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Compound Poisson distributions and signed compound Poisson measures are used for approximation of
the Markov binomial distribution. The upper and lower bound estimates are obtained for the total variation,
local and Wasserstein norms. In a special case, asymptotically sharp constants are calculated. For the upper
bounds, the smoothing properties of compound Poisson distributions are applied. For the lower bound
estimates, the characteristic function method is used.
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1. Introduction

The closeness of a compound Poisson (CP) distribution to the Markov binomial (MB) distribu-
tion has been investigated in numerous papers; see, for example, [5,6,12,14,20,31,34,37] and the
references therein. Related problems were considered in [4,7,8,13,18,19,30,33] and [38]. One
would expect the MB–CP case to have been comprehensively studied. As it turns out, this is not
the case. Many papers deal with the convergence facts only. Only a few of the papers dealing
with the estimates of accuracy of approximation involve no assumptions about the stationarity of
the Markov chain.

The aim of this paper is to discuss some compound approximations for non-stationary Markov
chains. We show that for our version of the MB distribution, the natural approximation is a con-
volution of CP and compound binomial distributions, both having the same compounding geo-
metric law. We outline some principles of construction of asymptotic expansions and consider
second order approximations. Part of the paper is devoted to signed compound Poisson approx-
imations which can be viewed as the second order expansions in the exponent. We obtain upper
and lower bound estimates and show that under certain conditions, they are of the same order
of accuracy. All estimates are proved for the total variation, local and Wasserstein norms. For
the upper bound estimates, we employ a convolution technique which can be dated back to [23].
For the lower bound estimates, we use the characteristic function method. The methods of proof
do not allow for reasonably small absolute constants. However, in special cases, asymptotically
sharp constants are calculated.
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We now introduce some notation. Let Ik denote the distribution concentrated at an integer
k ∈ Z, the set of integers, and set I = I0. In what follows, V and M denote two finite signed
measures on Z. Products and powers of V and M are understood in the convolution sense, that
is, V M{A} = ∑∞

k=−∞ V {A−k}M{k} for a set A ⊆ Z; further, M0 = I . The total variation norm,
the local norm and the Wasserstein norm of M are denoted by

‖M‖ =
∞∑

k=−∞
|M{k}|, ‖M‖∞ = sup

k∈Z

|M{k}|, ‖M‖W =
∞∑

k=−∞
|M{(−∞, k]}|,

respectively. Note that ‖(I1 − I )M‖W = ‖M‖. The logarithm and exponential of M are given,
respectively, by

lnM =
∞∑

k=1

(−1)k+1

k
(M − I )k (if ‖M − I‖ < 1), eM = exp{M} =

∞∑
k=0

1

k!M
k.

Note that

‖V M‖∞ ≤ ‖V ‖‖M‖∞, ‖V M‖ ≤ ‖V ‖‖M‖, ‖eM‖ ≤ e‖M‖.

Let M̂(t) (t ∈ R) be the Fourier transform of M . We denote by C positive absolute constants. �

stands for any finite signed measure on Z satisfying ‖�‖ ≤ 1. The values of C and � can vary
from line to line, or even within the same line. Sometimes, to avoid possible ambiguity, the C’s
are supplied with indices. For x ∈ R and k ∈ N = {1,2,3, . . .}, we set(

x

k

)
= 1

k!x(x − 1) · · · (x − k + 1),

(
x

0

)
= 1.

Let ξ0, ξ1, . . . , ξn, . . . be a Markov chain with the initial distribution

P(ξ0 = 1) = p0, P(ξ0 = 0) = 1 − p0, p0 ∈ [0,1]

and transition probabilities

P(ξi = 1|ξi−1 = 1) = p, P(ξi = 0|ξi−1 = 1) = q,

P(ξi = 1|ξi−1 = 0) = q, P(ξi = 0|ξi−1 = 0) = p,

p + q = q + p = 1, p, q ∈ (0,1), i ∈ N.

The distribution of Sn = ξ1 + · · · + ξn (n ∈ N) is called the Markov binomial distribution.
We denote it by Fn. We should note that the definition of the Markov binomial distribution
varies slightly from paper to paper; see [12,30] and [36]. We choose the definition which, on
the one hand, contains the binomial distribution as a special case and, on the other hand, al-
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lows comparison to the Dobrushin’s results. Dobrushin [12] assumed that p0 = 1 and considered
Sn−1 + 1.

Later, we will need various characteristics of Sn. Let

γ1 = qq

q + q
, γ2 = − qq2

(q + q)2

(
p + q

q + q

)
− γ 2

1

2
,

γ3 = γ 2
1 γ̃3,

γ̃3 = γ1

3
+ 1

q(q + q)

{
p2q + pq(2q − q)

q + q
+ 2qq2

(q + q)2

}
+ q

q + q

(
p + q

q + q

)
,

λ = n − p0, κ1 = γ1

(
q − p

q + q
− p0

)
, κ2 = p0

pq

q + q
, C1 = ln

30

19
= 0.4567 . . . .

We use the following measures also:

G = qI1

∞∑
j=0

pj Ij

(
Ĝ(t) = qeit

1 − peit

)
, H = I + κ2(G − I ),

H1 = (1 − γ1)I + γ1G, Hλ
1 = exp

{
λ

∞∑
j=1

(−1)j

j
γ

j

1 (G − I )j

} (
Ĥ λ

1 (t) = (Ĥ1(t))
λ
)
,

Dj = exp

{
j∑

i=1

γi(G − I )i

}
, 1 ≤ j ≤ 3, Dλ

1 = exp{λγ1(G − I )}.

