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Tackling climate change is at the top of many agendas. In this context, emission trading schemes are con-
sidered as promising tools. The regulatory framework for an emission trading scheme introduces a market
for emission allowances and creates a need for risk management by appropriate financial contracts. In this
work, we address logical principles underlying their valuation.

Keywords: emission derivatives; environmental risk

1. Introduction

The generic principle of an emission trading scheme is based on the so-called ‘cap-and-trade’
mechanism. In this framework, an authority allocates fully tradable credits among responsible
institutions. At pre-settled compliance dates, each source must have enough allowances to cover
all of its recorded emissions, or be subject to penalties.

A mandatory cap-and-trade system involves its participants in a risky business with an obvious
need for risk management. That is, certificate trading is usually accompanied by a secondary
market for emission-related futures, including a rapidly growing variety of their derivatives. Their
pricing is addressed in this work.

Our contribution focuses on a methodology between equilibrium and risk-neutral approaches.
Due to the complexity of emissions markets, risk-neutral dynamics must be addressed in terms of
explanatory variables, viewed as proxies of fundamental quantities. Thus, we utilize equilibrium
analysis to explain the role of fundamentals in risk-neutral allowance price formation. Thereby,
the key issue is a feedback relation between allowance prices and abatement activity. Namely, we
demonstrate that any increase in allowance price causes market participants to enforce emission
saving in order to sell their allowances. Hence, an increasing allowance price encourages a supply
of certificates and lowers the probability of non-compliance, which tends to bring down their
prices. Apparently, the correct description of this feedback is the key to derivatives pricing. The
present work focuses on this issue. On this account, our contribution goes beyond any risk-neutral
approach to modeling of emission-related assets suggested in the existing literature to date.
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2. Emissions markets

The literature on this subject is enormous: it encompass hundreds of books and papers. For this
reason, we focus only on those market models which are relevant in the present approach.

Economic theory of allowance trading can be traced back to [8] and [14], whose authors pro-
posed a market model for the public environmental goods described by tradable permits.

Dynamic allowance trading is addressed in [7,11,13,16,17,21,22] and in the literature cited
therein.

Empirical evidence from existing markets is discussed in [9]. This paper suggests economic
implications and hints at several ways to model spot and futures allowance prices, whose detailed
interrelations are investigated in [23] and [24].

Econometric modeling is addressed in [1], where characteristic properties for financial time
series are observed for prices of emission allowances from the mandatory European Scheme EU
ETS. Furthermore, a Markov switch and AR–GARCH models are suggested. The work [15] also
considers tail behavior and the heteroscedastic dynamics in the returns of emission allowance
prices.

Dynamic price equilibrium and optimal market design are investigated in [2]. Based on this
approach, [3] discusses the price formation for goods whose production is affected by emission
regulations. In this setting, an equilibrium analysis confirms the existence of the so-called ‘wind-
fall profits’ (see [19]) and provides quantitative tools to analyze alternative market designs.

Pricing of options was addressed only recently. The paper [6] discusses an endogenous emis-
sion permit price dynamics within equilibrium setting and elaborates on valuation of European
option on emission allowances. The paper [18] and the dissertation [25] deal with the the risk-
neutral allowance price formation within EU ETS. Here, utilizing equilibrium properties, the
price evolution is treated in terms of marginal abatement costs and optimal stochastic control.
Also, the work [5] is devoted to option pricing within EU ETS. The authors suppose that the
drift of allowance spot prices is related to a hidden variable which describes the overall market
position in allowance contracts and they make use of filtering techniques to derive option price
formulas which reflect specific allowance banking regulations, valid in the EU ETS. Finally, the
recent work [4] presents an approach where emission certificate futures are modeled in terms of
deterministic time change applied to a certain class of interval-valued diffusion processes.

The present work brings aspects of risk-aversion into the line of research followed in [3,18] and
[2], which we briefly sketch now. Within a stochastic model of an emissions market, a so-called
central planer problem is introduced and discussed in [18]. Under additional assumptions, the
authors formulate this problem in terms of continuous-time stochastic optimization. Furthermore,
they provide economic arguments justifying why optimal control solutions correspond to an
equilibrium of the emissions market. Interpreting the allowance certificate price as the marginal
abatement costs, particular explicit solutions are discussed and yield a dynamic stochastic model
for allowance price evolution. The work [2] starts from the opposite direction. In a discrete-time
framework, the Radner equilibrium of an emissions market is introduced and constructed via a
solution of the central planer problem. The work [3] yields an extension: in a slightly different
setting, it is proved that any market equilibrium is reached by this methodology. Thus, results
from [2,18] and [3] show that a quantitative analysis of emissions markets is tractable in terms of
stochastic control theory. However, this connection is valid only if risk aversion is neglected, in
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other words, under the assumption that each agent possesses a linear utility function. Losing sight
of risk aversion comes at the costs of unrealistic results. Among other singularities, it turns out
that the equilibrium allowance price follows a martingale (with respect to objective measure!)
with the consequence that allowance trading can be arbitrary, only the final position must be
adjusted accordingly.

This work resolves all of these problems. Starting from the no-arbitrage property which is
satisfied in an equilibrium of a market with risk-averse players, we show that the risk-neutral
allowance price dynamics exhibits the above feedback property, which we formalize as a fixed
point equation, discussing its solution. We show that for such a risk-averse setting, our fixed
point equation plays the same role as the central planer optimal control problem for the non-
risk-averse situation. Namely, it provides a methodology to describe the market equilibrium in
terms of aggregated quantities. However, this description is valid only from the viewpoint of the
so-called risk neutral dynamics, not being suitable for discussing all interesting problems. Still,
derivatives valuation is naturally addressed in, and can be obtained in, this setting.

3. Mathematical model

Let (�, F ,P, (Ft )
T
t=0) be a filtered probability space. Assume that F0 is deterministic and agree

that all processes considered in this work are adapted to (Ft )
T
t=0. Write Et (·) and Pt to denote,

respectively, conditional expectation and conditional distribution with respect to Ft . Consider a
market with a finite number I of the agents confronted with emission reduction.

Emission dynamics. For each agent i ∈ I , introduce the stochastic process (Ei
t )

T −1
t=0 with the

interpretation that Ei
t describes the total pollution of the agent i which is emitted within the time

interval [t, t + 1] in the case of the so-called ‘business-as-usual’ scenario (where no abatement
measure is applied). Although each agent is considered as a potential producer, purely financial
institutions are also covered with this approach by setting emissions to zero, that is, Ei

t = 0 for
t = 0, . . . , T − 1.

