σ 2) ∈ R × [σ 2
0 ,∞), whereas the hypothesis P (2) corresponds to

(ξ, σ 2) ∈ R × (0, σ 2
0 ].

It is clear that the least favorable measure λ̃ ∈ �+ should correspond to a distribution on
B(R × (0,∞)) of the form μ ⊗ δσ 2

0
, where μ is a measure on B(R); thus, under the measure P∗

with ZP∗ = ∫
ZP

ZP dλ, the distribution of X has probability density

∫
R

(
2π(σ 2

0 /n)
)−1/2

exp

{
−n(x − ξ)2

2σ 2
0

}
μ(dξ), x ∈ R,

whereas, under the alternative Q, the distribution of X has probability density

(
2π(σ 2

1 /n)
)−1/2 exp

{
−n(x − ξ1)

2

2σ 2
1

}
, x ∈ R.

• Testing P (1) versus Q, with σ 2
0 > σ 2

1 : The least favorable λ̃ ∈ �+ corresponds to μ = δξ1 .
This way, the distribution of X is normal under both P∗ and Q, with the same mean and
with the smallest possible difference in the variances.

• Testing P (2) versus Q, with σ 2
0 < σ 2

1 : In this case, the least favorable λ̃ ∈ �+ corresponds
to μ with Gaussian N (ξ1, (σ

2
1 − σ 2

0 )/n) density. This guarantees that the distribution of X

is the same under both P∗ and Q.

4. Results

In order to carry out the program outlined in the previous section, we shall impose the following
assumptions. A discussion of their role can be found in Remark 5.1.

Assumption 4.1.

(i) ZQ is a weakly compact, convex subset of L
1.

(ii) ZP is a weakly compact subset of L
1.
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Our main result reads as follows.

Theorem 4.2 (Generalized Neyman–Pearson lemma). Let P , Q be families of probability
measures on (�, F ), as in Sections 2 and 3, that satisfy Assumption 4.1. For a given constant
α ∈ (0,1), recall the subclass 	α of randomized tests in (2.3).

There then exists a randomized test ϕ̃ ∈ 	α which attains the supremum in (2.2). There also
exists a solution to the dual problem of (3.1), namely, a pair (Q̃, λ̃) ∈ Q × �+ which attains the
infimum there.

Furthermore, strong duality is satisfied, in the sense that:

• the optimal test for (2.2) has the structure of (3.4), (3.5), namely

ϕ̃(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, if ZQ̃(ω) >

∫
ZP

ZP (ω) d̃λ,

0, if ZQ̃(ω) <

∫
ZP

ZP (ω) d̃λ,
for R-a.e. ω ∈ � (4.1)

and

E
R[ϕ̃ZP ] = α for λ̃-a.e. ZP ∈ ZP , whereas (4.2)

• (ϕ̃, Q̃) is a saddlepoint in 	α × Q of the functional (ϕ,Q) 	→ E
Q[ϕ], namely,

E
Q̃[ϕ] ≤ E

Q̃[ϕ̃] ≤ E
Q[ϕ̃] ∀(ϕ,Q) ∈ 	α × Q. (4.3)

The theorem will be proven in several steps, using the following lemmata. The first of these,
Lemma 4.3, seems to be well known (cf. the Appendix in Lehmann and Romano [17]). We could
not, however, find in the literature a result in exactly the form we needed that we could cite
directly, so we provide a proof for the sake of completeness. We shall freely use the convention
of denoting by “max” (resp., “min”) a supremum (resp., infimum) which is attained.

Lemma 4.3. The supremum in (2.2) is attained by some randomized test ϕ̃ ∈ 	α and there exists
a Q̃ ∈ Q such that the saddlepoint property (4.3) holds. In particular, the lower- and upper-values
V and V of (2.2) and (3.6), respectively, are the same:

max
ϕ∈	α

(
min
Q∈Q

E
Q[ϕ]

)
= min

Q∈Q

(
max
ϕ∈	α

E
Q[ϕ]

)
. (4.4)

Proof. It is well known that the set 	 of all randomized tests is weakly-* compact (this follows
from weak sequential compactness; cf. [25], page 270 or [17], Theorem A.5.1). We give a short
proof for the sake of completeness. The subset 	 of the Banach space L

∞ ≡ L
∞(�, F ,R)

is weakly-* compact, as it is a weakly-* closed subset of the weakly-* compact unit ball
in L