2. Known results

In this section, we discuss some of the known results on the compound Poisson approximations
to the MB distribution. Many papers deal with the convergence facts only; see, for example, [14,
19,20,36]. Usually, the chain is assumed to be stationary. A typical example is Theorem 4.1 in
[31] which states that if p0 = q/(q + q) and α̃ > 0, then

‖Fn − exp{α̃(G − I )}‖ ≤ 2|nq − α̃| + 2q(1 + p + nq(2 − p))

q + q
. (1)

Even if we choose α̃ = nq , the order of accuracy in (1) is not better than nq2. A similar estimate
was obtained in Theorem 5 of [37]. If we use the terminology of the book [2], we can say that
the estimate (1) contains no ‘magic’ factor. If we turn to the papers with ‘magic’ factors, then we
have the following results. In [5], it was proven that if 0 ≤ p ≤ C0 < 1, then

‖Fn − Dn
1‖ ≤ C max(p0, q)min

(
1,

1√
nq

)
+ C min(q,nq2) + Ce−Cn. (2)
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The accuracy can be improved, by some asymptotic expansions, to∥∥∥∥Fn − Dn
1

(
I + p0

q2(p − q)

(q + q)2
I1

)∥∥∥∥ ≤ Cq(p + q)min

(
1,

1√
nq

)
(3)

+ C min(q,nq2) + Ce−Cn.

Note that in [5] formulas (4.5), (4.12) and (4.23) contain misprints. The parameter p0 is mis-
placed and should be in the brackets. If p → p̃ = const, q → 0 and nq → ∞, then the order of
accuracy in (2) is max(q, (nq)−1/2). Also, the order of accuracy in (3) is q . We can hardly call
(3) the second order expansion since the improvement of the accuracy was achieved due to the
more precise approximation of the initial distribution of ξ0 only.

The main idea of signed CP approximations is to leave more than one factorial cumulant in the
exponent. In short, the signed CP measure has the same structure as the CP measure, but can have
negative Poisson parameters. Such approximations are commonly used in insurance models and
in limit theorems; see [1,9,17,21,22,25,28] and the references therein. For the MB distribution in
[5] the following result is proved. If

p ≤ C̃ < 1,
q

q + q
≤ 1 − C̃

30
, (4)

then

‖Fn − Dn
2‖ ≤ C(p + q)

{
min

(√
q

n
,nq2

)
+ max(p0, q)min

(
1,

1√
nq

)
+ e−Cn

}
. (5)

Note that γ2 < 0 and, therefore, D2 is a signed measure rather than a distribution. As a rule,
signed CP approximations are more accurate than CP approximations. Indeed, if n → ∞, then
(5) gives the estimate converging to zero, even if p and q are constants. Also, (2) and (3) are
non-trivial even if we only have q = o(1).

We are unaware of any lower bound estimate for the compound Poisson approximation to the
Markov binomial distribution.

3. The main results

3.1. Geometric expansions

Before formulating our results, it is necessary to explain the choice of approximating measures.
Dobrushin [12] proved that if p → p̃, nq → λ̃ and p0 = 1, then the limit distribution for 1+Sn−1

is the convolution G1 exp{λ̃(G1 − I )}, where G1 is a geometric distribution with parameter p̃,
that is, Ĝ1(t) = (1 − p̃)eit /(1 − p̃eit ). This suggests that approximation of Sn for arbitrary p0

should also be based on expansions in powers of G − I .
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Let F be concentrated on Z and have all moments finite. We can write formally (i.e., without
investigating conditions needed for the convergence of series)

F̂ (t) = 1 +
∞∑

j=1

νj

j ! (e
it − 1)j = 1 +

∞∑
m=1

ν̃m

m!
(
Ĝ(t) − 1

)m
.

Here, νj (j = 1,2, . . .) are factorial moments of F , and ν̃m can be called the geometric facto-
rial moments. Since

eit − 1 = q(Ĝ(t) − 1)

1 + p(Ĝ(t) − 1)
,

it is not difficult to establish a relation between νj and ν̃m:

ν̃m

m! = (−p)m
m∑

j=1

νj

j !
(

− q

p

)j (
m − 1
m − j

)
, m = 1,2, . . . . (6)

Similar relations hold for factorial cumulants and geometric factorial cumulants. For the MB
distribution, we have

ν̃1 = qν1 = qESn = nγ1 + κ1 + κ2 − (κ1 + κ2)(p − q)n. (7)

(For the formula of the mean, see [7].) Since we will assume p and q to be small, the last
summand in (7) will be neglected. As it turns out, Fn is close to some convolution W1�

n
1; see

(32) below. We use (6) for choosing the approximating measure for W1. The cumulant analog of
(6) is used for �n

1.

3.2. Compound Poisson approximation

In this paper, we usually assume that

p ≤ 1
2 , q ≤ 1

30 . (8)

The size of the absolute constants is determined by the method of proof. We expand Fn as a series
of convolutions of measures. The remainder term is usually estimated by a series containing
powers of q + p. If the sum q + p is sufficiently small, the series converges. Thus, although we
have some freedom in the choice of magnitude of p and q , the sum p + q must be small. The
choice of condition (8) is determined by the fact that the CP limit occurs when nq → λ̃; see,
for example, Table 1 in [12]. Therefore, if we expect the CP approximation to be accurate, then
q should be small. On the other hand, we have included the case q = constant, that is, the case
which is usually associated with the normal approximation. We choose the assumption p ≤ 1/2
instead of (4), in order to make our proofs clearer.
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Theorem 3.1. Let p ≤ 1/2. We then have

‖Fn − HDλ
1‖ ≤ Cq(p + q)min

(
1,

1√
nq

)
+ C min(q,nq2) + C(p + q)e−C1n. (9)

If, in addition, q ≤ 1/30, then

‖Fn − HDλ
1‖∞ ≤ Cq(p + q)min

(
1,

1

nq

)
+ C min

(√
q

n
,nq2

)
(10)

+ C(p + q)e−C1n,

‖Fn − HDλ
1‖W ≤ Cq(p + q) + C min

(
q
√

nq,nq2) + C(p + q)e−C1n. (11)

Corollary 3.1. If (8) is satisfied and nq ≥ 1, then

‖Fn − HDn
1‖ ≤ Cq, ‖Fn − HDn

1‖∞ ≤ C

√
q

n
, ‖Fn − HDn

1‖W ≤ Cq
√

nq.