Abatement. Consider the opportunity to reduce emissions. Each agent i can decide at any time
t = 0, . . . , T − 1 to reduce its emissions within [t, t + 1] by ξ i

t pollutant units. We suppose that
each abatement level is possible, ranging from no reduction to full reduction. Hence, we assume
that 0 ≤ ξ i

t ≤ Ei
t holds for all t = 0, . . . , T − 1.

Abatement costs. We assume that the cost of abatement is a random function of the reduced
volume. The randomness is due to uncertainty in prices (of fuel) and is observable at the corre-
sponding time. Thus, if the agent i decides at time t = 0, . . . , T − 1 on reduction of their own
emissions by x ∈ [0,∞[ units, then it causes costs Ci

t (x), where given⎧⎨
⎩

Ci
t : [0,∞[×� �→ R is B([0,∞[) ⊗ Ft -measurable

and for each ω ∈ �,x �→ Ci
t (x)(ω) is strictly

convex and continuous with C(0) = 0.

(3.1)

Since emission savings cannot exceed the business-as-usual emission, the abatement activity
(ξ i

t )
T −1
t=0 is feasible if

0 ≤ ξ i
t ≤ Ei

t , t = 0, . . . , T − 1. (3.2)
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Following abatement policy (ξ i
t )

T −1
t=0 , the agent i accumulates at the compliance date T the total

terminal costs
T −1∑
t=0

Ci
t (ξ

i
t ). (3.3)

Abatement volume. For later use, let us introduce, for each ω ∈ �, t = 0, . . . , T − 1 and a ∈
[0,∞[, the abatement volume ci

t (a)(ω) as

ci
t (a)(ω) := arg min{Ci

t (x)(ω) − ax :x ∈ [0,Ei
t (ω)]}, (3.4)

which is well defined since, under the assumptions (3.1), the minimum of the function x �→
Ci

t (x)(ω)−ax on [0,Ei
t (ω)] is attained at the unique point. The reader may imagine ci

t (a)(ω) as
the total reduction volume which is available within [t, t + 1] in the situation ω at a price which
is less than or equal to a (measured in currency unit per pollutant unit). A straightforward proof
shows that (3.1) ensures that

[0,∞[�→ R, a �→ ci
t (a)(ω) is non-decreasing and

(3.5)
continuous for almost every ω ∈ � and t = 0, . . . , T − 1.

For later use, we introduce the cumulative abatement volume function

ct (a) :=
∑
i∈I

ci
t (a), a ∈ [0,∞[. (3.6)

Obviously, ct (a)(ω) stands for the total abatement in the market, which is available from all
measures in the situation ω whose price is less than or equal to a ∈ [0,∞[.

Allowance trading. Suppose that, at any time t = 0, . . . , T , credits can be exchanged between
agents by trading at the spot price At . Denote by ϑi

t the change at time t in allowance number
held by agent i. That is, given the allowance prices (At )

T
t=0, the position changes (ϑi

t )
T
t=0 yield

costs
T∑

t=0

ϑi
t At . (3.7)

Penalty payment. The total pollution of the agent i can be expressed as a difference

T −1∑
t=0

Ei
t −

T −1∑
t=0

ξ i
t

of the cumulative business-as-usual emission less the entire reduction. As mentioned above, a
penalty π ∈]0,∞[ is being paid at maturity T for each unit of pollutant, which is not covered by
allowances. Considering the total change in the allowance position

∑T
t=0 ϑi

t effected by trading,
the loss of the agent i resulting from potential penalty payment is

π

(
T −1∑
t=0

(Ei
t − ξ i

t − ϑi
t ) − γ i − ϑi

T

)+
, (3.8)
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where

γ i, i ∈ I are agents’ initial allowance allocations. (3.9)

Remark 1. Our stylized scheme deals with stand-alone emission trading mechanisms. In the
real world, cap-and-trade systems operate on multi-period scales, where unused allowances can
be carried out (banked) into next period. Further period interconnections may include a transfer
of future allocation from the next into the present period (borrowing) and, in the case of non-
compliance, a withdrawal of an appropriate number of credits from the next period allocation in
addition to penalty payment. To complete the complexity, let us mention that different emissions
markets could be interconnected by acceptance of foreign certificates in the national scheme.
Emission trading in multi-period settings is addressed in, among others, [4] and [5]. Mathemat-
ically, it reduces to the specification of a more complex penalty mechanism than that presented
above. For this reason, we have decided to focus on the stand-alone allowance market to analyze
quantitative methods in the simplest situation before tackling multi-scale systems (such as the
second period of EU ETS).

Recording uncertainty. In what follows, we also need to take into account uncertainty in the
emission recording. It is convenient to subtract these recording errors from the initial allocation.
Hence, we interpret γ i as the credits allocated to the agent i less emissions which become known
with certainty only at time T . With this interpretation, γi stands for allowances effectively avail-
able for compliance and is modeled by an FT -measurable random variable. For later use, let us
agree that the distribution of

∑
i∈I γ i , conditioned on FT −1, possesses almost surely no point

masses, which implies that

P

(∑
i∈I

γ i = X

)
= 0 for each FT −1-measurable X. (3.10)

Admissible policies. Since maximally possible reduction cannot exceed emission, we
have (3.2). Let us define the space of feasible trading ϑi = (ϑi

t )
T
t=0 and abatement strategies

ξ i = (ξ i
t )

T −1
t=0 of the agent i ∈ I by

U i := {(ϑi, ξ i) : 0 ≤ ξ i
t ≤ Ei

t , t = 0, . . . , T − 1}. (3.11)

Individual wealth. In view of (3.3), (3.7) and (3.8), the revenue of the agent i following ad-
missible policy (ϑi, ξ i) ∈ U i equals

LA,i(ϑi, ξ i) = −
T −1∑
t=0

(
ϑi

t At + Ci(ξ i
t )

)
(3.12)

− ϑi
T AT − π

(
T −1∑
t=0

(Ei
t − ξ i

t − ϑi
t ) − γ i − ϑi

T

)+
.