∞ (Alaoglu’s theorem; see, e.g., Dunford and Schwartz [9], Theorem V.4.2 and Corol-
lary V.4.3). To see that 	 is weakly-* closed, consider a net {ϕα}α∈D ⊆ 	 that converges
to ϕ with respect to the weak-* topology in L

∞. This means that for all X ∈ L
1, we have

E
R[ϕαX] → E

R[ϕX]. If there existed an event �1 ∈ F with R(�1) > 0 and {ϕ > 1} ⊆ �1, then
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we could choose X̂(ω) = 1�1(ω) ∈ L
1 and obtain E

R[ϕX̂] > R(�1). However, this contradicts
E

R[ϕX̂] = limα E
R[ϕαX̂] ≤ R(�1), which follows from ϕα ≤ 1 for all α ∈ D since ϕα ∈ 	.

Hence, ϕ ≤ 1 holds R-a.e. It can be similarly shown that ϕ ≥ 0 also holds R-a.e.
Thus, 	 is indeed weakly-* closed, hence weakly-* compact. Since the mapping ϕ 	→

supP∈P E
P [ϕ] is lower-semicontinuous in the weak-* topology, the set 	α in (2.3) is weakly-*

closed, hence weakly-* compact. Because of the upper-semicontinuity of the mapping ϕ 	→
π(ϕ) = infQ∈Q E

Q[ϕ] in the weak-* topology, there exists a ϕ̃ ∈ 	α that attains the supremum
in (2.2).

The weak-* compactness and convexity of 	α together with the weak compactness and con-
vexity of ZQ (Assumption 4.1(i)) enable us to apply the von Neumann/Sion minimax theorem
(see, for instance, [3], Theorem 7, Section 7.1, or [2], Section 2.7, pages 39–45); the assertions
follow. �

Let us now fix an arbitrary Q ∈ Q and consider as our primal problem the inner maximization
in the middle term of (3.6), namely,

p(Q) := sup
ϕ∈	α

E
Q[ϕ]. (4.5)

This supremum is always attained since 	α is weakly-* compact. We want to show that strong
duality holds between (4.5) and its Fenchel dual problem which, we claim, is of the form

d(Q) = inf
λ∈�+

D(Q,λ) = inf
λ∈�+

[∫
�

(
ZQ −

∫
ZP

ZP dλ

)+
dR + αλ(ZP )

]
. (4.6)

Note that, from (3.3), we have p(Q) ≤ d(Q).
In this setting, the typical 0–1 structure of the randomized test ϕ̃Q ∈ 	α that attains the supre-

mum in (4.5) is necessary and sufficient for optimality.

Lemma 4.4. Strong duality holds for problems (4.5) and (4.6), that is,

∀Q ∈ Q, d(Q) = p(Q).

Moreover, for each Q ∈ Q, there exists a measure λ̃Q ∈ �+ which attains the infimum in (4.6),
whereas an optimal test ϕ̃Q ∈ 	α that attains the supremum in (4.5) exists and has the structure
of (3.4) and (3.5), namely,

ϕ̃Q(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, if ZQ(ω) >

∫
ZP

ZP (ω) d̃λQ,

0, if ZQ(ω) <

∫
ZP

ZP (ω) d̃λQ,
for R-a.e. ω ∈ � (4.7)

and

E
R[ϕ̃QZP ] = α for λ̃Q-a.e. ZP ∈ ZP . (4.8)
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Proof. Let L be the linear space of all continuous functionals  :ZP → R on the weakly compact
subset ZP of L

1 (Assumption 4.1(ii)) with pointwise addition and multiplication by real numbers
and pointwise partial order

1 ≤ 2 ⇐⇒ 2 − 1 ∈ L+ := { ∈ L | (ZP ) ≥ 0,∀P ∈ P }. (4.9)

We endow L with the supremum norm ‖‖L = supP∈P |(ZP )|, which ensures that L is a Ba-
nach space (Dunford and Schwartz [9], Section IV.6).