Corollary 3.2. If (8) is satisfied, then

‖Fn − HHλ
1 ‖ ≤ C(q + pe−C1n).

Remark 3.1.
(i) H is compound Poisson distribution; see Lemma 5.3 below. If q ≤ p, then Hλ

1 is also a
CP distribution. Thus, we see that there exist quite different forms of CP approximations
with similar orders of accuracy.

(ii) The estimate (9) is slightly better than (3) for p,q ≤ exp{−C1n}, and more accurate than
(2) for q ≤ 1/

√
nq and p0 ≥ C.

(iii) For the closeness of Fn and H1D
λ
1 , it suffices to assume q → 0, in considerable contrast

to nq → λ̃, the latter being needed for the convergence to the limit CP law.
(iv) We can write min(q,nq2) = nq2 min(1, (nq)−1). The last factor, in terms of [2], page 5,

can be called the ‘magic’ factor.

The accuracy of approximation can be improved by the second order expansion.

Theorem 3.2. If p ≤ 1/2, then∥∥Fn − HDλ
1

(
I + nγ2(G − I )2)∥∥ ≤ C

{
q2 + pq min

(
1,

1√
nq

)
+ (p + q)e−C1n

}
.

If, in addition, q ≤ 1/30, then∥∥Fn − HDλ
1

(
I + nγ2(G − I )2)∥∥∞

≤ C

{
q2 min

(
1,

1√
nq

)
+ pq min

(
1,

1

nq

)
+ (p + q)e−C1n

}
,
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1

(
I + nγ2(G − I )2)∥∥

W

≤ C
{
q2 max

(
1,

√
nq

) + pq + (p + q)e−C1n
}
.

Note that the last estimate contains max(1,
√

nq), reflecting the fact that the estimates for the
Wasserstein distance are less accurate than the ones for the total variation norm. It is even more
evident when nq ≥ 1.

Corollary 3.3. If (8) is satisfied and nq ≥ 1, then the estimates in Theorem 3.2 are

Cq

(
q + p√

nq

)
, C

√
q

n

(
q + p√

nq

)
, Cq

√
nq

(
q + p√

nq

)
,

respectively.

We see that, in general, even the second order estimates in total variation are only meaningful
for q = o(1).

3.3. Signed compound Poisson approximations

The choice of a signed CP approximation, in general, means that the first term of the asymptotic
expansion, unlike Theorem 3.2, is in the exponent.

Theorem 3.3. If condition (8) is satisfied, then

‖Fn − H exp{κ1(G − I )}Dn
2‖ ≤ C(p + q)

{
min

(
q,

√
q

n

)
+ e−C1n

}
, (12)

‖Fn − H exp{κ1(G − I )}Dn
2‖∞ ≤ C(p + q)

{
min

(
q,

1

n

)
+ e−C1n

}
,

‖Fn − H exp{κ1(G − I )}Dn
2‖W ≤ C(p + q){q + e−C1n}.

Note that for nq ≤ 1 and p0 = constant, (12) is more accurate that (5). More importantly,
when p = constant and q = constant, the estimate (12) is of order O(n−1/2). In this sense, the
signed CP approximation is comparable to the normal one and, moreover, it holds in the total
variation metric. Meanwhile, for discrete distributions, the normal approximation holds in the
uniform metric only. Just as in the CP case, the second order expansions can be used.

Theorem 3.4. If (8) holds, then∥∥Fn − H exp{κ1(G − I )}Dn
2

(
I + nγ3(G − I )3)∥∥

(13)

≤ C(p + q)

{
min

(
q,

1

n

)
+ e−C1n

}
,
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2

(
I + nγ3(G − I )3)∥∥∞

(14)

≤ C(p + q)

{
min

(
q,

1

n
√

nq

)
+ e−C1n

}
,∥∥Fn − H exp{κ1(G − I )}Dn

2

(
I + nγ3(G − I )3)∥∥

W
(15)

≤ C(p + q)

{
min

(
q,

√
q

n

)
+ e−C1n

}
.

Corollary 3.4. Let nq ≥ 1. The estimates (13)–(15) are then at least of order

C(p + q)

n
,

C(p + q)

n
√

nq
,

C(p + q)
√

q√
n

,

respectively.

In Theorem 3.4, only a part of the asymptotic expansion is in the exponent. Therefore, the
following question naturally arises. Is it possible to find a signed CP measure which, up to a
constant, provides the same accuracy as in Theorem 3.4? As it follows from the following result,
such a measure indeed exists.

Theorem 3.5. If (8) holds, then

‖Fn − H exp{κ1(G − I )}Dn
3‖ ≤ C(p + q)

{
min

(
q,

1

n

)
+ e−C1n

}
,

‖Fn − H exp{κ1(G − I )}Dn
3‖∞ ≤ C(p + q)

{
min

(
q,

1

n
√

nq

)
+ e−C1n

}
,

‖Fn − H exp{κ1(G − I )}Dn
3‖W ≤ C(p + q)

{
min

(
q,

√
q

n

)
+ e−C1n

}
.

3.4. Lower bound estimates

In this section, we show that in some cases, the estimates in Theorems 3.1 and 3.3 are of the
correct order. We concentrate our attention on the case nq ≥ 1.

Theorem 3.6. Let condition (8) be satisfied and let nq ≥ 1. Then, for some absolute constants
C2 and C3,

‖Fn − HDλ
1‖ ≥ C2q

(
1 − C3

(
q + p√

nq

))
, (16)

‖Fn − HDλ
1‖∞ ≥ C2

√
q

n

(
1 − C3

(
q + p√

nq

))
, (17)
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‖Fn − HDλ
1‖W ≥ C2q

√
nq

(
1 − C3

(
q + p√

nq

))
. (18)

It is obvious that estimates (16)–(18) are non-trivial only when the expression in the brackets
is positive. Let p ≤ 1/2, nq → ∞ and q → 0. Combining Theorems 3.1 and 3.6, for sufficiently
large n, we obtain

C4q ≤ ‖Fn − HDλ
1‖ ≤ C5q,

C4

√
q

n
≤ ‖Fn − HDλ

1‖∞ ≤ C5

√
q

n
,

C4q
√

nq ≤ ‖Fn − HDλ
1‖W ≤ C5q

√
nq.