Risk aversion. To face risk preferences, suppose that attitudes of the agents i ∈ I are described
by utility functions Ui : R �→ R, which are continuous, strictly increasing and concave. Consider
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the utility functional ui(X) = E(Ui(X)), which is assumed to be defined for each random vari-
able X where the expectation is finite or +∞. Given allowance price process A = (At )

T
t=0, the

agent i behaves rationally, maximizing (ϑi, ξ i) �→ ui(LA,i(ϑi, ξ i)) by an appropriate choice of
their own policy (ϑi∗, ξ i∗).

Market equilibrium. Following standard theory, a realistic market state is described by the so-
called equilibrium – a situation where the allowance price, positions and abatement measures are
such that each agent is satisfied by their own policy and, at the same time, natural restrictions are
fulfilled. In our framework, an appropriate notion of equilibrium is given as follows.

Definition 1. The process A∗ = (A∗
t )

T
t=0 is called an equilibrium allowance price process if, for

each i ∈ I , there exists (ϑ∗i , ξ∗i ) ∈ U i such that ui(LA∗,i (ϑ∗i , ξ∗i )) is finite and

(i) the cumulative changes in positions are in zero net supply, that is,∑
i∈I

ϑ∗i
t = 0 for all t = 0, . . . , T ; (3.13)

(ii) each agent i ∈ I is satisfied by their own policy, in the sense that

ui(LA∗,i (ϑ∗i , ξ∗i )) ≥ ui(LA∗,i (ϑi, ξ i))
(3.14)

for each (ϑi, ξ i) ∈ U i where ui(LA∗,i (ϑi, ξ i)) exists.

The existence of emissions market equilibrium is addressed in [2] and [3], under the assump-
tion of a linear utility function and in a slightly different setting. However, although equilibrium
modeling in the spirit of these contributions is appropriate to investigate important questions
of optimal market design, it has little to offer to the problem of derivatives valuation. With the
present approach, we intend to establish a reduced-form model which describes the evolution of
emission-related assets from a risk-neutral perspective. We obtain a realistic picture by incorpo-
rating three essential assumptions into a risk-neutral model. These assumptions are shown to be
direct consequences of an equilibrium situation:

(a) There is no arbitrage since, in equilibrium, any profitable strategy would immediately be
followed by all agents. This would instantaneously change prices and exhaust any arbi-
trage opportunity.

(b) The allowance trading instantaneously triggers all abatement measures whose costs are
below allowance price. The explanation here is that if an agent possess a technology with
lower reduction costs than the present allowance price, then it is optimal for that agent to
immediately reduce pollution and take profit from selling allowances.

(c) There are only two final outcomes for allowance price. Either the terminal allowance price
drops to zero or it approaches the penalty level. The reason is that at maturity, the price
must vanish if there is an excess in allowances, whereas in the case of their shortage,
the price will rise, reaching penalty. We believe that in reality, an exact coincidence of
allowance demand and supply occurs with zero probability and can be neglected.

Let us formalize the above assertions (a), (b) and (c).
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Proposition 1. Suppose that (A∗
t )

T
t=0 is an equilibrium allowance price and (ξ i∗

t )T −1
t=0 for i ∈ I

are the corresponding equilibrium abatement policies.

(a) There exists a measure Q which is equivalent to P such that (A∗
t )

T
t=0 follows a Q-

martingale.
(b) For each i ∈ I , we have

ξ i∗
t = ci

t (A
∗
t ), t = 0, . . . , T − 1, (3.15)

with abatement volume functions ci
t , t = 0, . . . , T − 1, from (3.4).

(c) The terminal value of the allowance price is given by

A∗
T = π1{∑i∈I (

∑T −1
t=0 (Ei

t −ξ i∗
t )−γ i )≥0}. (3.16)

Before we proceed with the proof, let us emphasize that this result can serve as a starting
point for risk-neutral modeling. The above proposition states that at equilibrium, the allowance
price process (A∗

t )
T
t=0 follows a martingale with respect to an equivalent measure Q ∼ P whose

terminal value is

A∗
T = π1{∑i∈I

∑T
t=0(E

i
t −ξ∗

t )−γ i )≥0},

obviously depending on intermediate values (A∗
t )

T −1
t=0 through abatement volume function ξ i∗

t =
ci
t (A

∗
t ) for t = 0, . . . , T − 1, i ∈ I . The surprising and far-reaching consequence is that, from a

risk-neutral perspective, only cumulative market quantities are relevant. To see this, define the
overall allowance shortage

ET =
∑
i∈I

(
T −1∑
t=0

Ei
t − γ i

)
(3.17)

which would appear in the market without any emission penalty. Further, recall from (3.4)
and (3.6) the cumulative abatement functions to express the risk-neutral certificate price dy-
namics in terms of the following feedback equation:

At = E
Q
t

(
π1{ET −∑T −1

t=0 ct (A
∗
t )≥0}

)
, t = 0, . . . , T − 1.

Although individual market attributes and actions of the different agents seem to be irrelevant in
this picture, the reader should notice that this picture appears only from the risk-neutral view-
point. In line with standard aggregation theorems, the equilibrium market state heavily depends
on, and is determined by, market architecture, rules, risk attitudes and uncertainty. However, once
equilibrium is reached and all arbitrage opportunities are exhausted, asset dynamics can be con-
sidered under risk-neutral measure. With respect to this measure, market evolution appears as if
it were driven by cumulative quantities only.
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With this in mind, let us formulate the problem of the reduced-form modeling as follows:⎧⎪⎪⎨
⎪⎪⎩

Given measure Q ∼ P, random variable ET

and abatement volume functions (ct )
T −1
t=0 ,

determine a Q-martingale (A∗
t )

T
t=0 with

A∗
T = π1{ET −∑T −1

t=0 ct (A
∗
t )≥0}.

(3.18)

Note that this formulation serves as a guideline for martingale modeling since price-dependent
abatement volume ct (a) can be estimated from market data, whereas potential allowance short-
age ET can be modeled in terms of total allowance allocation and demand fluctuations on goods
whose production causes the pollution. Finally, we shall emphasize a natural passage to contin-
uous time. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Given, on a probability space (�, F ,P , (Ft )t∈[0,T ]),
an equivalent measure Q ∼ P, random variable ET

and a family of abatement functions (ct )t∈[0,T ],
determine a Q-martingale (A∗

t )t∈[0,T ] with
A∗

T = π1{ET −∫ T
0 ct (A

∗
t )dt≥0}.

