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Conditional density estimation in a censored
single-index regression model
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Under a single-index regression assumption, we introduce a new semiparametric procedure to estimate a
conditional density of a censored response. The regression model can be seen as a generalization of the
Cox regression model and also as a profitable tool for performing dimension reduction under censoring.
This technique extends the results of Delecroix et al. [J. Multivariate Anal. 86 (2003) 213–226]. We derive
consistency and asymptotic normality of our estimator of the index parameter by proving its asymptotic
equivalence with the (uncomputable) maximum likelihood estimator, using martingales results for counting
processes and arguments from empirical processes theory. Furthermore, we provide a new adaptive proce-
dure which allows us both to choose the smoothing parameter involved in our approach and to circumvent
the weak performances of the Kaplan–Meier estimator [Amer. Statist. Assoc. 53 (1958) 457–481] in the
right-tail of the distribution. By means of a simulation study, we study the behavior of our estimator for
small samples.

Keywords: asymptotic normality; censoring; empirical processes; martingales for counting processes;
pseudo-maximum likelihood; single-index model

1. Introduction

A major concern in recent papers dealing with censored regression is to propose alternatives to
the popular Cox regression model. This model, also known as the multiplicative hazard regres-
sion model (see Cox (1972)), states some semi-parametric assumptions on the conditional hazard
function. Estimation in this model is traditionally performed using pseudolikelihood techniques
and the theoretical properties of these procedures are covered in a large number of papers (see,
for example, Fleming and Harrington (1991)). However, in some situations, the assumptions of
the Cox regression model are obviously not satisfied by the data set. In this paper, our aim is to
perform estimation in a semi-parametric regression model which allows more flexibility than the
Cox regression model. This new technique can be seen as a particularly interesting alternative
since it is valid in a larger number of situations than the multiplicative hazard model.

Alternatives to the Cox regression model mostly focus on the estimation of a conditional ex-
pectation or of a quantile regression model. Koul et al. (1981), Stute (1999) and Delecroix et
al. consider mean regression models where the regression function belongs to a parametric fam-
ily, but with an unknown distribution of the residuals. Parametric quantile regression was studied
by Gannoun et al. (2005). On the other hand, Lu and Burke (2005) and Lopez (2009) considered
a semi-parametric single-index regression model. Single-index regression models were initially
introduced to circumvent the so-called “curse of dimensionality” in nonparametric regression
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(see, for example, Ichimura (1993)), by assuming that the conditional expectation depends only
on an unknown linear combination of the covariates. Another appealing aspect of such mod-
els is that they include the Cox regression model as a particular case. The main assumption of
this model is that the conditional density depends only on an unknown linear combination of
the covariates, while the multiplicative hazard model makes a similar assumption on the condi-
tional hazard rate. In this paper, we focus on estimation of the parameter in a regression model
in which the conditional density of the response satisfies a single-index assumption. We provide
asymptotic results for a new M-estimation procedure for the index parameter. This procedure
can be seen as a generalization of the method of Delecroix et al. (2003) to the case of censored
regression.

As in the uncensored case, we show that, as regards the estimation of the parametric part of our
model, there is an asymptotic equivalence between our semi-parametric approach and a paramet-
ric one relying on some prior knowledge of the family of regression functions. For the nonpara-
metric part, we use kernel estimators of conditional densities as in Delecroix et al. (2003). Since
the performance of kernel estimators strongly relies on the choice of the smoothing parameter,
we also provide a method to choose this parameter adaptively. Another technical issue in our
approach concerns a truncation parameter involved in our procedure. This problem of truncation
comes directly from the censored framework, where estimators of the underlying distribution
functions sometimes fail to correctly estimate the tail of the distribution. This problem is tradi-
tionally circumvented by, for example, introducing integrability assumptions on the response and
censoring distribution; see, for example, Stute (1999). On the other hand, the truncation proce-
dure consists of removing the observations which are too large in the estimation of the regression
function; see, for example, Heuchenne and Van Keilegom (2007) or condition (2.2) in Brunel and
Comte (2006), which can be interpreted as such a type of truncation. Until now, the truncation
bounds which have been used are arbitrarily fixed and, usually, no method is proposed to discuss
a method for choosing this truncation bound in practical situations. Therefore, in the new method
we propose, we also provide a data-driven procedure to choose the truncation parameter. In our
practical implementations, we use a criterion based on an asymptotic discussion which focuses
on the mean square error associated with the estimation of the single-index parameter. We also
suggest some possible adaptations to other types of criteria which are covered by our theoretical
results.

In Section 2, we introduce our censored regression model and present our estimation pro-
cedure. It relies on the Kaplan–Meier estimator (1958) of the distribution function and on
semi-parametric estimators of the conditional density. Following the procedure of Delecroix et
al. (2003), we considered kernel-based estimators. Our theoretical results are presented in Sec-
tion 3. In Section 4, we report simulation results and analysis on real data. Section 5 contains
the detailed proof of our main lemma, which states the asymptotic equivalence of estimating the
parameter in the semi-parametric and parametric models. All of the technicalities are postponed
to the Appendix.
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2. Censored regression model and estimation procedure

2.1. Notation and general setting

Let Y1, . . . , Yn be i.i.d. copies of a random response variable Y ∈ R and let X1, . . . ,Xn be
i.i.d. copies of a random vector of covariates X ∈ X , where X is a compact subset of R

d . Intro-
ducing C1, . . . ,Cn, i.i.d. replications of the censoring variable C ∈ R, we consider the following
censored regression framework, where the observations are⎧⎨

⎩
Zi = Yi ∧ Ci, 1 ≤ i ≤ n,

δi = 1{Yi≤Ci }, 1 ≤ i ≤ n,

Xi ∈ X ⊂ R
d , 1 ≤ i ≤ n.

Let us introduce some notation for the distribution functions of the random variables appearing
in this model, that is, H(t) = P(Z ≤ t), FX(t) = P(X ≤ t), FY (t) = P(Y ≤ t), FX,Y (x, y) =
P(X ≤ x,Y ≤ y) and G(t) = P(C ≤ t). A major difficulty arising in censored regression models
is the unavailability of the empirical distribution function to estimate functions FY , FX,Y and G,

which must be replaced by Kaplan–Meier estimators.
We are interested in estimating f (y|x), where f (y|x) denotes the conditional density of Y

given X = x evaluated at point y. If one has no insight into the function f, it becomes necessary
to perform nonparametric estimation of the conditional density. In the absence of censoring, a
classical way to proceed is to use kernel smoothing; see, for example, Bashtannyk and Hyndman
(2001). However, the so-called “curse of dimensionality” prevents this approach from being of
practical interest when the number of covariates is important (d > 3 in practice). Therefore, it
becomes relevant to consider semi-parametric models which appear to be a good compromise
between the parametric (which relies on strong assumptions on the function f which may not
hold in practice) and the nonparametric approach (which relies on fewer assumptions). In the
following, we will consider the following semi-parametric single-index regression model,

∃θ0 ∈ � ⊂ R
d such as f (y|x) = fθ0(y, x′θ0), (1)

where fθ (y,u) denotes the conditional density of Y given X′θ = u evaluated at y. For identifia-
bility reasons, we will impose the condition that the first component of θ0 is 1. In comparison to
the Cox regression model for absolute continuous variables, our model (1) is more general since
it only assumes that the law of Y given X depends on an unknown linear combination of the
covariates, without imposing additional conditions on the conditional hazard rate.

Model (1) was considered by Delecroix et al. (2003) in the uncensored case. However, their
procedure cannot be directly applied in the censored framework since the response variables are
not directly observed. As a consequence, the empirical distribution function is unavailable and
most of the tools used in this context are not at our disposal. A solution consists of using proce-
dures relying on Kaplan–Meier estimators for the distribution function. An important difficulty
arising in techniques of this type is the poor behavior of Kaplan–Meier estimators in the tail of
the distribution. A practical way to avoid this kind of problem is to consider the truncated ver-
sion of the variable Y . In the following, we will consider Aτ , a sequence of compacts included
in the set {t : τ1 ≤ t ≤ τ } for τ ≤ τ0, where τ0 < inf{t :H(t) = 1}. Using only the observations
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in Aτ allows us to avoid the bad behavior of the usual Kaplan–Meier estimators in the tail of the
distribution. Moreover, this technique of truncation is particularly well adapted to our problem
of estimating θ0. In our framework, this truncation does not lead to any asymptotic bias since,
denoting by f τ (·|x) the conditional density of Y given X = x and Y ∈ Aτ , for any τ < ∞, we
have, under (1),

f τ (y|x) = f τ
θ0

(y, x′θ0), (2)

where f τ
θ (y,u) denotes the conditional density of Y given X′θ = u and Y ∈ Aτ evaluated at y,

and where the parameter is the same in (1) as in (2). In Section 2.6, we will discuss a new method
allowing us to choose τ from the data in order to improve the performance in estimating θ0.