Of course, the last estimate, as well as the one in (18), is of interest only if q
√

nq → 0. Similar
results can be obtained for the signed CP approximations.

Theorem 3.7. Let condition (8) be satisfied and let nq ≥ 1. Then, for some absolute constants
C6 and C7,

‖Fn − H exp{κ1(G − I )}Dn
2‖ ≥ C6

√
q

n

(
|γ̃3| − C8

p + q√
nq

)
, (19)

‖Fn − H exp{κ1(G − I )}Dn
2‖∞ ≥ C6

n

(
|γ̃3| − C8

p + q√
nq

)
, (20)

‖Fn − H exp{κ1(G − I )}Dn
2‖W ≥ C6q

(
|γ̃3| − C8

p + q√
nq

)
. (21)

Let nq → ∞ as q → 0 and p → p̃. Also, assume that n is sufficiently large so that the right-
hand estimates of (19)–(21) are positive. We then have

C8

√
q

n
≤ ‖Fn − H exp{κ1(G − I )}Dn

2‖ ≤ C9

√
q

n
,

C8

n
≤ ‖Fn − H exp{κ1(G − I )}Dn

2‖∞ ≤ C9

n
,

C8q ≤ ‖Fn − H exp{κ1(G − I )}Dn
2‖W ≤ C9q.

3.5. Asymptotically sharp constants

In the previous section, we proved that upper and lower bound estimates are of the same order,
provided that nq is large and q is small. As it turns out, if, in addition, p is small, then it is
possible to obtain asymptotically sharp constants.
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Theorem 3.8. Let p ≤ 1/4, q ≤ 1/30 and nq ≥ 1. Then

∣∣‖Fn − HDλ
1‖ − A11

∣∣ ≤ Cq

(
p + q + 1√

nq

)
, (22)

∣∣‖Fn − HDλ
1‖∞ − A12

∣∣ ≤ C

√
q

n

(
p + q + 1√

nq

)
, (23)

∣∣‖Fn − HDλ
1‖W − A13

∣∣ ≤ Cq
√

nq

(
p + q + 1√

nq

)
, (24)

where

A11 = 4|γ2|
γ1q

√
2πe

, A12 = |γ2|
γ1

√
γ1

√
2πnq

, A13 = |γ2|
√

2n

q
√

γ1πq
.

As a consequence of (22), we note that if p → 0, q → 0 and nq → ∞, then

‖Fn − HDλ
1‖ ∼ 6q√

2πe
.

Similar relations can be obtained for the local and Wasserstein norms as well.

4. Applications of Markov binomial models

In this section, we discuss some areas where the results of our paper can be applied.

(i) Aggregate claim distribution in the individual model. Consider a portfolio of n risks. Each
risk produces a positive claim amount during a certain reference period. The aggregate claim of
the portfolio is then

Sind = X1 + X2 + · · · + Xn.

It is usually assumed that all Xj are independent. However, the independence of claims does
not always reflect reality. For example, an accident involving a tourist group, life insurance for a
husband and wife or pensions for workers of the same company are likely to produce dependent
risks. For discussion of the dependence of risks and further examples, see [10,16] and [26].

Compound Poisson and signed compound Poisson approximations in the independent case of
an individual model have been quite thoroughly investigated; see, for example, [15,17]. On the
other hand, there are only a few results for the total variation metric for dependent risks. Dhaene
and Goovaerts [10] investigated a similar model (although not explicitly Markovian) under an
assumption which, in our notation, is equivalent to qm = 0. However, under such an assumption,
one cannot expect the limiting law to be compound Poisson. Therefore, we have excluded this
peripheral case from this paper, assuming q to be small, but not identically zero. In [16], Poisson
approximation in the general setting of dependent risks was discussed. However, in our case,
their result is not applicable since for small q , the distribution of the approximated sum is not
close to the Poisson distribution, but rather to the compound Poisson law.
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Let us assume that aggregated claim amount Sind of the portfolio consists of N independent
groups of risks. We assume a homogeneous model for each group of risks with Markovian de-
pendence. Let each risk have a two-point distribution. More precisely, let

Sind =
N∑

m=1

nm∑
j=1

Xm
j .

Here, Xm
j and Xl

k are independent if m �= l. We assume that each risk of the mth group can
produce a claim of size am. Moreover, the dependence of risks of the same group is Markovian:
P(Xm

1 = am) = qm, P(Xm
1 = 0) = pm and

P(Xm
j = am|Xm

j−1 = 0) = qm, P(Xm
j = 0|Xm

j−1 = 0) = pm,

P(Xm
j = am|Xm

j−1 = am) = pm < 1/2, P(Xm
j = 0|Xm

j−1 = am) = qm,

pm + qm = qm + pm = 1, pm,qm ∈ (0,1), m = 1,2, . . . ,N, j = 2, . . . , nm.

The results of the previous sections can now easily be applied. We illustrate this with just one
example. Let us define a compound Poisson variable in the following way:

Scp =
N∑

m=1

am

Nm∑
j=0

Yjm.

Here, Yjm are i.i.d. geometric random variables, P(Yjm = k) = qmpk−1
m , k = 1,2, . . . , and Nm

is a Poisson random variable with parameter nmqmqm/(qm + qm). The random variables Nm,
m = 1,2, . . . ,N , are independent and also do not depend on Yjm. Denote the distributions of
Sind and Scp by F ind and F cp, respectively. The characteristic function of F cp is then given by

F̂ cp(t) = exp

{
N∑

m=1

nmqmqm(eitam − 1)

(qm + qm)(1 − pmeitam)

}
.

Also, we have the following estimate of approximation:

‖F ind − F cp‖ ≤ C

N∑
m=1

[qm(pm + qm)min(1, (nmqm)−1/2)

(25)
+ min(qm,nmq2

m) + (pm + qm)e−C1nm ].
Note that the approximation is closer if all qm are small.

