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We introduce an elementary method for proving the absolute continuity of the time marginals of one-
dimensional processes. It is based on a comparison between the Fourier transform of such time marginals
with those of the one-step Euler approximation of the underlying process. We obtain some absolute continu-
ity results for stochastic differential equations with Hölder continuous coefficients. Furthermore, we allow
such coefficients to be random and to depend on the whole path of the solution. We also show how it can
be extended to some stochastic partial differential equations and to some Lévy-driven stochastic differential
equations. In the cases under study, the Malliavin calculus cannot be used, because the solution in generally
not Malliavin differentiable.
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1. Introduction

In this paper, we introduce a new method for proving the absolute continuity of the time mar-
ginals of some one-dimensional processes. The main idea is elementary and quite rough. It is
based on the explicit law of the associated one-step Euler scheme and related to an estimate
which says that the process and its Euler scheme remain very close to each other during one step.

As we will see, this method is quite robust and applies to many processes for which the use
of the Malliavin calculus (see Nualart [23], Malliavin [21]) is not possible because the processes
do not have Malliavin derivatives: examples of this include SDEs with Hölder coefficients and
SDEs with random coefficients.

However, we are not able, for the moment, to extend it to multidimensional processes. The
difficulty seems to be that we use some integrability properties of some Fourier transforms which
depend heavily on the dimension.

To illustrate this method, we will consider four types of one-dimensional processes. Let us
summarize roughly the results we obtain and compare them to existing results.

Brownian SDEs with Hölder coefficients

To introduce our method in a simple way, we consider a process satisfying an SDE of the form
dXt = σ(Xt )dBt + b(Xt )dt . We assume that b is measurable with at most linear growth and
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that σ is Hölder continuous with exponent θ > 1/2. We show that Xt has a density on {σ �= 0}
whenever t > 0. The proof is very short.

Such a result is probably not far from being already known. In the case where σ is bounded
below, Aronson [1] obtains some absolute continuity results assuming only that σ and b are
measurable (together with some growth conditions) by analytical methods. Our result might be
deduced from [1] by a localization argument, however, we did not succeed in this direction. In
any case, our proof is much simpler.

Let us observe that, to our knowledge, all of the probabilistic papers on this topic assume at
least that σ,b are Lipschitz continuous; see the paper by Bouleau and Hirsch [8] (the case where
b is measurable can also be treated by using Girsanov’s theorem).

Finally, let us mention that in [8], one gets the absolute continuity of the law of Xt for all
t > 0 provided σ(x0) �= 0, if X0 = x0. Such a result cannot hold in full generality for Hölder
continuous coefficients: choose x0 > 0, σ(x) = x and b(x) = − sign(x)|x|α for some α ∈ (0,1).
Let τε = inf{t ≥ 0,Xt = ε} for ε ∈ R+. One can check, using Itô’s formula, that for ε ∈ (0, x0),
E[X1−α

t∧τε
] = x1−α

0 − E[∫ t∧τε

0 (
α(1−α)

2 X1−α
s + (1 − α))ds] ≤ x1−α

0 − (1 − α)E[τε ∧ t], whence

E[τε] ≤ x1−α
0 /(1−α). As a consequence, E[τ0] ≤ x1−α

0 /(1−α). But it also holds that Xτ0+t = 0
a.s. for all t ≥ 0. Thus, Pr[Xt = 0] > 0, at least for sufficiently large t .

Brownian SDEs with random coefficients depending on the paths

We consider here a process solving an SDE of the form dXt = σ(Xt )κ(t, (Xu)u≤t ,Ht )dBt +
b(t, (Xu)u≤t ,Ht )dt for some auxiliary adapted process H . We assume some Hölder conditions
on σκ , some growth conditions and that κ is bounded below. We prove the absolute continuity
of the law of Xt on the set {σ �= 0} for all t > 0.

Observe that we do not assume that H is Malliavin differentiable, which would, of course, be
needed if we wanted to use Malliavin calculus.