2.2. Estimation procedure

We will extend the idea behind the procedure developed by Delecroix et al. (2003), adapting it to
our censored framework. First, assume that we know the family of functions f τ

θ . This approach is
a modification of the maximum likelihood estimation procedure. Define, for any function J ≥ 0,

Lτ (θ, J ) = E[logf τ
θ (Y, θ ′X)J (X)1Y∈Aτ ] =

∫
logf τ

θ (y, θ ′x)J (x)1y∈Aτ dFX,Y (x, y).

Here, J is a positive trimming function which will be defined later in order to avoid denomina-
tor problems in the nonparametric part of the model; see Section 2.4. From (2), θ0 maximizes
Lτ (θ, J ) for any τ < ∞, this maximum being unique under some additional conditions on the
regression model and J. Since, in our framework, FX,Y and f τ

θ are unknown, it is natural to
estimate them in order to produce an empirical version of Lτ (θ, J ).

2.2.1. Estimation of FX,Y

In the case where there is no censoring (as in Delecroix et al. (2003)), FX,Y can be estimated by
the empirical distribution function. In our censoring framework, the empirical distribution func-
tion of (X,Y ) is unavailable since it relies on the true Yi ’s, which are not observed. A convenient
way to proceed involves replacing it by some Kaplan–Meier estimator, such as the one proposed
by Stute (1993). Let us define the Kaplan–Meier estimator (Kaplan and Meier (1958)) of FY ,

F̂Y (y) = 1 −
∏

i:Zi≤t

(
1 − 1∑n

j=1 1Zj ≥Zi

)δi

=
n∑

i=1

δiWin1Zi≤y,

where Win denotes the “jump” of the Kaplan–Meier estimator at observation i (see Stute (1993)).
To estimate FX,Y , Stute proposes the use of

F̂ (x, y) =
n∑

i=1

δiWin1Zi≤y,Xi≤x.
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Let us also define the following (uncomputable) estimator of the distribution function:

F̃ (x, y) =
n∑

i=1

δiW
∗
i 1Zi≤y,Xi≤x,

where W ∗
i = n−1[1 − G(Zi−)]−1. The link between F̂ and F̃ comes from the fact that, in the

case where P(Y = C) = 0,

Win = n−1[1 − Ĝ(Zi−)]−1, (3)

where Ĝ denotes the Kaplan–Meier estimator of G (see Satten and Datta (2001)). Asymptotic
properties of F̂ can be deduced by studying the difference with the simplest, but uncomputable,
estimator F̃ .

If we know the family of regression functions f τ
θ , it is possible to compute the empirical

version of Lτ (θ, J ) using F̂ , that is,

Lτ
n(θ, f τ , J ) =

∫
logf τ

θ (y, θ ′x)J (x)1y∈Aτ dF̂ (x, y)

=
n∑

i=1

δiWin logf τ
θ (Zi, θ

′Xi)J (Xi)1Zi∈Aτ .

In the case J ≡ 1, the estimator of θ0 obtained by maximizing Lτ
n would turn out to be an

extension of the maximum likelihood estimator of θ0, used in the presence of censoring.

2.3. Estimation of f τ
θ

In our regression model (2), the family {f τ
θ , θ ∈ �} is actually unknown. As in Delecroix et

al. (2003), we propose to use nonparametric kernel smoothing to estimate f τ
θ . Introducing a

kernel function K and a sequence of bandwidths h, define

f̂
h,τ
θ (z, θ ′x) =

∫
Kh(θ

′x − θ ′u)Kh(z − y)1y∈Aτ dF̂ (u, y)∫
Kh(θ ′x − θ ′u)1y∈Aτ dF̂ (u, y)

, (4)

where Kh(·) = h−1K(·/h). Also, define f ∗h,τ , the kernel estimator based on the function F̃ ,

that is,

f
∗h,τ
θ (z, θ ′x) =

∫
Kh(θ

′x − θ ′u)Kh(z − y)1y∈Aτ dF̃ (u, y)∫
Kh(θ ′x − θ ′u)1y∈Aτ dF̃ (u, y)

.

f ∗h,τ will play an important role in studying the asymptotic behavior of f̂ h,τ . Indeed, f ∗h,τ

is theoretically easier to handle since it relies on sums of i.i.d. quantities, which is not the case
for F̂ . Since f ∗h,τ can be studied by standard kernel arguments, the most important difficulty
will arise from studying the difference between f̂ h,τ and f ∗h,τ .

In what follows, we will impose the following conditions on the kernel function:
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Assumption 1. Assume that:

(A1) K is a twice differentiable and fourth order kernel with derivatives of order 0, 1 and 2
of bounded variation, its support contained in [−1/2,1/2] and

∫
R

K(s)ds = 1;
(A2) κ := ‖K‖∞ := supx∈R |K(x)| < ∞;
(A3) K := {K((x − ·)/h) :h > 0, x ∈ R

d} is a pointwise measurable class of functions;
(A4) h ∈ Hn ⊂ [an−α, bn−α] with a, b ∈ R, 1/8 < α < 1/6 and where Hn is of cardinality

kn satisfying knn
−4α → 0.

2.4. The trimming function J

The reason for introducing function J must be related to the need to avoid denominators close to
zero in the definition (4). Ideally, we would need to use the trimming function

J0(x, c) = J̃ (fθ ′
0X

, θ ′
0x, c), (5)

where c is a strictly positive constant, fθ ′
0X

denotes the density of θ ′
0X and J̃ (g,u, c) = 1g(u)>c.

Unfortunately, this function relies on the knowledge of the parameter θ0 and fθ ′
0X

. Therefore, we
will have to proceed in two steps; that is, we first obtain a preliminary consistent estimator of θ0
and then use it to estimate the trimming function J0 which will be needed to achieve asymptotic
normality of our estimators of θ0.

We will assume that we know some set B on which inf{fθ ′X(θ ′x) :x ∈ B,θ ∈ �} > c, where
c is a strictly positive constant. In a preliminary step, we can use this set B to compute the
preliminary trimming JB(x) = 1x∈B. Using this trimming function and a deterministic sequence
of bandwidth h0 satisfying (A4) in Assumption 1, we define a preliminary estimator θn of θ0,

θn = arg max
θ∈�

Lτ
n(θ, f̂ h0,τ , JB). (6)

Let us stress the fact that B is assumed to be known. This is a classical assumption in single-index
regression (see Delecroix et al. (2006)). However, in practice, the procedure does not seem very
sensitive to the choice of B. The bandwidth h0 we consider in the preliminary step can be any
sequence decreasing to zero slower than n−1/2. An adaptive choice of h0 could be considered
(using, for instance, the same choice as in the final estimation step; see below). However, since
we will only need θn to be a preliminary consistent estimator and the final estimator will not be
very sensitive to an adaptive choice of h0 while computing θn, we do not consider this case in
what follows.

With this preliminary estimator θn to hand, we can compute an estimated version of J0 which
will happen to be equivalent to J0 (see Delecroix et al. (2006), page 738), that is,

Ĵ0(x, c) = J̃ (f̂
h0,τ

θ ′
nX

, θ ′
nx, c). (7)

For each sequence of bandwidths satisfying (A4) in Assumption 1 and for each truncation
bound τ, we can define an estimator of θ0,

θ̂ τ (h) = arg max
θ∈�n

Lτ
n(θ, f̂ h,τ , Ĵ0), (8)
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where �n is a shrinking sequence of neighborhoods accordingly to the preliminary estimation.
However, as for any smoothing approach, the performance of this procedure strongly depends
on the bandwidth sequence. Therefore, it becomes particularly relevant to provide an approach
which automatically selects the most adapted bandwidth according to the data. The new question
which then arises from the censored framework concerns the adaptive choice of the truncation
parameter τ.

2.5. Adaptive choice of the bandwidth

Our procedure consists of choosing from the data, for each θ, a bandwidth which is adapted to
the computation of f τ

θ (z, u). For this, we use an adaptation of the cross-validation technique of
Fan and Yim (2004), that is,

ĥτ (θ) = arg min
h∈Hn

n∑
i=1

Win1Zi∈Aτ

{∫
Aτ

f̂
h,τ
θ (z, θ ′Xi)

2 dz − 2f̂
h,τ
θ (Zi, θ

′Xi)

}
.

This criterion is (up to a quantity which does not depend on h) an empirical version of the ISE
criterion defined in equation (3.3) of Fan and Yim (2004) (in a censored framework), that is,∫
Aτ

∫ {f̂ h,τ
θ (z, θ ′x) − f τ

θ (z, θ ′x)}2fθ ′X(θ ′x)dx dz.

The estimator of θ0 with an adaptive bandwidth is now defined as

θ̂ τ = arg max
θ∈�n

Lτ
n(θ, f̂ ĥ,τ , Ĵ0). (9)

In the above notation, ĥ depends on θ and τ, which was not emphasized in order to simplify the
notation.