Similarly, we let � be the space of regular finite signed measures λ = λ+ − λ− on (ZP , B),
with λ± ∈ �+. The space � is sometimes denoted car (ZP , B) in the literature, in order to stress
that it consists of regular countably additive signed measures of finite variation ([1], Defini-
tion 12.11). We regard this space as the norm-dual of L with the bilinear form

〈,λ〉 =
∫

ZP
dλ for  ∈ L, λ ∈ �; (4.10)

see Aliprantis and Border [1], Corollary 14.15. (Intuitively speaking, the elements of � are gen-
eralized Bayesian priors that may assign negative mass to certain null hypotheses.) We also note
the clear identification �+ ≡ {λ ∈ � | λ(B) ≥ 0,∀B ∈ B}.

Let us define a linear operator A : (L∞,‖ · ‖L∞) → (L,‖ · ‖L) by

L
∞ � ϕ 	−→ (Aϕ)(ZP ) := −E

P [ϕ] = −E
R[ϕZP ] ∈ R (4.11)

for ZP ∈ ZP . This operator is bounded, thus continuous. We also introduce the constant func-
tionals 1,0 ∈ L by

∀ZP ∈ ZP , 1(ZP ) = 1 ∈ R, 0(ZP ) = 0 ∈ R.

The constraint of (2.1) can then be rewritten as

α1 + Aϕ ≥ 0 ⇐⇒ Aϕ ∈ L+ − α1.

With this notation, for any given Q ∈ Q, the primal problem (4.5) is cast as

−p(−Q) = inf
ϕ∈L∞

(
E

Q[ϕ] + I	(ϕ) + IL+−α1(Aϕ)
)

(4.12)
= inf

ϕ∈L∞
(
f (ϕ) + g(Aϕ)

)
,

where −Q is interpreted as a finite, signed measure on (�, F ) (cf. the discussion preceding
(4.10)). Here, and for the remainder of this proof, we use the notation IC(ϕ) := 0 for ϕ ∈ C,

IC(ϕ) := ∞ for ϕ /∈ C, as well as

f (ϕ) := E
Q[ϕ] + I	(ϕ), g(Aϕ) := IL+−α1(Aϕ). (4.13)

• We claim that the Fenchel dual of the primal problem in (4.5) has the form (4.6). We shall
begin the proof of this claim by recalling from Ekeland and Temam [10], Proposition III.1.1,
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Theorem III.4.1 and Remark III.4.2 that the Fenchel dual of the problem (4.12) is given by

−d(−Q) = sup
λ∈�

(−f ∗(A∗λ) − g∗(−λ)
)
, (4.14)

where A∗ :� → ba(�, F ,R) is the adjoint of the operator A in (4.11). Here, and in the se-
quel, ba(�, F ,R) is the space of bounded, (finitely-) additive set-functions on (�, F ) which
are absolutely continuous with respect to R; see, for instance, Yosida [26], Chapter IV, Section 9,
Example 5.

The function g∗(·) is the conjugate of the function g(·), namely,

g∗(λ) = sup
̃∈L

(〈̃, λ〉 − IL+−α1(̃)
) = sup

̃∈L+−α1
〈̃, λ〉 = sup

∈L+
〈 − α1, λ〉

= sup
∈L+

〈,λ〉 − α

∫
ZP

dλ = I L∗+(λ) − αλ(ZP ),

where

L∗+ := {λ ∈ � | 〈,λ〉 ≤ 0,∀ ∈ L+} (4.15)

is the negative dual cone of L+. The last equality in the above string holds because the set L+
defined in (4.9) is a cone containing the origin 0 ∈ L.

To determine the conjugate f ∗(·) of the function f (·) at A∗λ, namely

f ∗(A∗λ) = sup
ϕ∈L∞

{〈A∗λ,ϕ〉 − E
Q[ϕ] − I	(ϕ)},

we have to calculate 〈A∗λ,ϕ〉. By the definition of A∗, the equation 〈A∗λ,ϕ〉 = 〈λ,Aϕ〉 has to
be satisfied for all ϕ ∈ L

∞, λ ∈ � (see [1], Chapter 6.8). Thus,

∀ϕ ∈ L
∞,∀λ ∈ �, 〈A∗λ,ϕ〉 = −

∫
ZP

E
R[ϕZP ]dλ

and the conjugate of the function f (·) at A∗λ is evaluated as

f ∗(A∗λ) = sup
ϕ∈	

(
−

∫
ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)

.