For the proof of (25), one should use the triangle inequality, thus reducing the problem to N

estimates of Markov binomial distributions concentrated on 0, am,2am, . . . . The total variation
metric is invariant with respect to norming. Therefore, without loss of generality, one can switch
to integer numbers and apply (9) N times with p0 = 0.

It is obvious that the second order estimates and estimates in Wasserstein metric can be ob-
tained in a similar way.
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(ii) System failure models. The Markov binomial distribution naturally arises in weather and
stock market trends. It is also a natural model for system failure situations. As an example, we
present one model from Sahinoglu [29], who considered an electric power supply system with
operating and non-operating states throughout a year-long period of operation, discretized in
hours. Let Mi be the margin values at hourly steps, that is,

Mi = TPG − X − Li,

where TPG denotes total power generation, Li denotes power demand (hourly peak load forecast)
and X denotes unplanned forced outages. Let Yi be an indicator of {Mi < 0}. Then S = Y1 +
Y2 + · · · + Yn represents cumulated hours of negative-margin hours, that is, the unavailability
of power at the nth hour. It is natural to assume that S has a Markov binomial distribution.
Notably, the Markov chain Y1, Y2, . . . is non-stationary. Therefore, many known results about
the compound Poisson approximation cannot be applied directly. Also, the results of our paper
relax the assumptions on transition probabilities from Sahinoglu’s model and give estimates of
the accuracy of approximations. Further, as shown in Sahinoglu [29], page 49, the probabilities
of the compounding geometric law under certain assumptions can be viewed as probabilities for
the number of trials required to repair the system.

(iii) Industrial applications: sampling plans. A basic assumption in standard acceptance plans
for attributes is that the characteristics of items in the lots are i.i.d. Bernoulli variables. Recently,
however, the focus has been on monitoring the ongoing production process by inspecting the
items sequentially. In such cases, the quality levels of successive items are statistically dependent
and it has been found in practice that the Markov-dependent model is a very useful one; see [24].
Indeed, Bhat et al. [3] modified the standard acceptance sampling plans and proposed sequential
single sampling plans for monitoring Markov-dependent production processes. Vellaisamy and
Sankar [35] proposed optimal systematic sampling plans for Markov-dependent processes. We
will outline some possible new research directions in this field.

5. Auxiliary results

We now introduce further notation:

a1 = γ1, a2 = γ2 + a2
1

2
, a3 = γ3 + a1a2 − a3

1

3
, (26)

Y = G − I, B =
∞∑

j=0

(pI1 − qI)j , K =
∞∑

j=0

(pI1 − qI − 2γ1Y)j , (27)

L = 4q2

(q + q)2
Y 2[q2I + p(q + q)(I − pI1)]K2. (28)

In the following two lemmas, C(k) denotes an absolute positive constant depending on k.
Throughout this paper, we set 00 = 1.
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Lemma 5.1. Let t > 0, k ∈ {0,1, . . .} and 0 < p < 1. Also, let M be a finite (signed) measure
concentrated at Z. Then, for Y defined in (27),

‖Y 2etY ‖ ≤ 3

te
, ‖Y ketY ‖ ≤

(
2k

te

)k/2

. (29)

If p ≤ 1/2, then

‖Y ketY ‖∞ ≤ C(k)

t(k+1)/2
, ‖YM‖W ≥ 2

3
‖M‖, ‖YM‖ ≥ 2

3
‖(I1 − I )M‖. (30)

Proof. The estimates in (29) follow from the properties of the total variation norm and results
in [27] and [11]. The first estimate in (30) is a consequence of the inversion formula and the
following inequalities:

Re Ŷ (t) ≤ − 2

1 + p
sin2 t

2
, |Ŷ (t)| ≤ 2

q

∣∣∣∣ sin
t

2

∣∣∣∣.
Here, Re{·} means the real part of the complex number. In view of the relation between total
variation and Wasserstein norms (see the Introduction), we get

‖MY‖W =
∥∥∥∥∥(I1 − I )M

∞∑
j=0

pjIj

∥∥∥∥∥
W

=
∥∥∥∥∥M

∞∑
j=0

pjIj

∥∥∥∥∥,

‖M(I1 − I )‖ = ‖MY(I − pI1)‖ ≤ ‖MY‖(1 + p),

‖M‖ =
∥∥∥∥∥M

∞∑
j=0

pj Ij (I − pI1)

∥∥∥∥∥ ≤
∥∥∥∥∥M

∞∑
j=0

pj Ij

∥∥∥∥∥(1 + p).

The results in (30) now follow easily. �

For our asymptotically sharp results, we need the following lemma. Set

ϕk(x) = 1√
2π

dk

dxk
e−x2/2, ‖ϕk‖1 =

∫
R

|ϕk(x)|dx, ‖ϕk‖∞ = sup
x∈R

|ϕk(x)|

(k = 0,1, . . .).

Lemma 5.2. Let t > 0 and k = 0,1,2, . . . . We then have∣∣∣∣∥∥(I1 − I )ket (I1−I )
∥∥ − ‖ϕk‖1

tk/2

∣∣∣∣ ≤ C(k)

t(k+1)/2
,∣∣∣∣∥∥(I1 − I )ket (I1−I )

∥∥∞ − ‖ϕk‖∞
t (k+1)/2

∣∣∣∣ ≤ C(k)

tk/2+1
,∣∣∣∣∥∥(I1 − I )ket (I1−I )

∥∥
W − ‖ϕk−1‖1

t (k−1)/2

∣∣∣∣ ≤ C(k)

tk/2
(k �= 0).
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The proof follows from a more general Proposition 4 in [28].

Lemma 5.3. If N > 0 and 0 < α ≤ p < 1, then (I + αY)N is a CP distribution.

Proof. Note that

(I + αY)N = exp{−N ln(1 − α)(F − I )}.
Here, F is a distribution concentrated on {1,2,3, . . .} with

F {j} = − 1

ln(1 − α)

1

j

(
pj −

(
p − α

1 − α

)j)
.