2.6. Adaptive choice of τ

As we have already mentioned, the Kaplan–Meier estimator does not behave well in the tail of
the distribution. For example, if some moment conditions are not satisfied, it is not even n1/2-
consistent. Moreover, even in the case where an appropriate moment condition holds, it may
happen (at least for a finite sample size) that the weights corresponding to the large observations
are too important and exert considerable influence on the estimation procedure. For this reason,
we introduced a truncation by a bound τ. However, a large number of existing procedures which
also rely on this type of truncation do not consider the problem of choosing τ from the data. We
propose that τ is selected from the data in the following way. Suppose that we have a consistent
estimator of the asymptotic mean square error,

E2(τ ) = lim sup
n

E[‖θ̂ τ (ĥτ ) − θ0‖2],

say Ê2(τ ), satisfying

sup
τ1≤τ≤τ0

|Ê2(τ ) − E2(τ )| → 0 in probability. (10)
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Such an estimator will be proposed in Section 4. Using this empirical estimator, we propose to
choose τ in the following way, that is,

τ̂ = arg min
τ1≤τ≤τ0

Ê2(τ ).

Our final estimator of θ0 is based on an adaptive bandwidth and an adaptive choice of trunca-
tion parameter τ, that is,

θ̂ = θ̂ τ̂ .

As we have already said, truncating the data does not introduce additional bias in the estimation
of θ0. On the other hand, removing too many data points could strongly increase the variance and
removing some of the largest data points will decrease it. Our selection procedure τ̂ is then based
on estimating the variance of θ̂ and consists of taking from the data the truncation parameter τ

that seems to be the best compromise between these two aspects.

3. Asymptotic results

3.1. Consistency

The assumptions needed for consistency can basically be split into three categories, that is, iden-
tifiability assumptions, assumptions on the regression model (2) itself and, finally, assumptions
on the censoring model.

Identifiability assumption and assumption on the regression model

Assumption 2. Assume that for all τ1 ≤ τ ≤ τ0 and all θ ∈ � − {θ0},
Lτ (θ0, JB) − Lτ (θ, JB) > 0.

Assumption 3. Assume that for θ1, θ2 ∈ �, a bounded function �(X) and some γ > 0, we have

sup
τ

‖f τ
θ1

(y, θ ′
1x) − f τ

θ2
(y, θ ′

2x)‖∞ ≤ ‖θ1 − θ2‖γ �(X).

Assumptions on the censoring model

Assumption 4. P(Y = C) = 0.

This classical assumption in a censored framework avoids problems caused by the lack of
symmetry between C and Y in the case where there are ties.

Assumption 5. Identifiability assumption: we assume that:

• Y and C are independent;
• P(Y ≤ C|X,Y) = P(Y ≤ C|Y).
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This last assumption was initially introduced by Stute (1993). An important particular case in
which Assumption 5 holds is when C is independent from (X,Y ). However, Assumption 5 is a
more general and widely accepted assumption, which allows the censoring variables to depend
on the covariates.

Theorem 1. Under Assumptions 2–5,

sup
θ∈�,τ1≤τ≤τ0

|Lτ
n(θ, f̂ h0,τ , JB) − Lτ (θ, JB)| = oP (1) (11)

and, consequently,

θn →P θ0.

Proof. To show (11), we will proceed in two steps. First, we consider Lτ
n(θ, f τ , JB)−Lτ (θ, JB)

(parametric problem) and then Lτ
n(θ, f̂ h0,τ , JB) − Lτ

n(θ, f τ , JB).

Step 1. From Assumption 3, the family {log(f τ
θ (·, θ ′·)), θ ∈ �,τ1 ≤ τ ≤ τ0} is seen to be

P -Glivenko–Cantelli. Using a uniform version of Stute (1993) leads to supθ |Lτ
n(θ, f τ , JB) −

Lτ (θ, JB)| →P 0.

Step 2. We have, on the set �′B,

| log f̂
h0,τ
θ (y,u) − logf τ

θ (y,u)| ≤ c−1[f̂ h0,τ
θ (y,u) − f τ

θ (y,u)].
Hence,

sup
θ,τ

|Lτ
n(θ, f̂ h0,τ , JB) − Ln(θ, f τ , JB)|

≤ c−1 sup
θ,y,u,τ

|f̂ h0,τ
θ (y,u) − f τ

θ (y,u)|1u∈�′B,y≤τ

∫
dF̂ (x, y)

≤ c−1 sup
θ,y,u,τ

|f̂ h0,τ
θ (y,u) − f τ

θ (y,u)|1u∈�′B,y≤τ .

Using the uniform convergence of f̂
h,τ
θ (see Proposition 2 and Lemma 2), we deduce that

supθ,τ |Lτ
n(θ, f̂ h0,τ , JB) − Lτ

n(θ, f τ , JB)| →P 0. �

3.2. Asymptotic normality

To obtain the asymptotic normality of our estimator, we need to introduce some regularity as-
sumptions to the regression model.

Assumption 6. Denote by ∇θf
τ
θ (y, x) (resp., ∇2

θ f τ
θ (y, x)) the vector of partial derivatives (resp.,

the matrix of second derivatives with respect to θ ) of f τ
θ with respect to θ and computed at point

(θ, x, y). Assume that for θ1, θ2 ∈ �, a bounded function �(X) and some γ > 0, we have

sup
τ

‖∇2
θ f τ

θ1
(y, x) − ∇2

θ f τ
θ2

(y, x)‖∞ ≤ ‖θ1 − θ2‖γ �(X).
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Assumption 7. Using the notation of Van der Vaart and Wellner (1996) in Section 2.7, define

H1 = C 1+δ(θ ′
0 X × Aτ ,M),

H2 = xC 1+δ(θ ′
0 X × Aτ ,M) + C 1+δ(θ ′

0 X × Aτ ,M).

Assume that f τ
θ0

(·, ·) ∈ H1 (as a function of θ ′
0x and y) and ∇θf

τ
θ0

(·, ·) ∈ H2.

If the family of functions f τ was known (parametric problem), the asymptotic normality of
θ̂ could be deduced from elementary results on Kaplan–Meier integrals (see the Appendix for a
brief review of these results), as in Stute (1999) or in Delecroix et al. (2008). Using results of this
kind, we can derive the following lemma (see the Appendix for the proof), which is sufficient to
obtain the asymptotic law of θ̂ in the parametric case, from Sherman (1994), Theorems 1 and 2.

Lemma 1. Under Assumptions 6 and 7, we have the following representations:

1. on oP (1)-neighborhoods of θ0,

Lτ
n(θ, f τ , J0) = Lτ (θ, J0)+ (θ − θ0)

′T1n(θ)+ (θ − θ0)
′T2n(θ)(θ − θ0)+T3n(θ)+T4n(θ0),

with supθ,τ |T1n| = OP (n−1/2), supθ,τ |T2n| = oP (1), supθ,τ |T3n| = OP (n−1) and
T4n(θ0) = Lτ

n(θ0, f
τ , J0);

2. on OP (n−1/2)-neighborhoods of θ0,

Lτ
n(θ, f τ , J0) = n−1/2(θ − θ0)

′Wn,τ − 1
2 (θ − θ0)

′Vτ (θ − θ0) + T4n(θ0) + T5n(θ),

with supθ,τ |T5n| = oP (n−1), and defining f1(x, y) = f τ−1

θ0
(y, θ ′

0x)J0(x, c)∇θf
τ
θ0

(y, x),

Wn,τ = 1

n1/2

n∑
i=1

ψ(Zi, δi,Xi;f11Aτ ),

Vτ = E[f τ−2

θ0
(Y, θ ′

0X)J0(X, c)∇θf
τ
θ0

(Y,X)∇θf
τ
θ0

(Y,X)′1Y∈Aτ ],
where ψ is defined as in Theorem 3.

In the following theorem, we show that the semi-parametric estimator proposed in Section 2
has the same asymptotic law as in the fully parametric case.

Theorem 2. Define τ ∗ = arg minτ E2(τ ). Under Assumptions 1–7, we have the following as-
ymptotic i.i.d. representation:

θ̂ − θ0 = − 1

n1/2
V −1

τ∗ Wn,τ∗ + oP (n−1/2), (12)

where Vτ and Wn,τ are defined in Lemma 1. As a consequence,

n1/2(θ̂ − θ0) �⇒ N (0,�τ∗),
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where �τ∗ = V −1
τ∗ �τ∗(f1)V

−1
τ∗ , �τ∗(f1) = Var(ψ(Z, δ,X;f11Aτ∗ )) and f1 is defined as in

Lemma 1.

This theorem is a consequence of the following lemma. This result shows that, asymptotically
speaking, maximizing Lτ

n(θ, f̂ h,τ , J ) is equivalent to maximizing Lτ
n(θ, f τ , J ).

Main Lemma. Under Assumptions 1–7,

Lτ
n(θ, f̂ h,τ , Ĵ0) = Lτ

n(θ, f τ , J0)+(θ −θ0)
′R1n(θ,h, τ )+(θ −θ0)

′R2n(θ,h, τ )(θ −θ0)+L̃τ
n(θ0),

where

sup
θ∈�n,h∈Hn,τ1≤τ≤τ0

R1n(θ,h, τ ) = oP (n−1/2),

sup
θ∈�n,h∈Hn,τ1≤τ≤τ0

R2n(θ,h, τ ) = oP (1)

and

L̃τ
n(θ0) = Aτ

1n(θ0, f̂
h,τ ) − Bτ

4n(θ0, f̂
h,τ ),

Aτ
1n(θ0, f̂

h,τ ) and Bτ
4n(θ0, f̂

h,τ ) being defined in the proof of this lemma.