The dual problem (4.14) therefore becomes

−d(−Q) = sup
λ∈�

[
− sup

ϕ∈	

(
−

∫
ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)

− I−L∗+(λ) − αλ(ZP )

]
(4.16)

= sup
λ∈−L∗+

[
− sup

ϕ∈	

(
−

∫
ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)

− αλ(ZP )

]
.
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It is not hard to show the property −L∗+ = �+ for the set in (4.15), so the expression of (4.16)
can be recast in the form

−d(−Q) = sup
λ∈�+

[
− sup

ϕ∈	

(
−

∫
ZP

E
R[ZP ϕ]dλ − E

R[ZQϕ]
)

− αλ(ZP )

]
. (4.17)

• Now, both (�, F ,R) and (ZP , B, λ) for λ ∈ �+ are positive, finite measure spaces. The map-
ping � × ZP � (ω,ZP ) 	−→ f (ω,ZP ) := ZP (ω)ϕ(ω) ∈ R is measurable with respect to the
product σ -algebra F ⊗ B for every ϕ ∈ 	, thanks to the measurability assumption of Section 2,
whereas ∫

ZP

∫
�

|ZP ϕ|dR dλ ≤
(

sup
P∈P

‖ZP ‖L1

)
λ(ZP ) = λ(ZP ) < ∞

holds for every λ ∈ �+ and ϕ ∈ 	 since ‖ϕ‖L∞ ≤ 1. Thus, we can apply the Fubini–Tonelli the-
orem (see [9], Corollary III.11.15) and deduce that the order of integration can be interchanged,
that is, for all λ ∈ �+ and all ϕ ∈ 	, we have∫

ZP

∫
�

ZP ϕ dR dλ =
∫

�

∫
ZP

ZP ϕ dλdR < ∞.

In (4.17), only elements λ ∈ �+ and ϕ ∈ 	 are considered, so we can interchange the order of
integration and obtain

−d(−Q) = sup
λ∈�+

(
− sup

ϕ∈	

E
R

[
ϕ

(
−ZQ −

∫
ZP

ZP dλ

)]
− αλ(ZP )

)
. (4.18)

Since ϕ ∈ 	 is a randomized test, the supremum over all ϕ ∈ 	 in (4.18) is attained by some
ϕλ,−Q ∈ 	 of a form similar to (3.4), namely,

ϕλ,−Q(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, if −ZQ(ω) >

∫
ZP

ZP (ω)dλ

0, if −ZQ(ω) <

∫
ZP

ZP (ω)dλ

for R-a.e. ω ∈ �. (4.19)

Given any finite, signed measure � = �+ − �− on (�, F ) with �± � R, let us write Z� =
Z�+ − Z�− , define

ϒλ,� := Z� −
∫

ZP
ZP dλ ∈ L

1 (4.20)

and let ϒ+
λ,� (resp., ϒ−

λ,�) be the positive (resp., negative) part of the random variable in (4.20).
With this notation, and recalling (4.19), the value of the dual problem (4.18) becomes

−d(−Q) = sup
λ∈�+

{−E
R[ϒ+

λ,−Q] − αλ(ZP )}
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and thus

d(Q) = inf
λ∈�+

{ER[ϒ+
λ,Q] + αλ(ZP )}. (4.21)

We deduce from this representation and (4.20) that the dual d(Q) of the primal problem p(Q) of
(4.5) is indeed as claimed in equation (4.6).
• Strong duality now holds if both f (·) and g(·) are convex, g(·) is continuous at some Aϕ0 with
ϕ0 ∈ dom(f ) and p(Q) is finite (see [10], Theorem III.4.1 and Remark III.4.2).

Indeed, p(Q) is clearly finite. In (4.13), the function f (·) is convex since 	 is a convex set; the
function g(·) is convex since the set L+ − α1 is convex, as well as continuous at some Aϕ0 with
ϕ0 ∈ dom(f ), provided that Aϕ0 ∈ int(L+ − α1). If we take ϕ0 ≡ 0, then ϕ0 ∈ dom(f ) since
ϕ0 ∈ 	, and we see that Aϕ0 = 0 ∈ int(L+ − α1) since int(L+) �= ∅ in the norm topology and
α > 0. Hence, we have strong duality.
• The existence of a solution to the primal problem p(Q) (i.e., of a generalized test ϕ̃Q ∈ 	α

which attains the supremum in (4.5)) follows from the weak-* compactness of 	α . With strong
duality established, the existence of a solution to the dual problem, that is, of an element λ̃Q ∈ �+
which attains the infimum in (4.6), follows ([10], Theorem III.4.1 and Remark III.4.2), whereas
the values of the primal (resp., the dual) objective functions at ϕ̃Q (resp., λ̃Q) coincide. To in-
dicate the dependence of these quantities on the selected Q ∈ Q, we have used the notation ϕ̃Q

and λ̃Q for the primal and dual solutions, respectively.
• These considerations lead to a necessary and sufficient condition for optimality. Indeed, let us
write the expression for E