The last relation obviously completes the proof. �

Before we proceed to our main lemma, we need some additional facts about Fn. Similarly to
[5] (see also [7]), it is possible to check that under assumption (8), we have

F̂n(t) = �̂n
1(t)Ŵ1(t) + �̂n

2(t)Ŵ2(t), (31)

where

�̂1,2(t) = peit + p ± D̂1/2(t)

2
,

Ŵ1,2(t) = p0

2

(
1 ± q + q + p(eit − 1)

D̂1/2(t)

)
+ 1 − p0

2

(
1 ± q + q + (2q − p)(eit − 1)

D̂1/2(t)

)
,

D̂(t) = (peit + p)2 + 4eit (q − p).

This allows us to write Fn as

Fn = �n
1W1 + �n

2W2 (32)

and to express �1,2 and W1,2 as the following series:

�1 = I + a1Y + 1

2
{(1 + q)I − pI1 + 2a1Y }

∞∑
j=1

(
1/2
j

)
(−1)jLj , (33)

�2 = pI1 − qI + (I − �1), (34)

W1,2 = 1

2

{
I ± [(q + q)I + p(I1 − I )]K

∞∑
j=0

(−1/2
j

)
(−1)jLj

}
(35)

± (1 − p0)(q − p)(I1 − I )K

∞∑
j=0

(−1/2
j

)
(−1)jLj .

The following lemma is used as the main tool in the proofs.
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Lemma 5.4. If condition (8) is satisfied, then

�1 = I +
3∑

j=1

ajY
j + Cq3(p + q)Y 4�, (36)

ln�1 =
3∑

j=1

γjY
j + Cq3(p + q)Y 4�, (37)

ln�1 = γ1Y + 19

60
γ1Y

2�, (38)

‖�2‖ ≤ 19

30
, ‖�1 − I‖ ≤ 0.1, (39)

W1 = I + (κ1 + κ2)Y + Cq(p + q)Y 2�, (40)

W2 = C(p + q)(I1 − I )�, ‖W2‖ ≤ 7. (41)

For any finite signed measure M on Z and any t > 0, we have

‖M exp{t ln�1}‖ ≤ C‖M exp{(tγ1/30)Y }‖, (42)

‖MDt
j‖ ≤ C‖M exp{(tγ1/30)Y }‖, j = 1,2,3. (43)

Estimates (42)–(43) also hold for the local norm.

Proof. We have

a1 = γ1 ≤ 1

30
,

1

q + q
≤ 1

1 − p
≤ 2, ‖Y‖ ≤ ‖G‖ + 1 = 2,

‖K‖ ≤
∞∑

j=0

(p + q + 4a1)
j ≤ 3, (44)

‖L‖ ≤ 9 · 4 · q2 · 4

(
1 + p

q + q
(1 + p)

)
≤ 0.4. (45)

Note that ∣∣∣∣(1/2
2

)∣∣∣∣ = 1

8
,

∣∣∣∣(1/2
3

)∣∣∣∣ = 1

16
,

∣∣∣∣(1/2
j

)∣∣∣∣ ≤ 5

128
, j ≥ 4.

We have
∞∑

j=1

∣∣∣∣(1/2
j

)∣∣∣∣‖L‖j−1 ≤ 1

2
+ 0.4

8
+ (0.4)2

16
+ 5

128

(0.4)3

0.6
≤ 0.5642
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and

[I (1 + q) − pI1 + 2a1Y ]L = 4
q2Y 2

(q + q)2
[q2I + p(q + q)(I − pI1)]K

= γ1Y
2 12q

q(q + q)

(
q2 + p(q + q)(1 + p)

)
� = γ1Y

2�.

Consequently,

�1 = I + γ1Y + 1
2 0.5642γ1Y

2� = I + 1.2821γ1Y� = I + 0.1�

and

ln�1 = �1 − I +
∞∑

j=2

(−1)j+1

j
(�1 − I )j

= γ1Y + 0.2821γ1Y
2� + 1

2
1.2821γ 2

1 Y 2
∞∑

j=2

(0.1)j−2� = γ1Y + 19

60
γ1Y

2�.

Moreover, ‖�2‖ ≤ p + q +‖�1 − I‖ ≤ 19/30. Thus, we have proven (38). We use this estimate
for obtaining (42). By the properties of the total variation norm, we have

‖Met ln�1‖ ≤
∥∥∥∥M exp

{
tγ1

30
Y

}∥∥∥∥∥∥∥∥ exp

{
29tγ1

30
Y + 19tγ1

60
Y 2�

}∥∥∥∥.

Applying Lemma 5.1, we prove that the second norm is majorized by

1 +
∞∑

r=1

1

r!
∥∥∥∥19

60
tγ1Y

2 exp

{
29

30r
tγ1Y

}∥∥∥∥r

≤ 1 +
∞∑

r=1

er

rr
√

2πr

(
57r

58e

)r

≤ C.

The last two estimates obviously lead to (42). The estimate (43) is proved similarly. For the proof
of (36), note that

�1 = I + γ1Y − q2

(q + q)2
Y 2[q2I + p(q + q)(I − pI1)]K + Cq4Y 4�, (46)

I1 − I = Y(I − pI1), (q + q)B = I + p(I1 − I )B, (47)

I1 − I = 2Y�, (q + q)(I − pI1)B = qI − pq(I − pI1)BY, (48)

B = 1

q + q
I + pq

(q + q)2
Y − p2q

(q + q)2
Y(I1 − I )B, (49)

K = B + 2γ1YKB = B − 2γ1B
2Y + 4γ 2

1 B2Y 2B2K. (50)
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Substituting (48)–(50) into (46), we obtain (36). Taking into account (39), we obtain

ln�1 =
3∑

j=1

(−1)j+1

j
(�1 − I )j + C(�1 − I )4�.