In view of Sherman (1994), Theorems 1 and 2, this result will allow us to obtain the rate of
convergence of our estimators and the asymptotic law is then the same as the asymptotic law in
the parametric problem.

Proof of Theorem 2. Define


0n(θ, τ, h) = Lτ
n(θ, f̂ h,τ , Ĵ0),


1n(θ, τ ) = Lτ
n(θ, f̂ ĥ,τ , Ĵ0),


2n(θ) = Lτ̂
n(θ, f̂ ĥ,τ̂ , Ĵ0).

We now apply Sherman (1994), Theorems 1 and 2, to 
in, for i = 0,1,2. From our Main Lemma
and Lemma 1, we deduce that the representation (11) in Sherman (1994), Theorem 2, holds
for i = 0,1,2 on OP (n−1/2)-neighborhoods of θ0, with Wn and V defined as in Lemma 1.
The asymptotic representation (12) is a by-product of the proof of Sherman (1994), Theorem 2,
and of the i.i.d. representations of Kaplan–Meier integrals (see Theorem 3). �



Estimation in a SIM with censored data 525

4. Simulation study and real data analysis

4.1. Practical implementation of the adaptive choice of τ

From the proof of Theorem 2, we have the representation

θ̂ − θ0 = −1

n

n∑
i=1

V −1
τ ψ(Zi, δi,Xi;f11Aτ ) + oP (n−1/2).

As in Stute (1995), the function ψ of Theorem 3 can be estimated from the data by

ψ̂(Z, δ,X; f̂11Aτ ) = δf̂1(X,Z)

1 − Ĝ(Z−)
+

∫ ∫ τ0
y

∫
X f̂1(x, t)dF̂ (x, t)dMĜ(y)

1 − Ĥ (y)
,

where f̂1 is our kernel estimator of f1 and Ĥ is the empirical estimator of H . To consistently
estimate �(f1), we use the general technique proposed by Stute (1996), that is,

�̂τ (f1) = 1

n

n∑
i=1

[
ψ̂(Zi, δi,Xi; f̂1) − 1

n

n∑
i=1

ψ̂(Zi, δi,Xi; f̂1)

]⊗2

, (13)

where ⊗2 denotes the product of the matrix with its transpose. A consistent estimator of Vτ can
then be computed as

V̂τ =
∫

f̂
h,τ−2

θ̂
(y, θ̂ ′x)Ĵ0(x, c)∇θ f̂

h,τ

θ̂
(y, x)∇θ f̂

h,τ

θ̂
(y, x)′1y∈Aτ dF̂ (x, y).

To estimate the asymptotic mean square error, we use

Ê2
τ = 1

n
Ŵ ′

n,τ V̂τ
−1

V̂τ
−1

Ŵn,τ .

4.2. Simulation study

In order to check the finite-sample behavior of our estimators of θ0, we conducted some simula-
tions using a model similar to the one in Delecroix et al. (2003). We considered the regression
model

Yi = θ ′
0Xi + εi, i = 1, . . . , n,

where Yi ∈ R, θ0 = (1,0.5,1.4,0.2)′ and Xi ∼ ⊗4{0.2N (0,1) + 0.8N (0.25,2)}. The errors are
centered and normally distributed with conditional variance equal to |θ ′

0X|. We used the kernel

K(u) = 2k(u) − k ∗ k(u),
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Table 1. Biases, variances and mean square errors for 25% of censoring and sampling of size 100

p = 25%, n = 100 Bias Variance MSE

θ̂ADE

(−0.112
−0.551
−0.155

) ( 0.14 0.005 −0.022
0.005 0.075 0.016

−0.022 0.016 0.116

)
0.6714181

θ̂∞
(0.057

0.215
0.048

) (0.033 0.012 0.001
0.012 0.073 −0.004
0.001 −0.004 0.027

)
0.1841227

θ̂ τ̂

( 0.07
0.221
0.028

) (0.034 0.002 0.002
0.002 0.074 0
0.002 0 0.02

)
0.1825980

where ∗ denotes the convolution product and

k(u) = 3
4 (1 − u2)1|u|≤1

is the classical Epanechnikov kernel. The censoring distribution was selected to be exponential
with parameter λ, which allows us to fix the proportion of censored responses (p = 25% and
p = 40% in our simulations). ĥ was chosen using a regular grid between 1 and 1.5.

Our estimator θ̂ τ̂ was compared with two other estimators, that is, θ̂∞, which does not rely on
an adaptive choice of τ, and θ̂ADE , which is obtained using the average derivative method of Lu
and Burke (2005). In the tables below, we report our results over 100 simulations from samples
of size 100 and 200 for two different rates of censoring. Recalling that the first component of θ0
is fixed as 1, we need only to estimate the three other components. For each estimator, the mean
square error E(‖θ̂ − θ0‖2) is decomposed into bias and covariance.

To give a precise idea of the number of observations which are removed from the study by
choosing τ adaptively, we introduce N = �{1 ≤ i ≤ n,Zi ≤ τ̂ }. In the following Table 5, we
evaluate E[N ] in the different cases which we considered in the simulation study. We also include

Table 2. Biases, variances and mean square errors for 40% of censoring and sampling of size 100

p = 40%, n = 100 Bias Variance MSE

θ̂ADE

(−0.334
−0.743
−0.158

) ( 0.159 0.009 −0.014
0.009 0.268 0.048

−0.014 0.048 0.165

)
1.280163

θ̂∞
(0.127

0.296
0.096

) ( 0.11 −0.034 −0.01
−0.034 0.101 0.021
−0.01 0.021 0.059

)
0.3829797

θ̂ τ̂

(0.074
0.176
0.061

) ( 0.064 −0.005 −0.004
−0.005 0.051 0.014
−0.004 0.014 0.069

)
0.2239023
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Table 3. Biases, variances and mean square errors for 25% of censoring and sampling of size 200

p = 25%, n = 200 Bias Variance MSE

θ̂ADE

(−0.189
−0.578
−0.133

) (0.096 0.003 0.006
0.003 0.148 −0.016
0.006 −0.016 0.131

)
0.7620268

θ̂∞
(0.073

0.133
0.015

) ( 0.033 0.004 −0.004
0.004 0.023 0.002

−0.004 0.002 0.012

)
0.0910719

θ̂ τ̂

(0.034
0.107
0.014

) (0.007 0.001 0.004
0.001 0.011 0

0 0 0.006

)
0.0364064

the average weight allocated to the largest (uncensored) data point, first in the case where we
consider the whole data set (we denote it Weight∞), then in the truncated data set where we
removed all data points with Zi ≥ τ̂ (we denote it Weightτ̂ ).

Clearly, the MSE deteriorates when the percentage of censoring increases. According to the
simulations, θ̂ τ̂ and θ̂∞ outperform θ̂ADE, while, as expected, choosing τ adaptively improves
the quality of the estimation. This is not obvious in the case where there is only 25% censoring.
However, in the case where the level of censoring is high, estimation of the tail of the distribution
by Kaplan–Meier estimators becomes more erratic and the importance of choosing a proper
truncation appears in the significant difference between the MSEs of θ̂ τ̂ and θ̂∞. Moreover, the
importance of truncation becomes obvious if we look at Table 5. In the case where there is 40%
censoring, we see that if we do not use truncation, the weight allocated to the largest data point
can be up to (approximately) ten times the weight allocated to the largest observation in the
truncated data set. The ratio is less important in the case where there is 25% censoring, but still
significant (in this case, the ratio is approximately 3). Therefore, it seems that, considering the
whole data set, the weight allocated to the largest observation can have an overly strong influence

Table 4. Biases, variances and mean square errors for 40% of censoring and sampling of size 200

p = 40%, n = 200 Bias Variance MSE

θ̂ADE

(−0.109
−0.763
−0.053

) ( 0.146 −0.02 0.056
−0.02 0.143 −0.014
0.056 −0.014 0.192

)
1.078027

θ̂∞
(0.104

0.151
0.077

) (0.109 0.008 0.042
0.008 0.049 0.003
0.042 0.003 0.055

)
0.2521227

θ̂ τ̂

(0.043
0.14
0.021

) ( 0.018 −0.001 0.002
−0.001 0.022 0.002
0.002 0.002 0.014

)
0.07533921
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Table 5. Last observed data in the truncating model and weight allocated to the largest observation in each
model for different sample sizes and censoring rates

Ê(N) Weight∞ Weightτ̂

n = 100,p = 25% 90 0.0667 0.0204
n = 100,p = 40% 87 0.124 0.0236
n = 200,p = 25% 185 0.0402 0.0119
n = 200,p = 40% 172 0.0997 0.0122

on the estimation procedure, which explains the difference in performance of the estimators with
or without truncation.

4.3. Example: Stanford Heart Transplant data

We now illustrate our method using data from the Stanford Heart Transplant program. This data
set was initially studied by Miller and Halpern (1982). 184 of 249 patients in this program re-
ceived a heart transplant between October 1967 and February 1980. From this data, we consid-
ered the survival time as the response variable Z, age as the first component of X and the square
of age as the second component. Patients alive beyond February 1980 were considered censored.
For easier comparison to previous work on this data set, we concentrated our analysis on the 157
patients out of 184 who had complete tissue typing. Among these 157 cases, 55 were censored.