(3.19)

Proof of Proposition 1. (a) According to the first fundamental theorem of asset pricing (see
[10]), it suffices to verify that if (A∗

t )
T
t=0 is an equilibrium allowance price process, then there is

no arbitrage for allowance trading. Let us follow an indirect proof, supposing that (νt )
T −1
t=0 is an

allowance trading arbitrage, meaning that

P

(
T −1∑
t=0

νt (At+1 − At) ≥ 0

)
= 1, P

(
T −1∑
t=0

νt (At+1 − At) > 0

)
> 0. (3.20)

Now, we verify that in the presence of arbitrage, no equilibrium can exist since each agent i can
change their own policy (ϑ∗i , ξ∗i ) to an improved strategy (ϑ̃ i , ξ∗i ) satisfying

ui(LA∗,i (ϑ∗i , ξ∗i )) < ui(LA∗,i (ϑ̃ i , ξ∗i )). (3.21)

The improvement is achieved by incorporating arbitrage (νt )
T −1
t=0 into their own allowance trading

as follows:

ϑ̃ i
t := ϑ∗i

t + (νi
t − νi

t−1) for all t = 0, . . . , T ,

with appropriate definitions ν−1 = νT := 0. Indeed, the revenue improvement from allowance
trading is

−
T∑

t=0

ϑ̃ i
t At = −

T∑
t=0

ϑ∗i
t At +

T −1∑
t=0

νi
t (At+1 − At),

which we combine with (3.20) to see that there is no optimality since

P
(
LA,i(ϑ∗i , ξ i) ≤ LA,i(ϑ̃ i , ξ i)

) = 1, P
(
LA,i(ϑ∗i , ξ i) < LA,i(ϑ̃ i , ξ i)

)
> 0
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together imply that

ui(LA,i(ϑ∗i , ξ i)) < ui(LA,i(ϑ̃ i , ξ i)).

(b) To prove (3.15), consider the bijection

U i → U i , (θ i , ξ i) �→ (φ(θ i, ξ i), ξ i), (3.22)

where the transformed trading strategy ϑi = φ(θi, ξ i) is given by

ϑi
t = θi

t − ξ i
t , t = 1, . . . , T − 1, ϑi

T = θi
T .

Obviously, (ϑi∗, ξ i∗) is a maximizer to the original problem

U i → R, (ϑi, ξ i) �→ ui(LA∗,i (ϑi, ξ i))

if and only if (ϑi∗, ξ i∗) = (φ(θ i∗, ξ i∗), ξ i∗), where (θ i∗, ξ i∗) is a maximizer to the transformed
problem

U i → R, (θ i, ξ i) �→ ui(LA∗,i (φ(θ i, ξ i), ξ i)). (3.23)

The last line in the calculation

LA∗,i (φ(θ i, ξ i), ξ i)

= −
T −1∑
t=0

(θ i
t − ξ i

t )A
∗
t −

T −1∑
t=0

Ci
t (ξ

i
t ) − π

(
T −1∑
t=0

(
Ei

t − ξ i
t − (θ i

t − ξ i
t )

) − γ i − θi
T

)+

= −
T −1∑
t=0

θi
t A

∗
t − π

(
T −1∑
t=0

(Ei
t − θi

t ) − γ i − θi
T

)+
−

T −1∑
t=0

(
Ci(ξ i

t ) − A∗
t ξ

i
t

)
(3.24)

shows that if (θ i∗, ξ i∗) is a maximizer to (3.23), then ξ∗ must satisfy ξ i∗
t := ci

t (A
∗
t ) for t =

0, . . . , T − 1, which proves (3.15).
(c) This assertion is proved by an argument identical to that given in [2]. �

4. Reduced-form modeling

In what follows, we propose a solution to the problem of risk-neutral allowance price model-
ing (3.18). Below, we prove that under the assumptions given above ((3.10), in particular, is es-
sential), the problem (3.18) possess a solution. Moreover, we show how to obtain the martingale
(A∗

t )
T
t=0.

It turns out that the martingale closed by ET plays a crucial role, so we introduce

Et = E
Q(ET |Ft ), t = 0, . . . , T .
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For later use, let us also define its increments as

εt = Et − Et−1, t = 1, . . . , T .

Following the intuition that the equilibrium allowance price should be uniquely determined by
the present time and the general market situation, we express a candidate for allowance price as

A∗
t (ω) = αt (Gt (ω))(ω), ω ∈ �, t = 0, . . . , T , (4.1)

with hypothetic functionals

αt : R × � → [0,π], B(R) ⊗ Ft -measurable for t = 0, . . . T , (4.2)

applied to

Gt = Et −
t−1∑
s=0

cs(A
∗
s ), t = 0, . . . , T . (4.3)

According to (3.18), this approach yields an obvious definition for αT :

αT (g)(ω) = π1[0,∞[(g), ω ∈ �, g ∈ R. (4.4)

Note that, given functionals (4.2), the price process (A∗
t )

T
t=0 is indeed well defined by recursive

application of (4.3) and (4.1):

A∗
t (ω) := αt (Gt (ω))(ω), (4.5)

Gt+1(ω) := Gt(ω) − ct (A
∗
t (ω))(ω) + εt+1(ω), (4.6)

started at G0 := E0. (4.7)

Generated by this recursion, the process (A∗
t )

T
t=0 follows a martingale if, for all t = 0, . . . T − 1

and almost all ω ∈ �, the following holds:

αt (g)(ω) = E
Q
t

(
αt+1

(
g − ct (αt (g)(ω))(ω) + εt+1

))
(ω) for all g ∈ R, ω ∈ �.

Indeed, we have

E
Q
t (A∗

t+1)(ω) = E
Q
t

(
αt+1(Gt+1)

)
(ω)

=
∫

�

αt+1
(
Gt(ω

′) − ct (A
∗
t (ω

′))(ω′) + εt+1(ω
′)
)
(ω′)Qt (dω′)(ω)

=
∫

�

αt+1
(
Gt(ω) − ct (A

∗
t (ω))(ω) + εt+1(ω

′)
)
(ω′)Qt (dω′)(ω)

= E
Q
t

(
αt+1

(
Gt(ω) − ct (αt (Gt (ω))(ω))(ω) + εt+1

))
(ω)

= αt (Gt (ω))(ω) = A∗
t (ω).
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In other words, it is sufficient to ensure that

for each g ∈ R, αt (g)(ω) solves

a = E
Q
t

(
αt+1

(
g − c(a) + εt+1

))
(ω) (4.8)

for almost all ω ∈ �.