SDEs with random coefficients arise, for example, in finance. Indeed, stochastic volatility
models are now widely used; see, for example, Heston [14], Fouque, Papanicolaou and Sircar
[11]. SDEs with coefficients depending on the paths of the solutions arise in random mechanics:
if one writes an SDE satisfied by the velocity of a particle, the coefficients will often depend on
its position, which is nothing but the integral of its velocity. One can also imagine a particle with
position Xt whose diffusion and drift coefficients depend on the distance covered by the particle
at time t , that is, sup[0,t] Xs − inf[0,t] Xs .

Here, again, the result is not far from being known: if σκ is bounded below, one may use
the result of Gyongy [13] which says that the solution of an SDE (with random coefficients
depending on the whole paths of the solution) has the same time marginals as the solution of
an SDE with deterministic coefficients depending only on time and position. These coefficients
being measurable and uniformly elliptic, one may then use the result of Aronson [1]. However,
our method is extremely simple and we do not have to assume that σ is bounded below.

Stochastic heat equation

We also study the heat equation ∂tU = ∂xxU + b(U) + σ(U)Ẇ on R+ × [0,1], with Neu-
mann boundary conditions, where W is a space–time white noise; see Walsh [26]. We prove
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that U(t, x) has a density on {σ �= 0} for all t > 0 and all x ∈ [0,1], provided that σ is Hölder
continuous with exponent θ > 1/2 and that b is measurable and has at most linear growth.

This result shows the robustness of our method: the best absolute continuity result was due to
Pardoux and Zhang [24], who assume that b and σ are Lipschitz continuous. Let us, however,
mention that their non-degeneracy condition is very sharp since they obtain the absolute conti-
nuity of U(t, x) for all t > 0 and all x ∈ [0,1], assuming only that σ(U(0, x0)) �= 0 for some
x0 ∈ [0,1] (if U(0, ·) is continuous).

Lévy-driven SDEs

We finally consider the SDE dXt = σ(Xt )dLt + b(Xt )dt , where (Lt )t≥0 is a Lévy mar-
tingale process without Brownian part and with Lévy measure ν. Roughly, we assume that∫
|z|≤ε

z2ν(dz) � ε2−λ for all ε ∈ (0,1] and some λ ∈ (3/4,2). We obtain that the law of Xt

has a density on {σ �= 0} for all t > 0, under the following assumptions:

(a) if λ ∈ (3/2,2), then b is measurable and has at most linear growth and σ is Hölder
continuous with exponent θ > 1/2;

(b) if λ ∈ [1,3/2], then b and σ are Hölder continuous with exponents α > 3/2 − λ and
θ > 1/2;

(c) if λ ∈ (3/4,1), then b,σ are Hölder continuous with exponent θ > 3/(2λ) − 1.

This result appears to be the first absolute continuity result for jumping SDEs with non-
Lipschitz coefficients. Observe that, in some cases, we allow the drift coefficient to be only
measurable, even when the driving Lévy process has no Brownian part. Such a result cannot be
obtained using a trick like Girsanov’s theorem (because even the law of such a Lévy process
(Lt )t∈[0,1] and that of (Lt + t)t∈[0,1] are clearly not equivalent). To our knowledge, this gives the
first absolute continuity result for Lévy-driven SDEs with measurable drift.

Also, observe that we allow the intensity measure of the Poissonian part to be singular: even
without Brownian part and without drift, our result yields some absolute continuity for Lévy-
driven SDEs, even when the Lévy measure of the driving process is completely singular. Such
cases are not included in the famous works of Bichteler and Jacod [7] or Bichteler, Gravereaux
and Jacod [6]. Picard [25] obtained some very complete results in that direction for SDEs with
smooth coefficients. Note that Picard obtained his results for any λ ∈ (0,2): our assumption is
quite heavy since we have to restrict our study to the case where λ > 3/4.

Ishikawa and Kunita [15] have obtained some regularity results under some very simple as-
sumptions for a different type of jumping SDE, namely canonical SDEs with jumps; see [15],
formula (6.1).