Q[ϕ] from (3.3) as

E
Q[ϕ] = E

R[ϕϒ+
λ,Q] − E

R[ϕϒ−
λ,Q] + E

R

[
ϕ

∫
ZP

ZP dλ

]
,

in the notation of (4.20), and subtract it from the dual objective function E
R[ϒ+

λ,Q] + αλ(ZP ),
as in (4.21). Because of strong duality, this difference has to be zero when evaluated at (ϕ,λ) =
(ϕ̃Q, λ̃Q), namely,

E
R[ϒ+

λ̃Q,Q
(1 − ϕ̃Q)] + E

R[ϒ−
λ̃Q,Q

ϕ̃Q] +
∫

ZP
(α − E

R[ZP ϕ̃Q]) d̃λQ = 0.

Each of these three integrals is non-negative, so their sum is zero if and only if ϕ̃Q ∈ 	α satisfies
the condition (4.8) of Lemma 4.4 and is of the form (4.7) or, equivalently, of the form ϕ̃Q ≡
ϕλ̃Q,−Q of (4.19). �

We are ready now to prove our main result.

Proof of Theorem 4.2. Lemma 4.4 guarantees that

min
Q∈Q

(
max
ϕ∈	α

E
Q[ϕ]

)
= min

Q∈Q
p(Q) = min

Q∈Q
d(Q) = min

(Q,λ)∈Q×�+
D(Q,λ) = V ∗

in the notation of (3.1) and (4.5), (4.6). From Lemma 4.3, it follows that there exists an element
Q̃ of Q which attains the infimum in (3.6). For this Q̃, Lemma 4.4 shows the existence of an
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element λ̃Q̃ of �+ that attains the infimum in (4.6). Thus, there exists a pair (Q̃, λ̃) that attains
the infimum in (3.1) and Lemma 4.4 gives the required structural result. �

Corollary. It follows that the optimal randomized test has the form

ϕ̃(ω) = 1{ZQ̃>
∫
ZP

ZP d̃λ}(ω) + δ(ω) · 1{ZQ̃=∫
ZP

ZP d̃λ}(ω), (4.22)

reminiscent of (1.1), where the random variable δ :� → [0,1] is chosen so that (4.2) is satisfied
by this ϕ̃.

5. Extensions and ramifications

Remark 5.1. The weak compactness of the set of alternative densities ZQ in Assumption 4.1(i)
seems to be crucial. Without it, we can still get, by Fenchel duality,

max
ϕ∈	α

(
inf

Q∈Q
E

Q[ϕ]
)

= inf
Q∈Q

(
max
ϕ∈	α

E
Q[ϕ]

)
,

endowing L
∞ with the norm topology. There is no guarantee anymore, however, that the infimum

will be attained in Q. The infimum will be attained at some element μ̂ of the set M ⊆ {μ ∈
ba(�, F )+ | μ(�) = 1}, which contains Q; however, a Hahn decomposition might not exist for
this μ̂, so we do not generally obtain the 0–1 structure in (4.22) of the primal solution with
respect to the dual solution.

It seems reasonable to endow L
∞ with the weak-* topology and to apply Fenchel duality.

But it then becomes difficult to show that a suitable constraint qualification (e.g., that ρ(ϕ) =
supQ∈Q E

Q[ϕ] be weakly-* continuous at some ϕ0 ∈ 	α) is satisfied, which is needed to obtain
strong duality.