Several methods of estimation have already been applied to this data set to estimate the fol-
lowing regression model:

Z = α + β ′X + ε(X), (14)

where β = (β1, β2)
′, E[ε(X)|X] = 0; see Miller and Halpern (1982), Wei et al. (1990) and

Stute et al. (2000). Furthermore, nonparametric lack-of-fit tests have shown that the regression
model (14) seems reasonable; see Stute et al. (2000) and Lopez and Patilea (2009). Therefore, it
seems appropriate to experiment with our model on this data set. This strengthens the assump-
tion on the residual, by assuming that ε(X) = ε(θ ′

0X), where θ0 = (1, β2/β1)
′, but allows more

flexibility on the regression function.
In the following table, we present our estimators and recall the values of the estimators of

β2/β1 for the linear regression model (14). We first computed θ̂∞, which is our estimator using
the whole data set, that is, with τ = +∞, and compared it to the one obtained by choosing τ

from the data, as in Section 4.1. In this last case, τ̂ = Z(90), where Z(i) denotes the ith order
statistic, which means that it required us to remove the 67 largest observations to estimate θ0

(but not to estimate Kaplan–Meier weights, which were computed using the whole data set).
We computed Weight∞ = 0.0397 and Weightτ̂ = 0.0076 for the truncated data. The adaptive
bandwidth was 1.7 for θ̂∞ and 1.3 for θ̂ τ̂ . The estimated values of the mean square error were
E2∞ = 0.1089375 and E2

τ̂
= 0.01212701 for θ̂∞ and θ̂ τ̂ , respectively.
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Table 6. Comparison of different estimators of θ0,2

Estimator of θ0,2 = β2/β1

Miller and Halpern −0.01588785
Wei et al. 63.75
Stute et al. −0.01367034
θ̂∞ (without adaptive choice of τ ) −0.07351351
θ̂ τ̂ (with adaptive choice of τ ) −0.0421508

Our estimators seem relatively close to the ones obtained by Miller and Halpern (1982) and
Stute et al. (2000) using, respectively, the Buckley–James method and the Kaplan–Meier inte-
grals method for the linear regression model.

5. Proof of Main Lemma

First, the same arguments as in Delecroix et al. (2006) apply to replace Ĵ0 by J0. Define
Jθ (x, c) = 1fθ ′X(θ ′x)≥c. From Assumption 3 on the density of θ ′x, we deduce that, on shrink-
ing neighborhoods of θ0, J0(x, c) can be replaced by Jθ (x, c/2). Using a Taylor expansion, we
write

Lτ
n(θ, f̂ h,τ , J0) − Lτ

n(θ, f τ , J0)

=
n∑

i=1

δiWin1Zi∈Aτ log

(
f̂

h,τ
θ (Zi, θ

′Xi)

f τ
θ (Zi, θ ′Xi)

)
J0(Xi, c)

=
n∑

i=1

δiWin1Zi∈Aτ (f̂
h,τ
θ (Zi, θ

′Xi) − f τ
θ (Zi, θ

′Xi))J0(Xi, c)

f τ
θ (Zi, θ ′Xi)

−
n∑

i=1

δiWin1Zi∈Aτ [f̂ h,τ
θ (Zi, θ

′Xi) − f τ
θ (Zi, θ

′Xi)]2J0(Xi, c)

φ(f τ
θ (Zi, θ ′Xi), f̂

h,τ
θ (Zi, θ ′Xi))2

= Aτ
1n(θ, f̂ h,τ ) − Bτ

1n(θ, f̂ h,τ ),

where φ(f τ
θ (Zi, θ

′Xi), f̂
h,τ
θ (Zi, θ

′Xi)) is between f̂
h,τ
θ (Zi, θ

′Xi) and f τ
θ (Zi, θ

′Xi).

Step 1. We first study A1n. A Taylor expansion leads to the following decomposition,

Aτ
1n = (θ − θ0)

′
n∑

i=1

δiWin1Zi∈Aτ (∇θ f̂
h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi))Jθ (Xi, c/2)

f τ
θ (Zi, θ ′Xi)

+ (θ − θ0)
′
[

n∑
i=1

δiWin1Zi∈Aτ (∇2
θ f̂

h,τ

θ̃
(Zi,Xi) − ∇2

θ f τ

θ̃
(Zi,Xi))Jθ (Xi, c/2)

2f τ
θ (Zi, θ ′Xi)

]
(θ − θ0)
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+ 1

n

n∑
i=1

δiWin1Zi∈Aτ (f̂
h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi))

f τ
θ (Zi, θ ′Xi)f

τ
θ0

(Zi, θ
′
0Xi)

× (
f τ

θ0
(Zi, θ

′
0Xi) − f τ

θ (Zi, θ
′Xi)

)
J0(Xi, c)Jθ (Xi, c/2) + Aτ

1n(θ0, f̂
h,τ )

= Aτ
1n(θ0, f̂

h,τ ) + (θ − θ0)
′Aτ

2n(θ0, f̂
h,τ ) + (θ − θ0)

′Aτ
3n(θ̃ , f̂ h,τ )(θ − θ0) + Aτ

4n(θ, f̂ h,τ )

for some θ̃ between θ and θ0. Observe that, using the uniform consistency of ∇2
θ f̂

h,τ
θ (deduced

from Proposition 2 and Lemma 2), we obtain supθ̃∈�n,τ≤τ0,h∈Hn
Aτ

3n(θ̃ , f̂ h,τ ) = oP (1). We now

study Aτ
2n(θ0, f̂

h,τ ). Using the expression (3) for the jumps of the Kaplan–Meier estimator,
observe that

Aτ
2n(θ, f̂ h,τ ) =

n∑
i=1

W ∗
i 1Zi∈Aτ (∇θ f̂

h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi))Jθ (Xi, c/2)

f τ
θ (Zi, θ ′Xi)

+ 1

n

n∑
i=1

W ∗
i ZG(Zi−)

δi1Zi∈Aτ (∇θ f̂
h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi))Jθ (Xi, c/2)

f τ
θ (Zi, θ ′Xi)

= Aτ
21n(θ, f̂ h,τ ) + Aτ

22n(θ, f̂ h,τ ),

where

ZG(t) = Ĝ(t) − G(t)

1 − Ĝ(t)
.

The term Aτ
22n can be bounded using (21), (22) and Lemma 2, by

sup
τ≤τ0

|A22n(θ, f̂ h,τ )| ≤ oP (n−1/2) × n−1
n∑

i=1

δi[1 − G(Zi−)]−1

and the last term is OP (1) since it has finite expectation. Now, for Aτ
21n, first replace θ in the

denominator by θ0. We have

Aτ
21n(θ, f̂ h,τ ) =

n∑
i=1

W ∗
i 1Zi∈Aτ (∇θ f̂

h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi))J0(Xi, c/4)

f τ
θ0

(Zi, θ
′
0Xi)

+ Rτ
n(θ,h)(θ − θ0),

with supθ∈�n,τ≤τ0,h∈Hn
|Rτ

n(θ,h)| = oP (1) from Assumption 3 and the uniform consistency of

∇θ f̂
h,τ
θ0

deduced from Proposition 2 and Lemma 2. Now, use Assumption 7 and Proposition 3.
Using the equicontinuity property of Donsker classes (see, for example, Van der Vaart and Well-
ner (1996) or Van der Vaart (1998)), we obtain that

Aτ
2n(θ, f̂ h,τ ) =

∫∫ [∇θ f̂
h,τ
θ0

(y, x) − ∇θf
τ
θ0

(y, x)]1y∈Aτ J0(x, c/4)dP(x, y)

f τ
θ0

(y,u)
+ oP (n−1/2),
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where the oP -rate does not depend on θ, h or τ. From classical kernel arguments,
supy,x,τ | ∫ (∇θf

∗h,τ
θ0

(y, x) − ∇θf
τ
θ0

(y, x))1y∈Aτ J0(x, c/4)dP(x, y)| = OP(h4) = oP(n−1/2)

since nh8 → 0. Lemma 3 then completes the proof for Aτ
2n(θ, f̂ h,τ ). Aτ

4n(θ, f̂ h,τ ) can be han-
dled similarly.