In the remainder of this section, we will show that the functionals (4.2) are recursively obtained
as the unique solution to (4.8), starting with αT from (4.4). First, let us prepare an auxiliary result
dealing with the solution to (4.8) where no conditional information needs to be considered.

Lemma 1. Given

c : R → R, non-decreasing, continuous, (4.9)

α1 : R × � → [0,π], B(R) ⊗ F -measurable, (4.10)

g �→ α1(g)(ω), non-decreasing for almost all ω ∈ �, (4.11)

suppose that the random variable ε satisfies

R → [0,π], x �→ E
Q

(
α1(x + ε)

) =
∫

�

α1
(
x + ε(ω′)

)
(ω′)Q(dω′)

(4.12)
is continuous.

For each g ∈ R, introduce the function f g : [0,π] → R given by

f g(a) := a − E
Q

(
α1

(
g − c(a) + ε

))
(4.13)

= a −
∫

�

α1
(
g − c(a) + ε(ω′)

)
(ω′)Q(dω′), a ∈ [0,π].

The following assertions then hold:

(i) for each g ∈ R, there exists a unique α0(g) ∈ [0,π] with f g(α0(g)) = 0;
(ii) the root α0(g) of f g is obtained as a limit α0(g) = limn→∞ a

g
n in the standard bisection

method

a
g
n = 1

2 (a
g
n + ag

n),
a

g

n+1 = a
g
n, a

g

n+1 := a
g
n, if f g(a

g
n) ≥ 0,

a
g

n+1 = a
g
n, a

g

n+1 := a
g
n, if f g(a

g
n) < 0,

(4.14)

started at a
g

0 := 0, a
g

0 := π ;
(iii) the mapping R → [0,π], g �→ α0(g) is non-decreasing and continuous.

Proof. (i) For each g ∈ R+, the function f g is continuous due to (4.12) and the continuity (4.9)
of c. Thus, the existence of a root follows from the intermediate value theorem because of

f g(0) ≤ 0, f g(π) ≥ 0. (4.15)
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The uniqueness of the root is ensured by the strict monotonic increase of f g . To verify this,
observe that (4.11) and (4.9) imply that the subtrahend

a �→
∫

�

α1
(
g − c(a) + ε(ω′)

)
(ω′)Q(dω′)

in (4.13) is non-increasing, whereas the minuend a �→ a is strictly increasing in a.
(ii) The bisection algorithm is properly initialized because of (4.15). Standard arguments

ensure its convergence to the root.
(iii) To show the monotonic increase of g �→ α0(g), suppose that g′ < g. Then (4.11) ensures

that for each a ∈ [0,π],∫
�

α1
(
g′ − c(a) + ε(ω′)

)
(ω′)Q(dω′) ≤

∫
�

α1
(
g − c(a) + ε(ω′)

)
(ω′)Q(dω′),

giving f g′
(a) ≥ f g(a) for all a ∈ [0,π], which implies that α0(g

′) ≤ α0(g).

Now, let us turn to the continuity. If α0(g) ∈ [0,π[, then there exists δ > 0 with α0(g) + δ ≤ π .
Due to the strict monotonic increase of f g , we obtain 0 < f g(α0(g) + δ). If (gn)n∈N ⊂ R+ is a
sequence with limn→∞ gn = g, then according to (4.12),

lim
n→∞f gn

(
α0(g) + δ

) = f g
(
α0(g) + δ

)
> 0. (4.16)

Hence, there exists N ∈ N such that f gn(α0(g) + δ) > 0 holds for all n ≥ N . Thus, we obtain

α0(g) ∈ [0,π[ 
⇒ lim sup
n→∞

α0(gn) ≤ α0(g) + δ, if α0(g) + δ ≤ π. (4.17)

Since δ > 0 is arbitrarily small and 0 ≤ α0(g) ≤ π , due to (i), this implication shows that α0(·) is
continuous on each point g with α0(g) = 0. A similar argument yields

α0(g) ∈]0,π] 
⇒ lim inf
n→∞ α0(gn) ≥ α0(g) − δ, if α0(g) − δ ≥ 0. (4.18)

Again, since δ > 0 is arbitrary, we obtain the continuity of α0(·) on each point g with α0(g) = π .
If α0(g) ∈]0,π[, then the continuity of α0(·) on g follows by the combination of (4.17)
and (4.18). �

Let us now turn to the conditioned version of Lemma 1. Supposing the existence of the reg-
ular Ft -conditioned distribution Qt , the proof reproduces the arguments of the previous lemma
with appropriate notational changes due to conditioning on the event ω ∈ �. However, a useful
insight is that the approximating points a

g
n , n = 0,1,2, . . . , of the bisection algorithm turn out

to be dependent on g ∈ R and ω ∈ � in a B(R) ⊗ Ft -measurable way, which shows that the
functional under discussion, (g,ω) �→ αt (g)(ω), is also B(R) ⊗ Ft -measurable, being the limit
of the sequence ((g,ω) �→ a

g,ω
n )∞n=0 of measurable functions.
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Lemma 2. Suppose that for t ∈ {0, . . . , T − 1},
c : R × � → R, B(R) ⊗ F -measurable such that (4.19)

a �→ ct (a)(ω) is non-decreasing, continuous, (4.20)

αt+1 : R × � → [0,π], B(R) ⊗ F -measurable such that (4.21)

g �→ αt+1(g)(ω) is non-decreasing for all ω ∈ �. (4.22)

Given a regular version Qt of the Ft -conditioned distribution Q, assume that the random vari-
able εt+1 satisfies

R → [0,π], x �→
∫

�

αt+1
(
x + εt+1(ω

′)
)
(ω′)Qt (dω′)(ω)

(4.23)
is continuous for each ω ∈ �.

The following assertions then hold:

(i) there exists a unique B(R) ⊗ Ft -measurable [0,π]-valued αt satisfying

αt (g)(ω) = E
Q
t

(
αt+1

(
g − ct (αt (g)) + εt+1

))
(ω)

(4.24)
for all g ∈ R, for almost all ω ∈ �;

(ii) the mapping R → [0,π], g �→ αt (g)(ω) is non-decreasing and continuous for all ω ∈ �.