Now, for the proof of (37), it suffices to use (36). From (50) and the first relation in (48), we get
p(I1 − I )K = p(I1 − I )B + CpqY 2�. Moreover,

p(I1 − I )B = pq

q + q
Y − p2q(I1 − I )BY

q + q
= pqY

q + q
+ CpqY 2�.

The last two equations and (35) allow us to prove (40). Since W1 + W2 = I , we easily obtain the
first relation in (41). Now,

‖W‖2 ≤ 1

2

(
1 + (q + q)3

∞∑
j=0

∣∣∣∣(−1/2
j

)∣∣∣∣0.4j

)
+ |q − p| · 2 · 3

∞∑
j=0

∣∣∣∣(−1/2
j

)∣∣∣∣0.4j < 7.

Thus, Lemma 5.4 is proved. For the lower bound estimates, we need the following result. �

Lemma 5.5. Let M be concentrated on Z, α ∈ R and b > 1. Then,

‖M‖ ≥ C

∣∣∣∣ ∫ ∞

−∞
e−t2/2M̂

(
t

b

)
e−itα dt

∣∣∣∣, (51)

‖M‖∞ ≥ C

b

∣∣∣∣ ∫ ∞

−∞
e−t2/2M̂

(
t

b

)
e−itα dt

∣∣∣∣. (52)

The estimates (51) and (52) remain valid if e−t2/2 is replaced by te−t2/2.

Lemma 5.5, with ‖M‖ replaced by the uniform norm of M , was proven in [32]. Since the
uniform norm is majorized by the total variation norm, (51) also holds.

Lemma 5.6. If (8) is satisfied, then, for all |t | ≤ π,∣∣ exp
{
nκ1

(
Ŷ (t) − it/q

)} − 1
∣∣ ≤ Cnqt2, (53)

|D̂n
2 (t)| ≤ 1, |D̂n

2 exp{−itnγ1/q} − 1| ≤ Cnqt2. (54)

Proof of Lemma 5.6 is straightforward and therefore omitted.
Finally, let us introduce an inverse compound measure for H . Let

H−1 = exp

{
−

∞∑
j=1

pj

j

(
1 −

(
1 − p0q/(q + q)

1 − κ2

)j)
(Ij − I )

}
.



Compound Poisson–Markov binomial 1131

Lemma 5.7. If (8) is satisfied, then

‖H−1‖ ≤ e2 (55)

and, for any (signed) finite measure M concentrated at Z,

‖MH‖ ≥ e−2‖M‖, ‖M exp{−p0γ1Y }‖ ≥ ‖M‖. (56)

The estimates in (56) remain valid if the total variation norm is replaced by the local norm.

Proof. Estimate (55) easily follows from the property ‖e‖M ≤ e‖M‖; see the Introduction. Now,
‖M‖ = ‖MHH−1‖ ≤ ‖MH‖‖H−1‖ ≤ e2‖MH‖. Since exp{p0γ1Y } is a distribution, its total
variation is 1. Therefore, ‖M‖ = ‖M exp{−p0γ1Y } exp{p0γ1Y }‖ ≤ ‖M exp{−p0γ1Y }‖. Esti-
mates for the local norm are proved similarly. �

6. Proofs

For upper bound estimates, we use an adaptation of Le Cam’s [23] approach which deals with
convolutions of measures.

Proof of Theorem 3.1. Without loss of generality, we can assume that (8) holds. We have

‖Fn − HDλ
1‖ ≤ ‖�n

1 − Dn
1‖‖W1‖ + ‖Dn

1 (W1 − H exp{−p0γ1Y })‖ + ‖�2‖n‖W2‖.
Further, in view of Lemma 5.4,

‖�n
1 − Dn

1‖ ≤
∥∥∥∥Dn

1

∫ 1

0
(exp{τ [n ln�1 − nγ1Y ]})′τ dτ

∥∥∥∥
≤ n

∫ 1

0
‖[ln�1 − γ1Y ] exp{τn ln�1 + (1 − τ)nγ1Y }‖dτ

≤ Cn‖[ln�1 − γ1Y ] exp{(nγ1/30)Y }‖ ≤ Cnq2‖Y 2 exp{(nγ1/30)Y }‖.
By Lemma 5.4,

W1 − H exp{−p0γ1Y } = [W1 − I − (κ1 + κ2)Y ] + [I + (κ1 + κ2)Y − (I − p0γ1Y)H ]
+ [H(I − p0γ1Y − exp{−p0γ1Y })] = Cq(p + q)Y�.

Taking into account the last two estimates, applying Lemma 5.1 and estimating ‖W2‖ and ‖�2‖
by (41) and (39), we complete the proof of (9). The estimates in (10) and (11) are proved simi-
larly. �

Proof of Corollary 3.2. Following the proof of (42), one can prove the same property for H1.
Also,

‖HDλ
1 − HHλ

1 ‖ ≤ Cλ‖(D1 − H1) exp{(nγ1/30)Y }‖ ≤ Cnq2‖Y 2 exp{(nγ1/30)Y }‖.
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The rest of the proof is obvious. �

Proof of Theorem 3.2. We have

‖Fn − HDλ
1 (I + nγ2Y

2)‖
≤ ‖�2‖n‖W2‖ + ‖W1‖‖�n

1 − Dn
2‖

+ ‖W1‖‖Dn
1 (enγ2Y

2 − I − nγ2Y
2)‖ + ‖Dn

1 (I + nγ2Y
2)(W1 − He−p0γ1Y )‖.