Let us finally mention a completely different approach developed by Denis [10], Nourdin and
Simon [22], Bally [2], Kulik [19,20] and others, where singular Lévy measures are allowed when
the drift coefficient is sufficiently non-constant. The case under study is truly different since we
allow the drift coefficient to be completely degenerate.

We will frequently use the following classical lemma.
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Lemma 1.1. For μ a non-negative finite measure on R, we denote by μ̂(ξ) = ∫
R

eiξxμ(dx) its
Fourier transform (for all ξ ∈ R). If

∫
R

|μ̂(ξ)|2 dξ < ∞, then μ has a density with respect to the
Lebesgue measure.

Proof. For n ≥ 1, consider μn = μ�gn, where gn is the centered Gaussian distribution with vari-
ance 1/n. Then, of course, |μ̂n(ξ)| ≤ |μ̂(ξ)|. Furthermore, μn has a density fn ∈ L1 ∩L∞(R,dx)

(for each fixed n ≥ 1), so we may apply the Plancherel equality, which yields
∫

R
f 2

n (x)dx =
(2π)−1

∫
R

|μ̂n(ξ)|2 dξ ≤ (2π)−1
∫

R
|μ̂(ξ)|2 dξ =: C < ∞. Due to the weak compactness of the

balls of L2(R,dx), we may extract a subsequence nk and find a function f ∈ L2(R,dx) such that
fnk

goes weakly in L2(R,dx) to f . But, on the other hand, μn(dx) = fn(x)dx tends weakly (in
the sense of measures) to μ. As a consequence, μ is nothing but f (x)dx. �

Observe here that this lemma is optimal. Indeed, the fact that μ̂ belongs to Lp with p > 2 does
not imply that μ has a density; see counterexamples in Kahane and Salem [17]. The following
localization argument will also be of constant use.

Lemma 1.2. For δ > 0, we introduce a function fδ : R+ 
→ [0,1], vanishing on [0, δ], positive
on (δ,∞) and globally Lipschitz continuous (with Lipschitz constant 1).

Consider a probability measure μ on R and a function σ : R 
→ R+. Assume that for each
δ > 0, the measure μδ(dx) = fδ(σ (x))μ(dx) has a density. Thus, μ has a density on {x ∈ R,

σ (x) > 0}.
Proof. Let A ⊂ R be a Borel set with Lebesgue measure 0. We have to prove that μ(A ∩ {σ >

0}) = 0. For each δ > 0, the measures 1{σ(x)>δ}μ(dx) and μδ(dx) are clearly equivalent. By
assumption, μδ(A) = 0 for each δ > 0, whence μ(A ∩ {σ > δ}) = 0. Hence, μ(A ∩ {σ > 0}) =
limδ→0 μ(A ∩ {σ > δ}) = 0. �

The sections of this paper are almost independent. In Section 2, we consider the case of simple
Brownian SDEs. Section 3 is devoted to Brownian SDEs with random coefficients depending on
the whole path of the solution. The stochastic heat equation is treated in Section 4. Finally, we
consider some Lévy-driven SDEs in Section 5.

2. Simple Brownian SDEs

We consider a filtered probability space (�, F , (Ft )t≥0,P ) and an (Ft )t≥0-Brownian motion
(Bt )t≥0. For x ∈ R and σ,b : R 
→ R, we consider the one-dimensional SDE

Xt = x +
∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs)ds. (2.1)

Our aim in this section is to prove the following result.

Theorem 2.1. Assume that σ is Hölder continuous with exponent θ ∈ (1/2,1] and that b is
measurable and has at most linear growth. Consider a continuous (Ft )t≥0-adapted solution
(Xt )t≥0 to (2.1). Then, for all t > 0, the law of Xt has a density on the set {x ∈ R, σ (x) �= 0}.
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Observe that the (weak or strong) existence of solutions to (2.1) does not hold under the as-
sumptions of Theorem 2.1. However, at least weak existence holds if one additionally assumes
that b is continuous or that σ is bounded below; see Karatzas and Shreve [18].