Assuming ZQ to be weakly compact and convex, as we have done throughout the present
work, has enabled us to apply a min–max theorem and to ensure that the infimum in the dual
problem is attained within ZQ ⊆ L

1.
• If we were to drop the weak compactness Assumption 4.1(ii) on the set of densities ZP , then
the norm-dual of L would be ba(ZP , B) instead of � (recall the definitions of the spaces L
and � from the start of the proof of Lemma 4.4). The elements of the space ba(ZP , B) are
the ultimate generalized Bayesian priors: they are allowed to assign negative weights to sets of
possible scenarios and to be just finitely (as opposed to countably) additive. However, in such a
setting, the Fubini–Tonelli theorem can no longer be applied. It is possible to endow L with the
Mackey topology, to ensure that � is the topological dual of L, but proving strong duality under
this topology is a challenge. Throughout this paper, Assumption 4.1(ii) is imposed to ensure that
the norm-dual of the space L is � and that a strong duality result can be obtained.

The weak compactness Assumption 4.1(ii) on ZP can be dropped when using a different
duality approach as in Cvitanić and Karatzas [8] (cf. Section 6), or a utility maximization duality
approach similar to Föllmer and Leukert [12], Section 7. In both cases, however, one would lose
some information about the structure of the optimal randomized test since ϕ̃ will no longer be
expressed with respect to the original family of probability measures P , but with respect to some
enlarged set (see Section 6).
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Remark 5.2. The results in this paper can be extended in several directions. For instance, our
proofs have not used the assumption that P and Q are families of probability measures. The re-
sults still hold if we instead consider two arbitrary subsets of L

1, namely, G (in lieu of ZP ) and H
(in lieu of ZQ), that satisfy Assumption 4.1, as well as supG∈G ‖G‖L1 < ∞.

Furthermore, instead of a constant α ∈ (0,1), we may consider a positive continuous func-
tional α : G → R+. The corresponding optimization problem is then

sup
ϕ∈	

(
inf

H∈H
E[ϕH ]

)
, (5.1)

subject to

E
R[ϕG] ≤ α(G) ∀G ∈ G. (5.2)

The problem (5.1)–(5.2) is no longer of hypothesis-testing form, in the classical sense, but
its structure is similar to that of testing composite hypotheses. Such so-called ‘generalized
hypothesis-testing problems’ also arise in the context of hedging contingent claims in incom-
plete or constrained markets, for instance, when one tries to minimize the expected hedging loss
(see Cvitanić [7], Rudloff [21] or, in a related context, Schied [22]). This kind of generalized
hypothesis-testing problem was studied for the case of a simple alternative (i.e., H being a sin-
gleton) and a positive, bounded and measurable function α(·), by Witting [25], Section 2.5.1.
For this case, it was shown with Lagrange duality that the generalized 0–1 structure (4.22) of
a test is sufficient for optimality. Furthermore, it was shown in [25] that for a finite set G , the
conditions (4.7), (4.8) are necessary and sufficient for optimality. The proof of Lemma 4.4 shows
that a generalization of these results is even possible when both the ‘hypothesis’ set G and the
‘alternative hypothesis’ set H are infinite, if they satisfy the above conditions (Assumption 4.1
and supG∈G ‖G‖L1 < ∞) and α(·) is a positive, continuous function.

6. Comparisons and conclusion

The problem of Neyman–Pearson-type testing of a composite null hypothesis against a simple
alternative has a long history–it has been considered in a variety of papers and in several books:
Ferguson [11], Witting [25], Strasser [23], Vajda [24], Lehmann [17].

Results on testing a composite hypothesis against a composite alternative have been obtained
in Lehmann [15], in Krafft and Witting [14] (which is apparently the first work to introduce
ideas of convex duality to the theory of hypothesis testing) and in Baumann [4], Huber and
Strassen [13], Österreicher [18], Vajda [24], pages 361–362 and Schied [22]. Lehmann [15]
works with a finite set ZQ, provides existence results and shows that the composite testing prob-
lem can be reduced to one with simple hypotheses (consisting of the optimal mixed strategy).
Krafft and Witting [14] and Witting [25] use Lagrange duality and show that even without any
compactness assumptions on the sets ZP and ZQ, the generalized 0–1 structure (4.22) of ϕ̃ is suf-
ficient for optimality, as well as necessary and sufficient if a dual solution exists (e.g., when ZP
and ZQ are both finite). In this paper, we show that under Assumption 4.1, the generalized 0–1
structure of (4.22) is necessary and sufficient for optimality, due to strong duality with respect
to the Fenchel dual problem; the existence of a dual solution then follows from strong duality.
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Baumann [4] proves the existence of a max–min optimal test using duality results from linear
programming and weak compactness arguments. The problem is also studied for densities that
are contents and not necessarily measures.