Step 2. Bτ
1n can be rewritten as

Bτ
1n(θ, f̂ h,τ )

=
n∑

i=1

δiWin1Zi∈Aτ Jθ (Xi, c/2)
{(θ − θ0)

′[∇θ f̂
h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi)]}2

φ(f τ
θ (Zi, θ ′Xi), f̂

h,τ
θ (Zi, θ ′Xi))2

+ 2
n∑

i=1

δiWinJθ (Xi, c/2)1Zi∈Aτ [f̂ h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi)](θ − θ0)

′

× [∇θ f̂
h,τ

θ̃
(Zi,Xi) − ∇θf

τ

θ̃
(Zi,Xi)][φ(f τ

θ (Zi, θ
′Xi), f̂

h,τ
θ (Zi, θ

′Xi))
2]−1

+ Bτ
4n(θ0, f̂

h,τ ) + oP (‖θ − θ0‖2)

= (θ − θ0)
′Bτ

2n(θ0, f̂
h,τ )(θ − θ0) + (θ − θ0)

′Bτ
3n(θ, f̂ h,τ ) + Bτ

4n(θ0, f̂
h,τ ) + oP (‖θ − θ0‖2)

for some θ̃ between θ and θ0. The third term does not depend on θ. For Bτ
2n, use the uniform

consistency of ∇θ0 f̂
h,τ
θ0

(Proposition 2 and Lemma 2) to obtain supτ≤τ0,h∈Hn
|Bτ

2n(θ, f̂ h,τ )| =
oP (n−1/2). Finally, for Bτ

3n(θ, f̂ h,τ ), from a Taylor expansion,

Bτ
3n(θ, f̂ h,τ ) = 2

n∑
i=1

δiWin1Zi∈Aτ Jθ (Xi, c/2)

φ(f τ
θ (Zi, θ ′Xi), f̂

h,τ
θ (Zi, θ ′Xi))2

× [f̂ h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi)][∇θ f̂

h,τ
θ0

(Zi,Xi) − ∇θf
τ
θ0

(Zi,Xi)]
+ (θ − θ0)

′Rτ
n(θ, f̂ h,τ ),

with supθ∈�n,τ≤τ0,h∈Hn
Rτ

n(θ, f̂ h,τ ) = oP (1), from Proposition 2 and Lemma 2. For the main

term, the product of the uniform convergence rates of f̂
h,τ
θ0

and ∇θ f̂
h,τ
θ0

obtained from Proposi-

tion 2 and Lemma 2 is oP (n−1/2) for h ∈ Hn.

6. Conclusion

We proposed a new estimation procedure for a conditional density under a single-index as-
sumption and random censoring. This procedure is an extension of the approach of Delecroix
et al. (2003) in the case of a censored response. One of the advantages of this model is that it
relies on fewer assumptions than a Cox regression model, in the case where the random vari-
ables of the model are absolutely continuous. By showing that estimating in this semi-parametric
model is asymptotically equivalent to estimating in a parametric one (unknown in practice), we
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obtain an n−1/2-rate for the estimator of the index. This estimator can then be used to estimate
the conditional density or the conditional distribution function by using a traditional nonparamet-
ric estimator under censoring. A new feature of our procedure is that it provides an adaptively
driven choice of the bandwidth involved in the kernel estimators we use and that it also provides
an adaptive choice of truncation parameter needed to avoid problems caused by the bad behavior
of Kaplan–Meier estimators in the tail of the distribution. In this specific problem, this truncation
does not introduce an additional bias into the procedure and seems, according to our simulations,
to increase the quality of the estimator, especially in the case where the proportion of censored
responses is important. Our way of choosing τ was motivated by minimizing the MSE in the
estimation of θ̂ . However, our method could easily be adapted to other kinds of criteria which,
for example, focus more on the error in estimating one specific direction or on the error in the
estimation of the conditional density itself.

Appendix

A.1. Kaplan–Meier integrals for the parametric case

We first recall a classical asymptotic representation of integrals with respect to F̂ ; see Stute
(1995), Stute (1996) and Sánchez Sellero et al. (2005).

Theorem 3. Let F be a V C-class of functions with envelope �, such as

�(x,y) = 0 for all y ≥ τ0, (15)

where τ0 ≤ τH . We have the following asymptotic i.i.d. representation for all φ ∈ F :

∫
φ(x, y)dF̂ (x, y) = 1

n

n∑
i=1

ψ(Zi, δi,Xi;φ) + R(φ),

where supφ∈F |R(φ)| = Oa.s.([logn]3n−1), and

ψ(Zi, δi,Xi;φ) = δφ(Xi,Zi)

1 − G(Zi−)
+

∫ ∫ τ0
y

∫
X φ(x, t)dF(x, t)dMG

i (y)

1 − H(y)
,

where MG
i (y) = (1 − δi)1Zi≤y − ∫ y

−∞ 1Zi≥t [1 −G(t−)]−1 dG(t) is a martingale with respect to
the filtration Gy = {(Zi, δi,Xi)1Zi≤y}. Define �(φ) = Var(ψ(Z, δ,X;φ)). It then follows that

√
n

∫
φ(x, y)d[F̂ − F ](x, y) �⇒ N (0,�(φ)).

Initially, the result of Stute was derived for a single function φ. Furthermore, Theorem 1.1 in
Stute (1996) gives a convergence rate which is only oP (n−1/2) for the remainder term; however,
a higher convergence rate is obtained in his proof of Theorem 1.1 for functions satisfying (15),
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which is the only case considered in our work. To obtain uniformity on a V C-class of functions,
see Sánchez Sellero et al. (2005) who provided a more general representation that extends the
one of Stute in the case where Y is right-censored and left-truncated. Their result is very useful
since it provides, as a corollary, uniform law of large numbers results and a uniform central
limit theorem. The representation we present in our Theorem 3 is a simple rewriting of Stute’s
representation. Theorem 3 is then a key ingredient to prove Lemma 1.

Proof of Lemma 1. We directly show the second part of the lemma since the first can be ap-
proached using similar techniques. By means of a Taylor expansion,

Lτ
n(θ, f τ , J0) = (θ − θ0)

′
n∑

i=1

δiWinJ0(Xi, c)1Zi∈Aτ

∇θf
τ
θ0

(Zi,Xi)

f τ
θ0

(Zi, θ
′
0Xi)

+ 1

2
(θ − θ0)

′
n∑

i=1

δiWinJ0(Xi, c)1Zi∈Aτ ∇2
θ [logf τ

θ̃
](Zi,Xi)(θ − θ0) (16)

+ T4n(θ0)

for some θ̃ between θ0 and θ. Theorem 3 provides an i.i.d. representation for the first term
(which corresponds to Wn,τ in Lemma 1), while, from Assumption 6, the family of functions
∇2

θ [logf τ

θ̃
](y, x)1y∈Aτ is a V C-class of functions satisfying (15). Hence, the sum in the second

term of (16) tends to V almost surely using a uniform law of large numbers property. �

A.2. The gradient of f

In the following, for any function ϕ, we will denote by ϕ
(n)
h (·) the expression h−nϕ(n)(·/h), such

as, for example, K ′
h(·) = h−1K ′(·/h).

Proposition 1. Let

f ′
τ (y,u) = ∂uf

τ
θ0

(y,u).

We have

∇θf
τ
θ0

(y′, x) = xf1,τ (y, θ ′
0x) + f2,τ (y, θ ′

0x),

with

f1,τ (y, θ ′
0x) = f ′

τ (y, θ ′
0x),

f2,τ (y, θ ′
0x) = −f ′

τ (y, θ ′
0x)E[X|θ ′

0X].
In particular, E[∇θf

τ
θ0

(Y,X)|θ ′
0X] = 0.

Proof. This follows by direct adaptation of Dominitz and Sherman (2005), Lemma 5A. �
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A.3. Convergence properties of f ∗h,τ

We first recall some classical properties of kernel estimators. Consider the class of functions K
introduced in Assumption 1. Let N(ε, K, dQ) be the minimal number of balls {g :dQ(g,g′) < ε}
of dQ-radius ε needed to cover K. For ε > 0, let N(ε, K) = supQ N(κε, K, dQ), where the supre-
mum is taken over all probability measures Q on (Rd , B) and dQ is the L2(Q)-metric. From
Nolan and Pollard (1987), it can easily be seen that, using a kernel K satisfying Assumption 1,
for some C > 0 and ν > 0,N(ε, K) ≤ Cε−ν,0 < ε < 1.

Proposition 2. Under Assumption 1, we have, for some c > 0,

sup
x,y,h,τ

|f ∗h,τ
θ0

(y, θ ′
0x) − f τ

θ0
(y, θ ′

0x)|1y∈Aτ J0(x, c) = OP (n−1/2h−1[logn]1/2), (17)

sup
x,y,h,τ

|∇θf
∗h,τ
θ0

(y, x) − ∇θf
τ
θ0

(y, x)|1y∈Aτ J0(x, c) = OP (n−1/2h−2[logn]1/2), (18)

sup
x,y,h,τ,θ

|∇2
θ f

∗h,τ
θ (y, x) − ∇2

θ f τ
θ (y, x)|1y∈Aτ Jθ (x, c) = OP (n−1/2h−3[logn]1/2). (19)

Proof. (17) is a direct application of Einmahl and Mason (2005), Theorems 1 and 4. For (18),
we only show convergence for the term

r̂
h,τ
θ0

(x, y) := 1

h

n∑
i=1

δiW
∗
i 1Zi∈Aτ J0(x, c)(Xi − x)K ′

h(X
′
iθ0 − x′θ0)Kh(Zi − y).

Define

r̄
h,τ
θ0

(x, y) = 1

h
E[1Y∈Aτ J0(x, c)(X − x)K ′

h(X
′θ0 − x′θ0)Kh(Y − y)]

and

rτ
θ0

(x, y) = ∂

∂u
{E[(X − x)|θ ′

0X = u,Y = y]1y∈Aτ J0(x, c)fθ ′
0X,Y (u, y)}

∣∣∣∣
u=θ ′

0x

.