Proof. (i) As in the proof of the Lemma 1, we obtain the unique root αt (g)(ω) of the function

f g,ω(a) := a −
∫

�

αt+1
(
g − ct (a)(ω) + εt+1(ω

′)
)
(ω′)Qt (dω′)(ω), a ∈ [0,π].

By the bisection method,

a
g,ω
n = 1

2 (a
g,ω
n + ag,ω

n ),
a

g,ω

n+1 = a
gω
n , a

g,ω

n+1 := a
g,ω
n , if f g,ω(a

g,ω
n ) ≥ 0,

a
g

n+1 = a
g,ω
n , a

g,ω

n+1 := a
g
n, if f g,ω(a

g,ω
n ) < 0,

started at a
g,ω

0 := 0, a
g,ω

0 := π . Since

(g,ω,a) �→ f g,ω(a) is B(R) ⊗ Ft ⊗ B([0,π])-measurable,

each bisection point (g,ω) �→ a
g,ω
n is B(R) ⊗ Ft -measurable, which shows that for n → ∞, the

pointwise limit (g,ω) �→ αt (g,ω) of the bisection sequence is also B(R) ⊗ Ft -measurable. By
construction, the equality

αt (g)(ω) =
∫

�

αt+1
(
g − ct (αt (g)(ω))(ω) + εt+1(ω

′)
)
(ω′)Qt (dω′)(ω)
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holds for all g ∈ R and ω ∈ �, whose right-hand side is nothing but the right-hand side of (4.24)
for each g ∈ R.

(ii) The proof is obtained from (iii) of the previous lemma by replacing α1(·), α0(·), c(·) and
Q(dω′) by αt+1(·)(ω),αt (·)(ω), ct (·)(ω) and Qt(dω′)(ω), respectively, with appropriate nota-
tional adaptations according to the conditioning on ω. �

Finally, we address a solution to (3.18) in the last point of the following proposition.

Proposition 2. Consider ET under the model assumption (3.10) and the cumulative abatement
volume functions from (3.6) under (3.1) and (3.4).

(i) Given measure Q ∼ P , there exist functionals

αt : R × � → [0,π], B(R) ⊗ Ft -measurable for t = 0, . . . T , (4.25)

which fulfill, for all g ∈ R,

αT (g) = π1[0,∞[(g), (4.26)

αt (g) = E
Q
t

(
αt+1

(
g − ct (αt (g)) + εt+1

))
, t = 0, . . . , T − 1. (4.27)

(ii) There exists a Q-martingale (A∗
t )

T
t=0 which satisfies

A∗
T = π1{ET −∑T −1

t=0 ct (A
∗
t )≥0}. (4.28)

Proof. (i) In this proof, we repeatedly make use of Lemma 2. Let us start with t = T − 1 and
verify that the assumptions of this lemma are satisfied. Due to continuity (3.6) of the abatement
function, we have (4.9). The properties (4.21) and (4.22) hold for t = T − 1, by definition (4.26).
To show (4.24), we utilize the specific form of αT :

x �→
∫

�

αT

(
x + εT (ω′)

)
(ω′)QT −1(dω′)(ω) = QT −1(x + εT ≥ 0)(ω). (4.29)

Note that, due to (3.10), there are almost surely no point masses in the distribution of

εT =
∑
i∈I

γ i − E
Q
T −1

(∑
i∈I

γ i

)

conditioned on FT −1 (with respect Q, since Q ∼ P ). That is, (4.29) is continuous for each
ω ∈ �, as required in (4.24). Hence, (i) of Lemma 2 yields the functional αT −1 satisfying (4.27)
(with t = T − 1), as required. To proceed by induction, we emphasize that (ii) of Lemma 2
ensures that g �→ αT −1(g)(ω) is non-decreasing and continuous for all ω ∈ �. That is, for the
next step, t = T − 2, the assumption (4.22) on αT −1 is automatically satisfied. Moreover, (4.24)
now follows, due to the continuity of g �→ αT −1(g)(ω), from the pointwise convergence

lim
n→∞αT −1

(
xn + εT −1(ω

′)
)
(ω′) = αT −1

(
x + εT −1(ω

′)
)
(ω′) for all ω′ ∈ �,
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dominated by π , which holds for each (xn)n∈N ⊂ R with limn→∞ xn = x. That is, all assump-
tions of Lemma 2 are also fulfilled for t = T − 2. Proceeding recursively for t = T − 2, . . . ,0,
we obtain (αt )

T
t=0 with (4.25), (4.26) and (4.27).

(ii) As suggested by (4.5)–(4.7), we define, for all ω ∈ �,

A∗
t (ω) := αt (Gt (ω))(ω),

Gt+1(ω) := Gt(ω) − ct (A
∗
t (ω))(ω) + εt+1(ω),

started at G0 := E0.

The process (A∗
t )

T
t=0 generated in this way obeys the terminal condition (4.28), in view of (4.26).

To show the Q-martingale property of (A∗
t )

T
t=0, we calculate, for t = 0, . . . , T − 1,

E
Q
t (A∗

t+1)(ω) = E
Q
t (αt+1(Gt+1))(ω)

= E
Q
t

(
αt+1

(
Gt(ω) − ct (A

∗
t (ω))(ω) + εt+1

))
(ω)

= E
Q
t

(
αt+1

(
Gt(ω) − ct (αt (Gt (ω))(ω))(ω) + εt+1

))
(ω)

= αt (Gt+1(ω))(ω) = A∗
t (ω)

for almost all ω ∈ �, where the penultimate equality follows from (4.27). �

5. Applications

Let us elaborate on the computational feasibility of our reduced-form modeling. For illustra-
tive purposes, we focus on the simplest case of martingales with independent increments and
deterministic abatement functions. We assume that:

εt+1 and Ft are independent under Q for all t = 0, . . . , T − 1; (5.1)

ct : [0,∞[→ R is deterministic and time constant (ct = c)T −1
t=0 . (5.2)

Under these assumptions, the randomness enters the allowance price through the present up-to-
day emissions only. More precisely, (5.1) ensures that

ω �→ αt (g)(ω) = αt (g) is constant on �. (5.3)

Let us verify this assertion. For t = T , (5.3) holds, by definition (4.26). For t = T − 1, . . . ,1, we
proceed inductively as follows: by construction, αt (g)(ω) is the unique solution a to

a =
∫

�

αt+1
(
g − ct (a) + εt+1(ω

′)
)
(ω′)Qt (dω′)(ω)

=
∫

�

αt+1
(
g − ct (a) + εt+1(ω

′)
)
Q(dω′), (5.4)
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where, in the last equality, we have utilized the fact that Qt = Q, due to the independence (5.1),
and the fact that αt+1(g) does not depend on ω, by the the induction assumption. Obviously, the
fixed point αt (g)(ω) := a from (5.4) also does not depend on ω.