Similarly to the proof of Theorem 3.1, and using (43), we obtain

‖�n
1 − Dn

2‖ ≤ Cn

∥∥∥∥[ln�1 − γ1Y − γ2Y
2]

∫ 1

0
exp{τn ln�1 + (1 − τ)[nγ1Y + nγ2Y

2]}dτ

∥∥∥∥
≤ Cn‖[ln�1 − γ1Y − γ2Y

2] exp{(nγ1/30)Y }‖
≤ Cnq2(q + p)‖Y 3 exp{(nγ1/30)Y }‖

and

‖Dn
1 (enγ2Y

2 − I − nγ2Y
2)‖ ≤

∥∥∥∥(nγ2Y
2)2

∫ 1

0
Dn

1 eτnγ2Y
2
(1 − τ)dτ

∥∥∥∥
≤ C(nγ2)

2‖Y 4 exp{(nγ1/30)Y }‖.
Note that for any signed finite measure M ,

‖Dn
1 (I + nγ2Y

2)M‖ ≤ ‖Dn/2
1 ‖M(1 + n|γ2|‖Y 2D

n/2
1 ‖) ≤ C‖Dn/2

1 M‖.
The rest of the proof is very similar to the proof of Theorem 3.1 and is hence omitted. �

Proof of Theorems 3.3, 3.4 and 3.5. The proofs are very similar to those of Theorems 3.1
and 3.2. From Lemma 5.4 and the definition of the exponent measure, it is not difficult to show
that

W1 − eκ1Y H = [W1 − I − (κ1 + κ2)Y ] + [I + (κ1 + κ2)Y − (I + κ1Y)H ]
+ H(I + κ1Y − eκ1Y ) = Cq(p + q)Y 2�,

‖�n
1W1 − Dn

2Heκ1Y ‖ ≤ ‖�n
1 − Dn

2‖‖W1‖ + ‖Dn
2 (W1 − Heκ1Y )‖.

Now, it is not difficult to prove Theorem 3.3. Theorem 3.5 is proved similarly. For the proof of
Theorem 3.4, one should use Theorem 3.5, the triangle inequality and the fact that

‖Dn
2 (I + nγ3Y

3) − Dn
3‖ =

∥∥∥∥Dn
2

∫ 1

0
(1 − τ)eτnγ3Y

3
(nγ3Y

3)2 dτ

∥∥∥∥
≤ C(nγ3)

2‖Y 6 exp{nγ1Y
2/30}‖.
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For the last estimate, we have used the same argument as in the proof of (43). �

Proof of Theorem 3.6. Taking into account Theorem 3.2, (30) and (56), we get

‖Fn − HDλ
1‖ ≥ n|γ2|‖HDλ

1Y 2‖ − Cq

(
q + p√

nq

)
(57)

≥ C10n|γ2|‖Dn
1 (I1 − I )2‖ − C11q

(
q + p√

nq

)
.

Let z = t/(h
√

nq) and μ = nγ1/q . The constant h > 1 will be chosen later. Applying
Lemma 5.6, we then obtain

J =
∣∣∣∣ ∫

R

e−t2/2D̂n
1 (z)e−izμ(eiz − 1)2 dt

∣∣∣∣ ≥
∣∣∣∣ ∫

R

e−t2/2z2 dt

∣∣∣∣ − J1 − J2. (58)

Here,

J1 =
∫

R

e−t2/2z2|D̂n
1 (z)e−izμ − 1|dt ≤ Cnq

∫
R

z4e−t2/2 dt = C

h4nq
,

J2 =
∫

R

e−t2/2|D̂n
1 (z)e−izμ||(eiz − 1)2 − (iz)2|dt ≤ C

h3nq
√

nq
.

Combining the last two estimates with (58) and choosing h to be a sufficiently large absolute
constant, we obtain

J ≥ C12

h2nq

(
1 − C13

h2
− C14

h
√

nq

)
≥ C15

nq
.

Applying Lemma 5.5 and substituting the result into (57), we get (16). Estimates (17) and (18)
are proved similarly.

For the proof of Theorem 3.7, one should use Theorem 3.4 and take t exp{−t2/2} instead of
exp{−t2/2}. The proof is then almost identical to that of Theorem 3.6 and is hence omitted. �

Proof of Theorem 3.8. We have∣∣‖Fn − HDλ
1‖ − A11

∣∣ ≤ ‖Fn − HDλ
1 (I + nγ2Y

2)‖

+ ‖(He−p0γ1Y − I )Dn
1nγ2Y

2‖ + n|γ2|
∥∥∥∥(

Y 2 − 1

q2
(I1 − I )2

)
Dn

1

∥∥∥∥
+ n|γ2|

q2

∥∥∥∥(I1 − I )2
(

Dn
1 − exp

{
nγ1

q
(I1 − I )

})∥∥∥∥
+

∣∣∣∣n|γ2|
q2

∥∥∥∥(I1 − I )2 exp

{
nγ1

q
(I1 − I )

}∥∥∥∥ − A11

∣∣∣∣.
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One should now apply Theorem 3.2, (48), Lemmas 5.2, 5.1 and the following, easily verifiable,
relations:

Y = (I1 − I )

q

∞∑
j=0

(
p

q

)j

(I1 − I )j = (I1 − I )

q
+ 3p

q2
(I1 − I )2�

and

D1 − exp

{
γ1

q
(I1 − I )

}
= exp

{
γ1

q
(I1 − I )

}(
exp

{
3pγ1

q2
(I1 − I )2�

}
− I

)
= Cpq(I1 − I )2�.

Note that∥∥∥∥(I1 − I )2
(

Dn
1 − exp

{
nγ1

q
(I1 − I )

})∥∥∥∥
=

∥∥∥∥∥(I1 − I )2
(

D1 − exp

{
γ1

q
(I1 − I )

}) n∑
j=1

D
n−j

1 exp

{
(j − 1)

γ1

q
(I1 − I )

}∥∥∥∥∥
≤ Cnpq

(
‖(I1 − I )4D

n/3
1 ‖ +

∥∥∥∥(I1 − I )4 exp

{
nγ1

3q
(I1 − I )

}∥∥∥∥)
.

All other estimates are obtained similarly. �
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[5] Čekanavičius, V. and Mikalauskas, M. (1999). Signed Poisson approximations for Markov chains.
Stochastic Process. Appl. 82 205–227. MR1700006

http://www.ams.org/mathscinet-getitem?mr=1905850
http://www.ams.org/mathscinet-getitem?mr=1163825
http://www.ams.org/mathscinet-getitem?mr=1294006
http://www.ams.org/mathscinet-getitem?mr=1700006


Compound Poisson–Markov binomial 1135
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