Note that, from our assumptions, rτ
θ0

is a finite quantity. Next, Einmahl and Mason (2005), The-
orem 4, yields

sup
x,y,h,τ

|r̂h,τ
θ0

(x, y) − r̄
h,τ
θ0

(x, y)|1y∈Aτ = OP (n−1/2h−2[logn]1/2).

For the bias term, supx,y,h,τ |r̄h,τ
θ0

(x, y)− rτ
θ0

(x, y)|1y∈Aτ = O(h4) = o(n−1/2); see, for example,
Bosq and Lecoutre (1997). As a consequence,

sup
x,y,h,τ

|r̂h,τ
θ0

(x, y) − rτ
θ0

(x, y)|1y∈Aτ = OP (n−1/2h−2[logn]1/2).
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For (19), we also need uniformity with respect to θ. The result can be deduced from the uniform
convergence (with respect to θ, x, u) of quantities such as

Sh,τ
n (θ, x, y,β) = 1

h2

n∑
i=1

δiW
∗
i φ(Zi,Xi, θ)∇β

θ K

(
θ ′Xi − θ ′x

h

)
K

(
Zi − y

h

)
, (20)

where ∇β
θ K([θ ′Xi −θ ′x]h−1) for β = 1 (resp., for β = 2) denotes the gradient vector of function

K([θ ′Xi − θ ′x]/h) (resp., Hessian matrix) with respect to θ and evaluated at θ, and where
φ is a bounded function with respect to θ and x. The function φ we consider is φ(Z,X, θ) =
f τ

θ ′X(θ ′X)−11Z∈Aτ J0(x, c), with the convention 0/0 = 0 and where f τ
θ ′X(θ ′X) is the conditional

density of θ ′X given Y ∈ Aτ . (20) can be treated using the same method as Einmahl and Mason
(2005). For this, observe that the family of functions {(X,Z) → ∇β

θ K([θ ′X − θ ′x]h−1)K([Z −
y]h−1), θ ∈ �,x,y} satisfies the assumptions of Einmahl and Mason (2005), Proposition 1 (see
Nolan and Pollard (1987), Lemma 22(ii)). Hence, we apply Talagrand’s inequality (Talagrand
(1994); see also Einmahl and Mason (2005)) to obtain that

sup
θ,x,y,h,τ

|Sh,τ
n (θ, x, y,α) − E[Sh,τ

n (θ, x, y,α)]|1y∈Aτ = OP (n−1/2[logn]1/2h−1−β).

Again, the bias term converges uniformly at rate O(h4). �

A.4. The difference between f ∗ and f̂

A.4.1. Convergence rate of f̂

In this section, we show that replacing f ∗h,τ by f̂ h,τ (which is the estimator used in practice)
does not modify the rate of convergence. For an intuitive understanding of these results, ob-
serve that f ∗h,τ was obtained from f̂ h,τ by replacing Ĝ by G. Let us recall some convergence
properties of Ĝ. We have

sup
t≤τ0

|Ĝ(t) − G(t)| = OP (n−1/2), (21)

sup
t≤τ0

1 − G(t)

1 − Ĝ(t)
= OP (1); (22)

see Gill (1983) for (21) and Zhou (1992) for (22). From (21), we see that the convergence rate
of Ĝ is faster than the convergence rate of f ∗h,τ , which explains the asymptotic equivalence of
f̂ h,τ and f ∗h,τ . Lemma 2 makes things more precise and also provides a representation of the
difference between ∇θf

∗h,τ
θ0

and ∇θ f̂
h,τ
θ0

which is needed in the proof of the Main Lemma. Also
required to prove our Main Lemma, Lemma 3 below supplies a technical result on the integral of
this difference.

Lemma 2. Under the assumption of Lemma 1, we have, for some c > 0,

sup
x,y,h,τ

|f̂ h,τ
θ0

(y, θ ′x) − f
∗h,τ
θ0

(y, θ ′x)|1y∈Aτ J0(x, c) = OP (n−1/2), (23)
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sup
x,y,h,τ

|∇θ f̂
h,τ
θ0

(y, x) − ∇θf
∗h,τ
θ0

(y, x)|1y∈Aτ J0(x, c) = OP (n−1/2h−1), (24)

sup
x,y,h,τ,θ

|∇2
θ f̂

h,τ
θ (y, x) − ∇2

θ f
∗h,τ
θ (y, x)|1y∈Aτ Jθ (x, c) = OP (n−1/2h−2). (25)

Furthermore, for x such as J0(x, c) �= 0,

(∇θ f̂
h,τ
θ0

(y, x) − ∇θf
∗h,τ
θ0

(y, x)
) =

∫ ∫
X

∫ τ0
t

g
h,τ
f,x,y(x2, y2)dP(x2, y2)dM̄G(t)

1 − H(t)
(26)

+ Rn(τ,h, x, y),

where M̄G(y) = n−1 ∑n
i=1 MG

i (y), MG
i is defined in Theorem 3, supx,y,τ,h |Rn(τ,h, x, y)| =

OP ((logn)1/2n−1h−3) and gh
f,x,y is defined by

g
h,τ
f,x1,y1

(x2, y2) = 1

h

(x1 − x2)K
′
h(θ

′
0x1 − θ ′

0x2)Kh(y1 − y2)

f τ
θ ′

0X
(θ ′

0x1)

−
Kh(θ

′
0x1 − θ ′

0x2)Kh(y1 − y2)f
′τ
θ ′

0X
(θ ′

0x1)

f τ
θ ′

0X
(θ ′

0x1)2
,

where f ′τ
θ ′

0X
denotes the derivative of u → f τ

θ ′
0X

(u), the conditional density of θ ′
0X given Y ∈ Aτ .

Lemma 3. Under the assumptions of Lemma 1,

sup
h,τ

∫ [∇θ f̂
h,τ
θ0

(y, x) − ∇θf
∗h,τ
θ0

(y, x)]1y∈Aτ J0(x, c/4)dP(x, y)

f τ
θ0

(y, θ ′
0x)

= oP (n−1/2).

Proof of Lemma 2. To prove (23)–(25), we just prove (25) since the others are similar. To
prove (25), we consider only the terms in which the second derivative is involved, the others
being treated analogously. Consider

1

h

n∑
i=1

δiWin(Xi − x)K ′′
h(θ ′Xi − θ ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ f

τ
θ ′X(θ ′x)−1

= 1

h

n∑
i=1

δiW
∗
i Jθ (Xi, c)(Xi − x)K ′′

h(θ ′Xi − θ ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ f
τ
θ ′X(θ ′x)−1

+ 1

h

n∑
i=1

δiW
∗
i ZG(Zi−)(Xi − x)K ′′

h(θ ′Xi − θ ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ f
τ
θ ′X(θ ′x)−1,
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where the first term is contained in ∇2
θ f

∗h,τ
θ , while the second can be bounded by

OP (n−1/2h−2)

[
1

nh2

n∑
i=1

δi1Zi≤τ0 |K ′′|
(

θ ′Xi − θ ′x
h

)
|K|

(
Zi − y

h

)]
.

Using the results of Sherman (1994), the term inside the brackets is OP (1), uniformly in x, y, θ

and h.

Now, for the representation (26), observe that

∇θ [f̂ h,τ
θ0

− f
∗h,τ
θ0

](y, x)

= h−1
n∑

i=1

δiW
∗
i ZG(Zi−)(x − Xi)K

′
h(θ

′
0x − θ ′

0Xi)Kh(y − Zi)f
τ
θ ′

0X
(θ ′

0x)−11Zi∈Aτ

(27)

−
n∑

i=1

δiW
∗
i ZG(Zi−)J0(x, c)K(θ ′

0Xi − θ ′
0x)Kh(Zi − y)f ′τ

θ ′
0X

(θ ′
0x)f τ

θ ′
0X

(θ ′
0x)−21Zi∈Aτ

+ R′
n(τ,h, x, y),

with supx,y,h,τ |R′
n(τ,h, x, y)| = OP (n−1h−3/2[logn]1/2), from the convergence rate of ZG

(see (21) and (22)) and the convergence rate of the denominator in (4) and its derivative, say
(f̂ τ

θ ′
0X

− f τ
θ ′

0X
) and (f̂ ′τ

θ ′
0X

− f ′τ
θ ′

0X
) (which are of uniform rate OP (n−1/2h−1/2[logn]1/2) and

OP (n−1/2h−3/2[logn]1/2, from arguments similar to those used in the proofs of (17)–(19) and
(23)–(25)). An i.i.d. representation of the main term in (27) can be deduced from Theorem 3
since the class {h3g

h,τ
f,x,y, x, y,h} is a VC-class; see Nolan and Pollard (1987). �

Proof of Lemma 3. Observe that, from classical kernel arguments,

sup
t

∣∣∣∣
∫∫

x2,t≤y2≤τ0

g
h,τ
f,x,y(x2, y2)J0(x, c/4)dP(x2, y2)dP(x, y) − E[∇θf

τ
θ0

(Y,X)J0(X, c/4)]
∣∣∣∣

= O(h4)

since K is of order 4. From the representation (26) in Lemma 2,∫
[∇θ f̂

h,τ
θ0

(y, x) − ∇θf
∗h,τ
θ0

(y, x)]J0(x, c/4)dP(x, y)

=
∫

[1 − H(t)]−1E[∇θf
τ
θ0

(Y,X)J0(X, c/4)]dM̄G(t)

(28)

+
∫

[1 − H(t)]−1
[∫∫

x2,t≤y2≤τ0

g
h,τ
f,x,y(x2, y2)J0(x, c/4)dP(x2, y2)dP(x, y)

− E[∇θf
τ
θ0

(Y,X)J0(X, c/4)]
]

dM̄G(t) +
∫

Rn(τ,h, x, y)dP(x, y),
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where the last term is oP (n−1/2), uniformly in τ and h. The first term is zero by Proposition 1
and because J0 depends only on θ ′

0X.