For numerical calculation, we rely on the one-dimensional least-squares Monte Carlo method,
which is applicable in our case of martingales with independent increments. Although this setting
is relatively restrictive, it covers a sufficiently rich class of martingales. For instance, important
cases of information shocks leading to allowance price jumps can be easily addressed under this
approach when (Et )

T
t=0 is modeled as an appropriately sampled, centered Poisson process. In this

case, fixed point equations can be treated analytically. We do not follow this path in favor of nu-
merical methods, which deserve particular attention due to the complexity of emissions markets.
In particular, extensions of Monte Carlo methods to the multidimensional setting (see [20]) seem
to be appropriate. A preliminary analysis shows that assuming the existence of a global Markov-
ian state process allows independence to be weakened to conditional independence, which leads
to multidimensional Monte Carlo, in the sense of [20], since the state process gives additional
dimensions.

We now focus on computational aspects. From (5.3), it follows that αt (Gt ) is a σ(Gt)-
measurable random variable. Thus, in the equality (4.27), the condition Ft can be replaced by
the condition σ(Gt ):

αt (Gt ) = E
Q

(
αt+1

(
Gt − ct (αt (Gt )) + εt+1

)|σ(Gt )
)
. (5.5)

We shall treat this relation as a fixed point equation for the Borel-measurable function αt and
attempt to obtain a solution in the limit αt = limn→∞ αn

t of iterations

αn+1
t (Gt ) = E

Q
(
αt+1

(
Gt − ct (α

n
t (Gt )) + εt+1

)|σ(Gt )
)
, n ∈ N, (5.6)

started at α0
t = αt+1. (Note that, given αt+1 and αn

t , the equation (5.6) indeed defines a Borel
function αn+1

t by the factorization of the σ(Gt)-measurable random variable on the right-hand
side of (5.6).) For numerical calculation of conditional expectations, we suggest using the least-
squares Monte Carlo method.

To explain the principle of the least-squares Monte Carlo approach (see [12] and [20]) in more
detail, we abstract from the concrete situation (5.6) and consider

ϕ(G) = E
Q(φ(G,ε)|σ(G)),

where ε,G are R-valued and independent with respect to Q and φ is a bounded Borel function
on R

2. Under these assumptions, the function ϕ is obtained as ϕ(g) = ∫
R

φ(g, e)Qε(de) for
QG-almost all g ∈ R, where Qε,QG are image measures of Q under ε and G, respectively. An
equivalent condition defining ϕ is the orthogonality

determine ϕ ∈ L2(R,μ) such that for all ψ ∈ �,
(5.7)∫

R2

(
ϕ(g) − φ(g, e)

)
ψ(g)(Qε ⊗ μ)(de,dg) = 0,

where μ is a measure which is equivalent to QG and � stands for a set of functions which
are square-integrable with respect to μ, whose linear space is dense in L2(R,μ). The idea of the
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least-squares Monte Carlo method is to relax, for computational tractability, the principle (5.7) to

determine ϕ ∈ lin� such that for all ψ ∈ �,
(5.8)

K∑
k=1

(
ϕ(gk) − φ(gk, ek)

)
ψ(gk) = 0,

with a finite set of basis functions

� = {ψj : j = 1, . . . , J }
and an appropriate sample

S := (ek, gk)
K
k=1 ⊂ R

2,

chosen such that the combination 1
K

∑K
k=1 δ(ek,gk) of the Dirac measures approximates the dis-

tribution Qε ⊗ μ (for instance, S being realizations of K ∈ N independent Qε ⊗ μ-distributed
random variables). The solution to the weakened problem (5.8) is given in terms of

realizations φ(S) = (φ(ek, gk))
K
k=1 of φ on the sample S,

(5.9)
realizations M = (ψj (gk))

K,J
k=1,j=1 of basis functions on S,

as follows:

if q = (qj )
J
j=1 fulfills M�Mq = M�φ(S),

then (5.8) is solved by ϕ =
J∑

j=1

qjψj .

We now formulate an algorithm for the approximate calculation of (5.5) in which the conditional
expectation is replaced by the least-squares Monte Carlo projection. To ease notation, let us
suppose that (εt )

T
t=1 are identically distributed (in addition to their independence (5.1)).

Allowance prices via Monte Carlo method.

1. Initialization. Given sample S = (ek, gk)
K
k=1 ⊂ R

2 describing the distribution of Qε1 ⊗ μ

and a set of basis functions � = (ψi)
J
j=1 on R, define M as in (5.9). Set αT (g) = 1[0,∞[(g)

for all g ∈ R and proceed in the next step with t := T − 1.
2. Iteration. Define α0

t = αt and proceed in the next step with n := 0.
(2a) Calculate φn+1(S) := (αt+1(gk − ct (α

n
t (gk)) + ek))

K
k=1.

(2b) Determine a solution qn+1 ∈ R
J to M�Mqn+1 = M�φn+1(S).

(2c) Define αn+1
t := ∑J

j=1 qn+1
j ψj .

(2d) If maxK
k=1 |αn+1

t (gk) − αn
t (gk)| ≥ ε, then put n := n + 1 and continue with step 2a).

If maxK
k=1 |αn+1

t (gk)−αn
t (gk)| < ε, then set t := t −1. If t > 1, go to step 2, otherwise

finish.

Example. To illustrate allowance price calculation via the Monte Carlo method, we consider the
following numerical example. Suppose that the penalty is set at π = 100 and that the martingale
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increments (εt )
T
t=1 are independent, identically Normally distributed. Note that by an appropriate

choice of the emission measurement scale, the standard deviation can always be normalized, thus
we have assumed that each εt is N (0.5,1)-distributed. Further, consider the basis consisting of
piecewise linear hut functions

ψj : R → [0,1], x �→ (1 − |zj − x|/h)+ for x ∈ R, j = 1, . . . , J,

where the peaks z1 = −(J − 1) ∗ h/2, . . . , zJ = (J − 1) ∗ h/2 are chosen to be equidistant with
the distance h > 0. For numerical illustration, we set J = 16 and h := 1. Further, the sample
S = (ek, gk)

K
k=1 for the Monte Carlo method is generated with K = 1000 outcomes. For (ek)

K
k=1,

we followed a natural choice, taking realizations of K independent N (0.5,1)-distributed ran-
dom variables. However, since the distribution of Gt is not known in advance, an appropriate
candidate for μ seems to be the uniform distribution concentrated on the interval which is rele-
vant for calculations. That is, the outcomes (gk)

K
k=1 are constructed by equidistant sampling of

[z1, zJ ], ranging from g1 = z1 = −7.5 to gK = zJ = 7.5. For the cumulative volume function
c : R → R, a �→ 0.1

√
(a)+, we observed a fast and stable convergence which gave a reasonable

outcome within a few iterations. The resulting functions (αt )
T −6
t=T −1 are depicted in Figure 1.

Let us outline a valuation procedure for a European call on emission allowance price.

Valuation of European call via Monte Carlo method.

1. Given basis functions � = (ψj )
J
j=1 and a sample S = (ek, gk)

K
k=1 ⊂ R

2 which approx-

imates Qε1 ⊗ μ, determine (αt )
0
t=T in terms of basis coefficients using the above least-

squares Monte Carlo algorithm.

Figure 1. The functions αt for t = T − 1, . . . , T − 6, from the least-squares Monte Carlo method.
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2. Given maturity time τ ∈ {1, . . . , T } of the European call, determine its pay-off f τ
τ :=

(ατ − K)+. Calculate least-squares projections, recursively processing for u = τ, . . . , t as
follows:
(a) put φ(S) = (f τ

u (gk − cu(αu(gk)) + ek))
K
k=1;

(b) obtain q as solution to M�Mq = Mφ;
(c) set f τ

u−1 = ∑J
j=1 qjψj ;

(d) if u − 1 = t , then finish, otherwise set u := u − 1 and return to (a).
3. Given recent allowance price a, calculate the state variable g as solution to a = αt (g).
4. Plug in the state variable g and into function f τ (t, ·) to obtain the price of the European

call as as f τ (t, g).

Let us conclude this section by sketching core ideas on continuous-time modeling. Our analy-
sis shows that the risk-neutral allowance price evolution (At )

T
t=0 must be described by a martin-

gale whose terminal value is digital and depends on the intermediate values (see (3.19)). Suppose
that the compliance period is given by an interval [0, T ], such that all relevant random evolutions
are described by adapted stochastic processes on

filtered probability space (�, F ,P , (Ft )t∈[0,T ])
(5.10)

equipped with probability measure Q ∼ P,

where Q represents the spot martingale measure. Given a random variable ET and appropriate
non-decreasing and continuous abatement functions ct : R+ × � → R+ indexed by t ∈ [0, T ],
we follow an analogy to discrete time and consider solutions (At )t∈[0,T ] to

At = πEQ
(
1{ET −∫ T

0 ct (As)ds≥0}|Ft

)
, t ∈ [0, T ]. (5.11)

Our results from the discrete-time setting suggest that if⎧⎨
⎩

the increments of the martingale (Et = EQ(ET |Ft ))t∈[0,T ] are
independent and the abatement functions ct : R+× → R+
are deterministic and time constant (ct = c)t∈[0,T ],

(5.12)

then a solution to (5.11) should be expected in the functional form

At = α(t,Gt ), t ∈ [0, T ],

with an appropriate deterministic function

α : [0, T ] × R �→ R, (t, g) �→ α(t, g), (5.13)

and a state process (Gt )t∈[0,T ] given by

Gt = Et −
∫ t

0
cs(As)ds, t ∈ [0, T ].
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To illustrate how such an approach allows one to guess a solution, assume that

(�, F ,P , (Ft )t∈[0,T ]) supports the process (Wt , Ft )t∈[0,T ] (5.14)
of Brownian motion with respect to Q ∼ P.

Furthermore, we respond to (5.12), supposing that

dEt = σt dWtwith pre-specified deterministic (σt )t∈[0,T ] and

continuous and non-decreasing abatement functions (ct = c)t∈[0,T ].

To ensure the martingale property of (At = α(t,Gt ))t∈[0,T ], apply the Itô formula

dAt = dα(t,Gt ) = ∂(1,0)α(t,Gt )dt + ∂(0,1)α(t,Gt )dGt + 1
2∂(0,2)α(t,Gt )d[G]t

= ∂(1,0)α(t,Gt )dt − ∂(0,1)α(t,Gt )c(α(t,Gt ))dt + 1
2∂(0,2)α(t,Gt )σ

2
t dt

+ ∂(0,1)α(t,Gt )σt dWt

and claim the function α as a solution on [0, T [×R to

∂(1,0)α(t, g) − ∂(0,1)α(t, g)c(α(t, g)) + 1
2∂(0,2)α(t, g)σ 2

t = 0 (5.15)

with boundary condition

α(T ,g) = π1[0,∞[(g) for all g ∈ R, (5.16)

justified by the digital terminal allowance price. Having obtained α in this way, we construct the
state process as the solution to the stochastic differential equation

dGt = dEt − c(α(t,Gt ))dt, G0 = E0, (5.17)

and then determine

At := α(t,Gt ), t ∈ [0, T ]. (5.18)

Finally, this process must be verified in order to solve (5.11).

6. Conclusion

This article explains the logical principles underlying risk-neutral modeling of emission certifi-
cate price evolution. We show that within a realistic situation of risk-averse market players, there
is no connection between social optimality and market equilibrium, but there is a useful feedback
relation characterizing risk-neutral allowance price dynamics. Expressing this result in terms of
fixed point equations on the level of martingales, we address the existence of its solution and
elaborate on its algorithmic tractability. Furthermore, we suggest an extension of these concepts
to continuous time and show that promising results can be obtained using diffusion processes.
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Here, emission allowances and their options can be described in terms of standard partial differ-
ential equations. Although option pricing in this framework seems to be appealing, we believe
that it is not superior to our Monte Carlo method since the latter can be used in high dimensions
and, more importantly, in the presence of jumps in the martingale (Et )

T
t=0. This is particularly

important to describe price shocks, which may result from possible discontinuities in the infor-
mation flow.
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