Huber and Strassen [13] dispense with the assumption that all measures in ZP and ZQ be
absolutely continuous with respect to a reference measure R, at the expense of assuming that
these two sets can be described in terms of “alternating capacities”, in the sense of Choquet; for
related results, see Rieder [20] and Bendarski [5,6].

Finally, using totally different methods and motivated by optimal investment problems in
mathematical finance, Schied [22] studies variational problems of Neyman–Pearson type for
convex risk measures and for law-invariant robust utility functionals, obtaining explicit solutions
for quantile-based coherent risk measures that satisfy the Huber–Strassen–Choquet alternating
capacity conditions.

One of the most recent works on this subject is the paper by Cvitanić and Karatzas [8]. These
authors introduce the enlargement

W := {W ∈ L
1+ | E

R[ϕW ] ≤ α,∀ϕ ∈ 	α} ⊇ co(ZP ) (6.1)

of the convex hull of the Radon–Nikodym densities of P . This ‘enlarged’ set W is convex,
bounded in L

1 and closed under R-a.e. convergence. Furthermore, they assume that the set of
densities of Q is convex and closed under R-a.e. convergence. The starting point of [8] is the
observation that

∀Q ∈ Q,∀W ∈ W ,∀z > 0,∀ϕ ∈ 	α, E
Q[ϕ] ≤ E

R[(ZQ − zW)+] + αz. (6.2)

The existence of a quadruple (Q̂, Ŵ , ẑ, ϕ̂) ∈ Q × W × (0,∞) × 	α which satisfies (6.2) as
equality is then shown and the structure

ϕ̂(ω) = 1{̂zŴ<ZQ̂}(ω) + δ(ω) · 1{̂zŴ=ZQ̂}(ω) (6.3)

for the optimal randomized test ϕ̂ is deduced. Here, the triple (Q̂, Ŵ , ẑ) is a solution of the
optimization problem

inf
z>0

(Q,W)∈Q×W

(
αz + E

R[(ZQ − zW)+]) (6.4)

and the random variable δ : � → [0,1] is chosen so that supP∈P E
P [ϕ̃] = α.

The methodology of the present paper obviates the need to introduce the enlargement set W
of (6.1). Thus, we provide a result about the structure of the solution ϕ̃ in terms of the origi-
nal families of probability measures P and Q. We do, however, need the set ZQ to be weakly
compact.
• Let us study the relationship between Theorem 4.2 and the results of Cvitanić and Karatzas [8].
From the Fubini–Tonelli theorem, it is easy to show that

k(λ)

∫
ZP

ZP dλ ∈ W ∀λ ∈ �+, (6.5)
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where k(λ) = (λ(ZP ))−1 if λ(ZP ) > 0, and k(λ) = 0 if λ(ZP ) = 0. The case λ(ZP ) = 0 implies
that λ(B) = 0 for all B ∈ B and thus

∫
ZP

ZP dλ = 0. If, in (6.2), we consider only elements W

of the form k
∫
ZP

ZP dλ ∈ W , then the inequality (6.2) coincides with the weak duality between
the primal and dual objective functions p(Q) and d(Q), and reduces to the inequality in (3.3),
whereas Problem (6.4) reduces to (3.1).

To summarize, Cvitanić and Karatzas [8] proved the existence of primal and dual solutions
that satisfy (6.2) as equality. In order to do this, strong closure assumptions had to be imposed.
In the methodology of the present paper, the validity of strong duality, hence also the equality in
(3.3), are shown directly via Fenchel duality; the existence of a dual solution then follows. Both
methods lead to a result about the structure of an optimal test. However, it is now possible, as in
Theorem 4.2, to show the impact of the original family P on the sets that define the solution ϕ̂

in [8], as in (6.3):

ẑŴ =
∫

ZP
ZP d̃λ, (6.6)

where (Q̃, λ̃) is the pair that attains the infimum in (3.1), ẑ = λ̃(ZP ) and

Ŵ = k(̃λ)

∫
ZP

ZP d̃λ, in the notation of (6.5).

No embedding of ZP into the larger set W of (6.1) is any longer necessary. However, instead of
assuming that ZQ = {ZQ | Q ∈ Q} is closed under R-a.e. convergence, we need to assume here
that this set is weakly compact in L

1.
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