For the second term, let φn(t, h, τ ) = [1 − H(t)]−1{∫∫
x2,t≤y2≤τ0

g
h,τ
f,x,y(x2, y2)J0(x,

c/4)dP(x2, y2)dP(x, y) − E[∇θf
τ
θ0

(Y,X)J0(X, c/4)]}. Using the fact that Hn is of cardinal-
ity kn, we have, for the second term in (28),

P

(
sup

h∈Hn

∣∣∣∣
∫

φn(t, h, τ )dM̄G(t)

∣∣∣∣ ≥ ε

)
≤ kn sup

h∈Hn

P

(∣∣∣∣
∫

φn(t, h, τ )dM̄G(t)

∣∣∣∣ ≥ ε

)
.

Now, apply Lenglart’s inequality; see Lenglart (1977) or Fleming and Harrington (1991), Theo-
rem 3.4.1. This shows that, for all ε > 0 and all η > 0,

P

(
sup

τ≤s≤τ0

{∫ s

0
φn(t, h, τ )dM̄G(t)

}2

≥ ε2
)

(29)

≤ η

ε2
+ P

(
n−1

∫ τ0

0
φ2

n(t, h, τ )
[1 − Ĥ (t−)]dG(t)

1 − G(t−)
≥ η

)
.

As mentioned before, supt |φn(t, h, τ )| = O(h4). From (29) and the condition on kn in Assump-
tion 1, the lemma follows. �

A.4.2. Donsker classes

As stated in Assumption 7, to obtain an n−1/2-convergence of θ̂ , we need the regression function
(and its gradient) to be sufficiently regular. In the lemma below, we first show that the classes of
functions defined in Assumption 7 are Donsker and that f̂

h,τ
θ0

also belongs to the same regular
class as f τ

θ0
with probability tending to one.

Proposition 3. Consider the classes H1 and H2 defined in Assumption 7. H1 and H2 are
Donsker classes. Furthermore, f̂

h,τ
θ0

and ∇θ f̂
h,τ
θ0

belong, respectively, to H1 and H2 with prob-
ability tending to one for some sufficiently large constant M .

Proof. The class H1 is Donsker from Van der Vaart and Wellner (1996), Corollary 2.7.4.
The class H2 is Donsker from a permanence property of Donsker classes; see Van der Vaart
and Wellner (1996), Examples 2.10.10 and 2.10.7. We only show the proof for ∇θ f̂

h,τ
θ0

since the

proof for f̂
h,τ
θ0

is similar. We write

∇θ f̂
h,τ
θ0

(z, x)

= 1

nh

n∑
i=1

δi1Zi∈Aτ (Xi − x)K ′
h(θ

′
0Xi − θ ′

0x)Kh(Zi − z)

[1 − Ĝ(Zi−)]f τ
θ ′

0X
(θ ′

0x)
J0(Xi, c/2)

+ 1

nh

n∑
i=1

δi1Zi∈Aτ (Xi − x)K ′
h(θ

′
0Xi − θ ′

0x)Kh(Zi − z)[f̂ τ
θ ′

0X
(θ ′

0x) − f τ
θ ′

0X
(θ ′

0x)]
[1 − Ĝ(Zi−)]f̂ τ

θ ′
0X

(θ ′
0x)f τ

θ ′
0X

(θ ′
0x)
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× J0(Xi, c/2)

−
[

1

nh

n∑
i=1

(Xi − x)K ′
h(θ

′
0Xi − θ ′

0x)J0(Xi, c/2)

(f τ
θ ′

0X
(θ ′

0x))2

]

×
[

1

n

n∑
i=1

δiKh(θ
′
0Xi − θ ′

0x)Kh(Zi − z)1Zi∈Aτ

[1 − Ĝ(Zi−)]

]

+
[

1

nh

n∑
i=1

(Xi − x)K ′
h(θ

′
0Xi − θ ′

0x)[(f̂ τ
θ ′

0X
(θ ′

0x))2 − (f τ
θ ′

0X
(θ ′

0x))2]J0(Xi, c/2)

(f̂ τ
θ ′

0X
(θ ′

0x)f τ
θ ′

0X
(θ ′

0x))2

]

×
[

1

n

n∑
i=1

δi1Zi∈Aτ Kh(θ
′
0Xi − θ ′

0x)Kh(Zi − z)

[1 − G(Zi−)]

]
.

From this expression, we clearly see that ∇θ f̂
h,τ
θ0

(y, x) = xφ1(x
′θ0, y) + φ2(x

′θ0, y). We must
now check that φ1 and φ2 are in H1 with probability tending to one. Since the functions are
twice continuously differentiable (from the assumptions on K), we only have to check their
boundedness. By Lemma 2, this can be done by replacing f̂ h,τ by f ∗h,τ (that is, Ĝ by the true
function G). Among the several terms in the decomposition of ∇θf

∗h,τ , we will only study

φ(u, y) = 1

nh

n∑
i=1

δi1Zi∈Aτ XiK
′
h(θ

′
0Xi − u)Kh(Zi − z)J0(Xi, c/2)

[1 − G(Zi−)]f τ
θ ′

0X
(u)

since the others are similar. We will show that the derivatives of order 0, 1 and 1 + δ of this
function are uniformly bounded by some constant M with probability tending to one.

Now, a centered version of φ converges to zero at rate OP ([logn]1/2n−1/2h−1) (see Einmahl
and Mason (2005)), which tends to zero as long as nh2 → ∞. Furthermore, E[φ] is uniformly
bounded from our Assumption 7 on the regression function. For the derivative,

∂uφ(u, y) = − 1

nh

n∑
i=1

δi1Zi∈Aτ XiK
′′
h(θ ′

0Xi − u)Kh(Zi − z)J0(Xi, c/4)

[1 − G(Zi−)]f τ
θ ′

0X
(u)

− 1

nh

n∑
i=1

δi1Zi∈Aτ XiK
′
h(θ

′
0Xi − u)Kh(Zi − z)J0(Xi, c/4)f ′τ

θ ′
0X

(u)

[1 − G(Zi−)](f τ
θ ′

0X
(u))2

.

Again, E[∂uφ] is uniformly bounded from our Assumption 7. Now, using the results of
Einmahl and Mason (2005), the centered version of ∂uφ tends to zero provided that nh6 → ∞.

The same arguments apply for ∂yφ. Hence, with fi(u, y) = E(φi(u, y)), we have proven that

supu,y |∂j
u∂k

yφi(u, y) − ∂
j
u∂k

yfi(u, y)| tends to zero in probability for i = 1,2, k + j ≤ 1. We
must now show that ∂uφj and ∂yφj are δ-Hölder for j = 1,2 with a Hölderian constant bounded
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by some M with probability tending to one. We only prove the result for ∂uφ1. We have

sup
u′,y′,x,y

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ

= max

(
sup

|u−u′|≥n−1,y,y′

|∂uφ1(u, y) − ∂uφ2(u
′, y′)|

‖(u, y) − (u′, y′)‖δ
,

sup
|u−u′|≤n−1,y,y′

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ

)

= max(S1, S2).

We have

S1 ≤ sup
u,y,u′,y′

|∂uf1(u
′, y′) − ∂uf1(u, y)|

‖(u′, y′) − (u, y)‖δ
+ 2nδ sup

u,y,u′,y′
|∂uφ1(u, y) − ∂uf1(u, y)|.

From our assumptions, the first supremum is bounded, while the last is OP (n−1/2+δ ×
[logn]1/2h−3) from the convergence rate of ∂uφ2. It tends to zero provided that nh6+δ → ∞.

For S2, since K is C 3 with bounded derivatives, for some positive constant M,

sup
‖(u,y)−(u′,y′)‖≤n−1,y,y′

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ

≤ M × OP (1)

∥∥∥∥∥
3∑

i=1

∣∣K(i)
∣∣∥∥∥∥∥∞

sup
‖(u,y)−(u′,y′)‖≤n−1

‖(u, y) − (u′, y′)‖1−δ

× h−1 1

nh4

n∑
i=1

δi

1 − G(Zi−)
.

The last supremum is bounded by OP (1) × n−1+δh−5 and it tends to zero when nh6 → ∞ (and
the OP (1) term does not depend on u,y). �
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