Proof. By a scaling argument, it suffices to consider the case t = 1. We divide the proof into
three parts.

Step 1. For every ε ∈ (0,1), we consider the random variable

Zε := X1−ε +
∫ 1

1−ε

σ (X1−ε)dBs = X1−ε + σ(X1−ε)(B1 − B1−ε).

Conditioning with respect to F1−ε , we get, for all ξ ∈ R,

|E[eiξZε |F1−ε]| =
∣∣exp

(
iξX1−ε − εσ 2(X1−ε)ξ

2/2
)∣∣ = exp

(−εσ 2(X1−ε)ξ
2/2

)
.

Step 2. Using classical arguments (Doob’s inequality and Gronwall’s lemma) and the fact that
σ and b have at most linear growth, one may show that there exists a constant C such that for all
0 ≤ s ≤ t ≤ 1,

E

[
sup
[0,1]

X2
t

]
≤ C, E[(Xt − Xs)

2] ≤ C(t − s). (2.2)

Next, since σ is Hölder continuous with index θ ∈ (1/2,1] and since b has at most linear growth,
we get, for all ε ∈ (0,1),

E[(X1 − Zε)
2] ≤ 2

∫ 1

1−ε

E
[(

σ(Xs) − σ(X1−ε)
)2]ds + 2E

[(∫ 1

1−ε

b(Xs)ds

)2]

≤ C

∫ 1

1−ε

E[|Xs − X1−ε|2θ ]ds + 2ε

∫ 1

1−ε

E[b2(Xs)]ds

≤ C

∫ 1

1−ε

E[|Xs − X1−ε|2]θ ds + Cε

∫ 1

1−ε

E[1 + X2
s ]ds

≤ Cε1+θ + Cε2 ≤ Cε1+θ ,

where we have used (2.2).
Step 3. Let δ > 0 be fixed, consider the function fδ defined in Lemma 1.2 and the measure

μδ,X1(dx) = fδ(|σ(x)|)μX1(dx), where μX1 is the law of X1. Then, for all ξ ∈ R, all ε ∈ (0,1),
we may write

|μ̂δ,X1(ξ)| = |E[eiξX1fδ(|σ(X1)|)]|
≤ |E[eiξX1fδ(|σ(X1−ε)|)]| + E

[∣∣fδ(|σ(X1)|) − fδ(|σ(X1−ε)|)
∣∣]

≤ |E[eiξZεfδ(|σ(X1−ε)|)]| + |ξ |E[|X1 − Zε|]
+ E

[∣∣fδ(|σ(X1)|) − fδ(|σ(X1−ε)|)
∣∣],
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where we used the inequality |eiξx − eiξz| ≤ |ξ | · |x − z| and the fact that fδ is bounded by 1.
First, Step 1 implies that

|E[eiξZεfδ(|σ(X1−ε)|)]| ≤ E[|E[eiξZεfδ(|σ(X1−ε)|)|F1−ε]|]
≤ E

[
fδ(|σ(X1−ε)|)e−εσ 2(X1−ε)ξ

2/2] ≤ exp(−εδ2ξ2/2)

since fδ is bounded by 1 and vanishes on [0, δ]. Step 2 implies that |ξ |E[|X1 − Zε|] ≤
C|ξ |ε(1+θ)/2. Since fδ is Lipschitz continuous and σ is Hölder continuous with index θ ∈
(1/2,1], we deduce from (2.2) that E[|fδ(|σ(X1)|) − fδ(|σ(X1−ε)|)|] ≤ CE[|X1 − X1−ε|θ ] ≤
Cεθ/2.

As a conclusion, we deduce that for all ξ ∈ R and all ε ∈ (0,1),

|μ̂δ,X1(ξ)| ≤ exp(−εδ2ξ2/2) + C|ξ |ε(1+θ)/2 + Cεθ/2.

For each |ξ | ≥ 1 fixed, we apply this formula with the choice ε := (log |ξ |)2/ξ2 ∈ (0,1). This
gives

|μ̂δ,X1(ξ)| ≤ exp
(−δ2(log |ξ |)2/2

) + C(log |ξ |)1+θ /|ξ |θ + C(log |ξ |)θ /|ξ |θ .

This holding for all |ξ | ≥ 1, and μ̂δ,X1 being bounded by 1, we get that
∫

R
|μ̂δ,X1(ξ)|2 dξ < ∞

since θ > 1/2, by assumption. Lemma 1.1 implies that the measure μδ,X1 has a density for each
δ > 0. Lemma 1.2 allows us to conclude that μX1 has a density on {|σ | > 0}. �

3. Brownian SDEs with random coefficients

We again start with a filtered probability space (�, F , (Ft )t≥0,P ) and a (Ft )t≥0-Brownian mo-
tion (Bt )t≥0.

To model the randomness of the coefficients, we consider an auxiliary predictable process
(Ht )t≥0, with values in some normed space (S,‖ · ‖). We then consider σ : R 
→ R and two
measurable maps κ, b : A 
→ R, where

A := {(s, (xu)u≤s , h), s ≥ 0, (xu)u≥0 ∈ C(R+,R), h ∈ S},

and the following one-dimensional SDE:

Xt = x +
∫ t

0
σ(Xs)κ(s, (Xu)u≤s ,Hs)dBs +

∫ t

0
b(s, (Xu)u≤s ,Hs)ds. (3.1)

Here, again, the existence of solutions to such a general equation does not, of course, always
hold, even under the assumptions below. However, there are many particular cases for which
the (weak or strong) existence can be proven by classical methods (Picard iteration, martingale
problems, change of probability, change of time, etcetera).
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Theorem 3.1. Assume that the auxiliary process H satisfies, for some η > 1/2 and all 0 ≤ s ≤
t ≤ T ,

E[‖Ht‖2] ≤ CT and E[‖Ht − Hs‖2] ≤ CT (t − s)η. (3.2)

Assume, also, that κσ and b have at most linear growth, that is, for all 0 ≤ t ≤ T , all (xu)u≥0 ∈
C(R+,R) and all h ∈ S ,

|σ(xt )κ(t, (xu)u≤t , h)| + |b(t, (xu)u≤t , h)| ≤ CT

(
1 + sup

[0,t]
|xu| + ‖h‖

)
, (3.3)

that σ is Hölder continuous with index α ∈ (1/2,1] and that for some θ1 ∈ (1/4,1], θ2 ∈
(1/2,1], θ3 ∈ (1/2η,1], all 0 ≤ s ≤ t ≤ T , all (xu)u≥0 ∈ C(R+,R) and all h,h′ ∈ S , we
have

|σ(xt )κ(t, (xu)u≤t , h) − σ(xs)κ(s, (xu)u≤s , h
′)|

(3.4)
≤ CT

(
(t − s)θ1 + sup

u∈[s,t]
|xu − xs |θ2 + ‖h − h′‖θ3

)
.

Finally, assume that κ is bounded below by some constant κ0 > 0. Consider a continuous
(Ft )t≥0-adapted solution (Xt )t≥0 to (3.1). The law of Xt then has a density on {x ∈ R, σ (x) �= 0}
whenever t > 0.

Note that (3.2) does not imply that H is a.s. continuous: it is just a type of L2-continuity. Also,
observe that we assume no regularity for the drift coefficient b. This is not so surprising, if we
consider Girsanov’s theorem. However, Girsanov’s theorem might be difficult to use in such a
context due to the randomness of the coefficients (a change of probability also changes the law
of the auxiliary process). Let us briefly illustrate (3.4).

Example 3.2. (a) Let σ(xs)κ(s, (xu)u≤s , h) = φ(s, xs, sup[0,s] ϕ(xu),h) with φ : R+ × R × R ×
S 
→ R satisfying |φ(s, x,m,h)−φ(s′, x′,m′, h′)| ≤ C(|s −s′|θ1 +|x −x′|θ2 +|m−m′|ζ +‖h−
h′‖θ3) and ