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We adapt the techniques in Stigler [Ann. Statist. 1 (1973) 472–477] to obtain a new, general asymptotic
result for trimmed U -statistics via the generalized L-statistic representation introduced by Serfling [Ann.
Statist. 12 (1984) 76–86]. Unlike existing results, we do not require continuity of an associated distribution
at the truncation points. Our results are quite general and are expressed in terms of the quantile function
associated with the distribution of the U -statistic summands. This approach leads to improved conditions
for the asymptotic normality of these trimmed U -statistics.
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1. Introduction and statement of results

Stigler [23] developed an asymptotic result for the trimmed mean without requiring continuity of
the underlying distribution function associated with the observations. This result was extended to
non-degenerate U -statistics based on trimmed samples in Borovskikh and Weber [4]. An alter-
native method for developing robust versions of U -statistics is to consider the statistic formed by
trimming the kernel values, rather than the observations upon which the statistic is based. This
idea is discussed in, for example, Serfling [18], Choudhury and Serfling [7] and Gijbels, Janssen
and Veraverbeke [10]. In this paper, we use the generalized L-statistic representation developed
in Serfling [18] to obtain an asymptotic result for trimmed U -statistics under quite general con-
ditions. We will not require continuity of the relevant, associated distribution at the truncation
points.

Let X,X1, . . . ,Xn be independent identically distributed random variables, taking values in
a measurable space (X, B(X)) and having common distribution F. Let h be a symmetric func-
tion from Xm to R and denote by HF the right-continuous distribution function of the random
variable h(X1, . . . ,Xm). Set N = (

n
m

)
and let h1, . . . , hN be an enumeration of the values of

h(Xi1, . . . ,Xim) taken over the N m-tuples in σnm = {(i1, . . . , im) : 1 ≤ i1 < · · · < im ≤ n}. Note
that these random variables hi are, in general, dependent. Let hn1 ≤ · · · ≤ hnN denote the ordered
values of h1, . . . , hN .
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The original U -statistic is defined as an average taken over the N possible outcomes
h(Xi1 , . . . ,Xim),1 ≤ i1 < · · · < im ≤ n, that is,

U =
(

n

m

)−1 ∑
σnm

h(Xi1, . . . ,Xim) = N−1
N∑

i=1

hni =
∫

R

x dHn(x), (1)

where the empirical distribution function Hn(x) of U -statistical structure is defined by

Hn(y) =
(

n

m

)−1 ∑
σnm

I {h(Xi1, . . . ,Xim) ≤ y}, y ∈ R, (2)

and I {A} denotes the indicator of the set A. For any 0 < γ < 1, let Nγ = [γN], where [a]
denotes the largest integer less than or equal to a. If 0 < α < β < 1, then put Nαβ = Nβ − Nα.

The trimmed versions of U are based on trimming the second sum in (1),

Uαβ = N−1
αβ

Nβ∑
i=Nα+1

hni, (3)

or on trimming of the range of integration in (1),

Lαβ =
∫

[hα,hβ)

x dHn(x), (4)

with hα = hnN̄α
and hβ = hnN̄β

, where N̄γ = −[−γN], γ = α,β. For the results that follow, it
is important to note that the lower bound for the integral in (4) is included and the upper bound
excluded. This is critical since Hn is a step function. With this constraint, we are able to obtain
the asymptotic distribution of Lαβ without imposing any conditions on the nature of HF . In

Lemma 2.3, we show that Lαβ = N−1 ∑N̄β−1

i=N̄α
hni . Thus, Uαβ and Lαβ differ in terms of their

divisors, and there are possible subtle differences in the number of summands.
A class of generalized L-statistics, which includes (3) and (4), was introduced by Serfling [18].

The trimmed U -statistics (3) and (4) are directly connected with generalized Lorenz curves,
which are important in financial mathematics (see, for example, Goldie [9], Helmers and Zi-
tikis [13]).

Clearly, Hn(y) is an unbiased estimator of HF (y). In the case m = 1 and h(x) = x, Hn re-
duces to the usual empirical distribution function. Define the left-continuous quantile function
H−1

F (t) = inf{y ∈ R :HF (y) ≥ t},0 < t ≤ 1,H−1
F (0) = H−1

F (0+), for any distribution func-
tion HF . The empirical quantile function H−1

n (t) has the form

H−1
n (t) =

N∑
i=1

hniI

{
i − 1

N
< t ≤ i

N

}
, H−1

n (0) = hn1.

A large number of authors have studied the weak convergence of such L-statistics in the case
m = 1, h(x) = x. A partial list consists of Chernoff et al. [6], Bickel [2], Shorack [19,20], Stigler
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[23,24], Csörgo et al. [8], Griffin and Pruitt [11], Cheng [5], Mason and Shorack [16]. For m ≥ 2,
under various sets of regularity conditions, asymptotic normality of various types of generalized
L-statistics has been investigated by Silverman [21], Serfling [18], Akritas [1], Janssen et al. [15],
Helmers and Ruymgaart [12], Gijbels et al. [10] and Hössjer [14].

In the aforementioned papers, for m ≥ 2, the results always assumed that HF is continuous
or smooth. However, in modern statistical robust procedures and for bootstrap procedures, re-
sults allowing for the discontinuity of the underlying distribution function HF are needed. We
study the asymptotic behavior of Uαβ and Lαβ for any HF without imposing the requirement of
continuity.

The conditions of our theorem and the limit random variable are defined via the values of
quantile function H−1

F at the points α and β. Existing results handle the cases where H−1
F (γ+) =

H−1
F (γ ), γ = α,β. Our main result is derived without this assumption of continuity. We represent

the trimmed U -statistic as a sum of classical U -statistics with bounded, non-degenerate kernels
plus some smaller terms and then we apply standard results to such statistics.

For convenience, in what follows, for the distribution function HF , we denote the smallest
quantile H−1

F (γ ) and the largest quantile H−1
F (γ+) as, respectively,

ξ−
γ := inf{x ∈ R :HF (x) ≥ γ },

ξ+
γ := sup{x ∈ R :HF (x) ≤ γ }

and �ξγ = ξ+
γ − ξ−

γ with γ = α,β . Let

Ṅ±
γ =

N∑
i=1

I {hi < ξ±
γ }, N±

γ =
N∑

i=1

I {hi ≤ ξ±
γ }.

Note that

Hn(ξ
±
γ −) = N−1Ṅ±

γ , Hn(ξ
±
γ ) = N−1N±

γ (5)

and H−1
n (γ ) = hnN̄γ

are valid for all 0 < γ < 1 and the following events coincide:

{H−1
n (γ ) > x} = {γ > Hn(x)}, {H−1

n (γ ) ≤ x} = {γ ≤ Hn(x)}, x ∈ R. (6)

Introduce the functional θ = θ(HF ), where

θ =
∫

R

[(
(x − ξ−

β )I {x ≤ ξ−
β } + βξ−

β

) − (
(x − ξ+

α )I {x < ξ+
α } + αξ+

α

)]
dHF (x)

and the following functions with x ∈ X:

g(x) = [
EI {h(x,X2, . . . ,Xm) ≤ ξ−

β }(h(x,X2, . . . ,Xm) − ξ−
β

) + βξ−
β

]
− [

EI {h(x,X2, . . . ,Xm) < ξ+
α }(h(x,X2, . . . ,Xm) − ξ+

α

) + αξ+
α

] − θ,

gα(x) = EI {h(x,X2, . . . ,Xm) < ξ+
α } − θα, θα = HF (ξ+

α −), (7)
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gβ(x) = EI {h(x,X2, . . . ,Xm) ≤ ξ−
β } − θβ

= 1 − θβ − EI {h(x,X2, . . . ,Xm) > ξ−
β }, θβ = HF (ξ−

β ).

Note that for all 0 < α < β < 1 and x ∈ X, we have |g(x)| ≤ 4(|ξ+
α | + |ξ−

β |).
Let σ 2

g = Eg2(X),σ 2
gα

= Eg2
α(X),σ 2

gβ
= Eg2

β(X), cggα = Eg(X)gα(X), cggβ = Eg(X)gβ(X)

and cgαgβ = Egα(X)gβ(X).

Theorem 1.1. If σ 2
g > 0, then for any underlying distribution function HF , we have

β − α

m

√
n(Uαβ − θ)

d−→ τg − �ξαI (τα > 0)τα − �ξβI (τβ < 0)τβ,

where (τα, τg, τβ) is a trivariate Gaussian random vector with mean vector zero and covariance
matrix ⎛

⎜⎝
σ 2

gα
cggα cgαgβ

cggα σ 2
g cggβ

cgαgβ cggβ σ 2
gβ

⎞
⎟⎠ .

Corollary 1.2. For any underlying distribution function HF , we have, when σ 2
g > 0,

√
n

m
(Lαβ − θ)

d−→ τg − �ξαI (τα > 0)τα − �ξβI (τβ < 0)τβ,

where (τα, τg, τβ) is a trivariate Gaussian random vector defined as in Theorem 1.1.

Corollary 1.3. Suppose that the quantile function H−1
F (x) is continuous at the points α and β.

If σ 2
g > 0, then

β − α

m

√
n(Uαβ − θ)

d−→ τg.

For the simple case m = 1, the functions in (7) reduce to

g(x) = I {ξ+
α ≤ h(x) ≤ ξ−

β }h(x) − EI {ξ+
α ≤ h(X) ≤ ξ−

β }h(X)

+ ξ+
α gα(x) − ξ−

β gβ(x),

gα(x) = I {h(x) < ξ+
α } − θα,

gβ(x) = I {h(x) ≤ ξ−
β } − θβ = 1 − θβ − I {h(x) > ξ−

β }.

A useful application of the theorem for the m = 2 case is for the kernel h(x, y) = 1
2 (x −y)2. This

provides the asymptotic behavior of a natural, alternative robust version of the sample variance.
We will now develop explicit expressions for the terms in a more interesting example.
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Example. Let h(x1, . . . , xm) = max{x1, . . . , xm} with m ≥ 2 . Let F(t) be the distribution func-
tion of Xi and let Y = max{X2, . . . ,Xm}. Then HF (t) = (F (t))m and

g(x) = gαβ(x) + ξ+
α gα(x) − ξ−

β gβ(x),

gαβ(x) = EI
{
ξ+
α ≤ max{x,Y } ≤ ξ−

β

}
max{x,Y } −

∫
[ξ+

α ,ξ−
β ]

y dHF (y)

= I {ξ+
α ≤ x ≤ ξ−

β }x(F (x))m−1 −
∫

[ξ+
α ,ξ−

β ]
y(F (y))m−1 dF(y)

+
∫

[ξ+
α ,ξ−

β ]
(
I {x < y} − F(y−)

)
y d(F (y))m−1,

gα(x) = I {x < ξ+
α }(F (ξ+

α −))m−1 − (F (ξ+
α −))m,

gβ(x) = I {x ≤ ξ−
β }(F (ξ−

β ))m−1 − (F (ξ−
β ))m.

In addition,

σ 2
g = Eg2

αβ(X) + E[ξ+
α gα(X) − ξ−

β gβ(X)]2

+ 2Egαβ(X)[ξ+
α gα(X) − ξ−

β gβ(X)],
σ 2

gα
= (F (ξ+

α −))2m−1(1 − F(ξ+
α −)

)
, σ 2

gβ
= (F (ξ−

β ))2m−1(1 − F(ξ−
β )

)
,

Egα(X)gβ(X) = (F (ξ+
α −)F (ξ−

β ))m−1F(ξ+
α −)

(
1 − F(ξ−

β )
)
,

Egαβ(X)gα(X) = (F (ξ+
α −))m

∫
[ξ+

α ,ξ−
β ]

(
1 − F(y−)

)
y d(F (y))m−1

− (F (ξ+
α −))m

∫
[ξ+

α ,ξ−
β ]

y(F (y))m−1 dF(y),

Egαβ(X)gβ(X) = (F (ξ−
β ))m−1(1 − F(ξ−

β )
)∫

[ξ+
α ,ξ−

β ]
y(F (y))m−1 dF(y)

+ (F (ξ−
β ))m−1(1 − F(ξ−

β )
)∫

[ξ+
α ,ξ−

β ]
F(y−)y d(F (y))m−1.

Consider the distribution function

F(t) = 2tI
{
0 ≤ t < 1

2α1/m
} + α1/mI

{ 1
2α1/m ≤ t < α1/m

}
+ tI {α1/m ≤ t < β1/m} + β1/mI {β1/m ≤ t < 2β1/m}
+ 1

2 tI {2β1/m ≤ t < 2} + I {t ≥ 2}, t ∈ R.
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Then

ξ−
α = 1

2α1/m, ξ+
α = α1/m, ξ−

β = β1/m, ξ+
β = 2β1/m,

F (ξ+
α −) = α1/m, F (ξ−

β ) = β1/m, F (t) = t, t ∈ [α1/m,β1/m], σ 2
g > 0

and the limiting behavior is given by

β − α

m

√
n(Uαβ − θ)

d−→ τg − 1

2
α1/mI (τα > 0)τα − β1/mI (τβ < 0)τβ.

However, for the simpler distribution function

F(t) = tI {0 ≤ t < 1} + I {t ≥ 1}, t ∈ R,

we have

ξ−
α = ξ+

α = α1/m, ξ−
β = ξ+

β = β1/m,

F (ξ+
α −) = α1/m, F (ξ−

β ) = β1/m, F (t) = t, t ∈ [α1/m,β1/m], σ 2
g > 0

and we get the asymptotic behavior covered by Janssen et al. [15],

β − α

m

√
n(Uαβ − θ)

d−→ τg.

2. Proofs

The following two lemmas are key results for the proof.

Lemma 2.1. The following representation holds:

Nβ∑
i=Nα+1

hni =
N∑

i=1

I {ξ+
α ≤ hi ≤ ξ−

β }hi + ξ+
α (Ṅ+

α − Nα) − ξ−
β (N−

β − Nβ)

− �ξαI {Nα < Ṅ+
α }(Ṅ+

α − Nα) − �ξβI {N−
β < Nβ}(N−

β − Nβ)

+ Lα + Lβ, (8)

where Lα = Jα − J̄α with

Jα = I {Nα < Ṅ+
α }

Ṅ+
α∑

i=Nα+1

(hni − ξ−
α ), J̄α = I {Ṅ+

α ≤ Nα}
Nα∑

i=Ṅ+
α +1

(hni − ξ+
α )
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and Lβ = J̄β − Jβ with

Jβ = I {Nβ < N−
β }

N−
β∑

i=Nβ+1

(hni − ξ−
β ),

J̄β = I {N−
β ≤ Nβ}

Nβ∑
i=N−

β +1

(hni − ξ+
β ).

Proof. For i = 1, . . . ,N , write

ḣni = (hni + �ξα)I {hni < ξ+
α } + hniI {ξ+

α ≤ hni ≤ ξ−
β } + (hni − �ξβ)I {hni > ξ−

β }.

Since ḣni = hni + �ξαI {hni < ξ+
α } − �ξβI {hni > ξ−

β }, I {hni < ξ+
α } = I {i ≤ Ṅ+

α } and, by (6),

I {hni > ξ−
β } = I {i > N−

β }, we can write

Nβ∑
i=Nα+1

hni =
Nβ∑

i=Nα+1

ḣni − �ξαI {Nα < Ṅ+
α }(Ṅ+

α − Nα)

− �ξβI {N−
β < Nβ}(N−

β − Nβ). (9)

Note that hnṄ+
α

< ξ+
α ≤ hn,Ṅ+

α +1 and hnN−
β

≤ ξ−
β < hn,N−

β +1. From (6), we have I {ξ+
α ≤ hni ≤

ξ−
β } = I {Ṅ+

α < i ≤ N−
β }. Hence, in (9),

Nβ∑
i=Nα+1

ḣni =
N−

β∑
i=Ṅ+

α +1

hni − I {Ṅ+
α ≤ Nα}

Nα∑
i=Ṅ+

α +1

hni

+ I {Nα < Ṅ+
α }

Ṅ+
α∑

i=Nα+1

(hni + �ξα) − I {Nβ < N−
β }

N−
β∑

i=Nβ+1

hni

+ I {N−
β ≤ Nβ}

Nβ∑
i=N−

β +1

(hni − �ξβ)

=
N∑

i=1

I {ξ+
α ≤ hi ≤ ξ−

β }hi + ξ+
α (Ṅ+

α − Nα) − ξ−
β (N−

β − Nβ)

+ Lα + Lβ. (10)

Equation (8) follows from (9) and (10). This proves Lemma 2.1. �
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Figure 1. Plots of H(·) with ξ−
γ = ξ+

γ : (a) H(ξ±
γ −) = γ = H(ξ±

γ ); (b) H(ξ±
γ −) < γ = H(ξ±

γ );

(c) H(ξ±
γ −) < γ < H(ξ±

γ ).

Lemma 2.2. Note that

N−1
Nβ∑

i=Nα+1

hni = N−1
N∑

i=1

I {ξ+
α ≤ hi ≤ ξ−

β }hi + ξ+
α

(
Hn(ξ

+
α −) − α

)

− ξ−
β

(
Hn(ξ

−
β ) − β

) − �ξαI {Nα < Ṅ+
α }(Hn(ξ

+
α −) − α

)
− �ξβI {N−

β < Nβ}(Hn(ξ
−
β ) − β

) + n−1/2
n,

where 
n → 0 in probability as n → ∞.

Proof. We shall estimate Lα and Lβ, taking into account the values of the distribution func-
tion HF (x) at x = ξ±

γ with γ = α,β. Figures 1 and 2 illustrate the different situations that need
to be considered.

Figure 2. Plots of H(·) with ξ−
γ < ξ+

γ : (a) γ = H(ξ−
γ ) = H(ξ+

γ ); (b) H(ξ−
γ −) < γ = H(ξ−

γ ) =
H(ξ+

γ −) < H(ξ+
γ ); (c) H(ξ−

γ ) = γ = H(ξ+
γ −) < H(ξ+

γ ).
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Estimating Lα . Noting that I {ξ+
α > hni} = I {i ≤ Ṅ+

α }, we write

Jα = I {Nα < Ṅ+
α }

Ṅ+
α∑

i=Nα+1

(hni − ξ−
α )I {ξ+

α > hni}

= I {Nα < Ṅ+
α }

Ṅ+
α∑

i=Nα+1

(hni − ξ−
α )I {ξ−

α < hni < ξ+
α }I {N−

α < i ≤ Ṅ+
α }

− I {Nα < Ṅ+
α }

Ṅ+
α∑

i=Nα+1

(ξ−
α − hni)I {ξ−

α ≥ hni}I {i ≤ N−
α }

= J+
α − J−

α .

It is clear that if ξ−
α = ξ+

α , then J+
α = 0 a.s. Let ξ−

α �= ξ+
α , as is the case in Fig. 2. In this case,

HF (ξ−
α ) = α = HF (ξ+

α −) and we can write

0 ≤ J+
α ≤ I {N−

α < Ṅ+
α }(ξ+

α − ξ−
α )

Ṅ+
α∑

i=N−
α +1

I {ξ−
α < hni < ξ+

α }

≤ �ξα

N∑
i=1

I {ξ−
α < hi < ξ+

α } = 0 a.s.

since EI {ξ−
α < hi < ξ+

α } = HF (ξ+
α −) − HF (ξ−

α ) = 0. Hence, we always have the relation
J+

α = 0 a.s. To estimate J−
α , we note first that if Ṅ+

α > N−
α , then the indicator I {i ≤ N−

α } = 0 for
all i = N−

α + 1, . . . , Ṅ+
α . Therefore, we have the inequalities

0 ≤ J−
α ≤ I {Nα < N−

α }
N−

α∑
i=Nα+1

(ξ−
α − hni)I {ξ−

α ≥ hni}

≤ I {Nα < N−
α }(N−

α − Nα)(ξ−
α − hnNα )I {ξ−

α ≥ hnNα }. (11)

Further, we shall apply the technique used in Smirnov [22] with a probability inequality from
Hoeffding [14] (or see, for example, Serfling [17], pages 75 and 201). Thus,

P {(ξ−
α − hnNα > ε) ∩ (ξ−

α ≥ hnNα )}
≤ P {ξ−

α − hnNα ≥ ε}
= P {Hn(ξ

−
α − ε) ≥ N−1Nα}

= P {Hn(ξ
−
α − ε) − H(ξ−

α − ε) ≥ N−1Nα − H(ξ−
α − ε)}

≤ c1 exp{−c2nθ2
α(ξ−

α , ε)} (12)
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with some positive constants c1 and c2, depending only on m and θα(ξ−
α , ε) = α −

HF (ξ−
α − ε). Further, θα(ξ−

α , ε) > 0 for any small values of ε > 0, by the definition of the

smallest α-quantile ξ−
α . Under the conditions of the lemma,

√
nN−1(N−

α − Nα)
d−→ τ−

α as
n → ∞. Hence,

√
nN−1Jα → 0 in probability as n → ∞.

Next, we consider J̄α. By definition, Ṅ+
α ≤ N+

α and since I {hni < ξ+
α } = I {i ≤ Ṅ+

α } and
hnN+

α
≤ ξ+

α < hn,N+
α +1, it follows that the indicator I {hni = ξ+

α } = 1 for i = Ṅ+
α + 1, . . . ,N+

α

and we can write

0 ≤ J̄α = I {Ṅ+
α ≤ Nα}

Nα∑
i=Ṅ+

α +1

(hni − ξ+
α )I {hni ≥ ξ+

α }

= I {N+
α ≤ Nα}

Nα∑
i=N+

α +1

(hni − ξ+
α )I {hni > ξ+

α }

≤ I {N+
α ≤ Nα}(Nα − N+

α )(hnNα − ξ+
α )I {hnNα > ξ+

α }. (13)

In (13), we need to consider two cases: HF (ξ+
α ) = α and α < HF (ξ+

α ). In the first case,

HF (ξ+
α ) = α and we have the weak convergence

√
nN−1(N+

α − Nα)
d−→ τ+

α as n → ∞ and
the following estimates which are similar to (12):

P {(hnNα − ξ+
α > ε) ∩ (hnNα > ξ−

α )}
≤ P {hnNα − ξ+

α > ε}
= P {N−1Nα > Hn(ξ

+
α + ε)}

= P {H(ξ+
α + ε) − Hn(ξ

+
α + ε) > H(ξ+

α + ε) − N−1Nα}
≤ c1 exp{−c2nδ2

α(ξ+
α , ε)}, (14)

where δα(ξ+
α , ε) = HF (ξ+

α + ε) − α. In addition, δα(ξ+
α , ε) > 0 for any small values of ε > 0

because of the definition of the largest α-quantile ξ+
α . Hence, in the case HF (ξ+

α ) = α, we have√
nN−1J̄α → 0 in probability as n → ∞. In the second case in (13), δα(ξ+

α ,0) = HF (ξ+
α ) −

α > 0 and we have the representation

√
nN−1(N+

α − Nα) = √
n
(
Hn(ξ

+
α ) − HF (ξ+

α )
) + √

nδα(ξ+
α ,0) + ωn(α), (15)

where
√

n(Hn(ξ
+
α ) − HF (ξ+

α ))
d−→ τ+

α and ωn(α) = √
nN−1(αN − [αN ]) = O(n−1/2) as

n → ∞, but the positive term
√

nδα(ξ+
α ,0) is unbounded. Therefore, in this case, we shall ap-

ply the estimate (14) with εn−1 instead of ε, that is, P {(hnNα − ξ+
α > εn−1) ∩ (hnNα > ξ−

α )}
≤ c1 exp{−c2nδ2

α(ξ+
α , εn−1)}. Since the distribution function HF is continuous from the right

at the point ξ+
α it follows that δα(ξ+

α ,0) ≤ δα(ξ+
α , εn−1) for any small ε > 0 and sufficiently

large n. Hence, in the second case, α < HF (ξ+
α ) and (14) is replaced by the inequality

P {(hnNα − ξ+
α > εn−1) ∩ (hnNα > ξ−

α )} ≤ c1 exp{−c2nδ2
α(ξ+

α ,0)}, (16)
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which provides the desired convergence
√

nN−1J̄α → 0 in probability as n → ∞. Thus, we have
proven that

√
nN−1

Lα → 0 in probability as n → ∞.

Estimating Lβ . Noting that I {ξ−
β ≥ hni} = I {i ≤ N−

β }, we write

0 ≤ −Jβ = I {Nβ < N−
β }

N−
β∑

i=Nβ+1

(ξ−
β − hni)I {ξ−

β ≥ hni}

≤ I {Nβ < N−
β }(N−

β − Nβ)(ξ−
β − hnNβ )I {ξ−

β ≥ hnNβ }.
Here, by analogy with (12), we have

P {(ξ−
β − hnNβ > ε) ∩ (ξ−

β ≥ hnNβ )} ≤ P {ξ−
β − hnNβ ≥ ε}

= P {Hn(ξ
−
β − ε) ≥ N−1Nβ}

= P {Hn(ξ
−
β − ε) − H(ξ−

β − ε) ≥ N−1Nβ − H(ξ−
β − ε)}

≤ c1 exp{−c2nθ2
β(ξ−

β , ε)} (17)

with θβ(ξ−
β , ε) = β − HF (ξ−

β − ε) and by analogy with (15),

√
nN−1(N−

β − Nβ) = √
n
(
Hn(ξ

−
β ) − HF (ξ−

β )
) + √

nθβ(ξ−
β ,0) + ωn(β). (18)

Here, we need to consider two cases: β −HF (ξ−
β −) = 0 and β −HF (ξ−

β −) > 0. In the first case,
we apply the inequality (17) with sufficiently small ε > 0. In the second case, we use (17) again,
but with parameter εn−1, as in (16), to get

P {(ξ−
β − hnNβ > εn−1) ∩ (ξ−

β ≥ hnNβ )} ≤ c1 exp{−c2nθ2
β(ξ−

β −,0)} (19)

since the distribution function HF has a limit from the left at the point ξ−
β and HF (ξ−

β −) ≥
HF (ξ−

β − εn−1). In this result, we have
√

nN−1Jβ → 0 in probability as n → ∞.

Finally, we consider J̄β . Since I {hni > ξ±
β } = I {i > N±

β }, we write

J̄β = I {N−
β < Nβ}

Nβ∑
i=N−

β +1

(hni − ξ+
β )I {hni > ξ−

β }

= −I {N−
β < Nβ}

Nβ∑
i=N−

β +1

(ξ+
β − hni)I {ξ−

β < hni < ξ+
β }I {N−

β < i ≤ Ṅ+
β }

+ I {N−
β < Nβ}

Nβ∑
i=N+

β +1

(hni − ξ+
β )I {hni > ξ+

β }I {i > Ṅ+
β }

= −J̄−
β + J̄+

β .
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If ξ−
β = ξ+

β , then J̄−
β = 0 a.s. Now, assume that ξ−

β �= ξ+
β . In this case, HF (ξ−

β ) = β = HF (ξ+
β −)

and we have

0 ≤ J̄−
β ≤ I {N−

β < Ṅ+
β }(ξ+

β − ξ−
β )

Ṅ+
β∑

i=N−
β +1

I {ξ−
β < hni < ξ+

β }

≤ �ξβ

N∑
i=1

I {ξ−
β < hi < ξ+

β } = 0 a.s.

since EI {ξ−
β < hi < ξ+

β } = HF (ξ+
β −) − HF (ξ−

β ) = 0. Hence, we always have J̄−
β = 0 a.s. To

estimate J̄+
β , we write

0 ≤ J̄+
β ≤ I {N−

β < Nβ}(N+
β − Nβ)(hni − ξ+

β )I {hni > ξ+
β }

and apply the estimates (13)–(16) with β instead of α. We have
√

nN−1J̄β → 0 in probability as
n → ∞ and hence

√
nN−1

Lβ → 0 in probability as n → ∞.

This proves Lemma 2.2. �

Proof of Theorem 1.1. Let U(g) be a U -statistic of the form (1) with the kernel

g(x1, . . . , xm) = [
I {h(x1, . . . , xm) ≤ ξ−

β }(h(x1, . . . , xm) − ξ−
β

) + βξ−
β

]
− [

I {h(x1, . . . , xm) < ξ+
α }(h(x1, . . . , xm) − ξ+

α

) + αξ+
α

]
.

We see that

U(g) = N−1
N∑

i=1

I {ξ+
α ≤ hi ≤ ξ−

β }hi + ξ+
α

(
Hn(ξ

+
α −) − α

) − ξ−
β

(
Hn(ξ

−
β ) − β

)
.

It is not difficult to verify for this function that Eg(X1, . . . ,Xm) = θ and g(x) = Eg(x,X2, . . . ,

Xm) − θ, x ∈ X; in addition, Eg2(X) > 0, by the condition of the theorem. Hence, the kernel g

is non-degenerate and, by the central limit theorem for U -statistics with such bounded kernels,
we have the weak convergence τng := m−1√n(U(g) − θ)

d−→ τg as n → ∞ (see, for example,
Borovskikh [3]). By the same central limit theorem, we have

τnα := m−1√n
(
Hn(ξ

+
α −) − H(ξ+

α −)
) d−→ τα

and

τnβ := m−1√n
(
Hn(ξ

−
β ) − H(ξ−

β )
) d−→ τβ

as n → ∞. Under the conditions of the theorem, we have E|I {Ṅ+
α − Nα > 0} − I {τα > 0}| → 0

if �ξα �= 0 (in this case, H(ξ+
α −) = α) and E|I {N−

β − Nβ < 0} − I {τβ < 0}| → 0 if �ξβ �= 0



Generalized L-statistics 1189

(in this case, H(ξ−
β ) = β). Further, it is easy to prove that the covariances Cov(τn∗, τn�) →

Cov(τ∗, τ�) as n → ∞, where ∗, � = α,g,β. Now, apply Lemma 2.2 to complete the proof of
Theorem 1.1. �

Lemma 2.3. The following representation holds:

Lαβ = N−1
N̄β−1∑
i=N̄α

hni .

Proof. By definition, we can write

Lαβ =
∫

R

I {hα ≤ x < hβ}x dHn(x)

= 1

N

N∑
i=1

I {hα ≤ hni < hβ}hni

= 1

N

N∑
i=1

I {hni < hβ}hni − 1

N

N∑
i=1

I {hni < hα}hni

= 1

N

N̄β−1∑
i=1

hni − 1

N

N̄α−1∑
i=1

hni

= 1

N

N̄β−1∑
i=N̄α

hni .

This proves Lemma 2.3. �

The proof of Corollary 1.2 follows from Theorem 1.1 and Lemma 2.3.
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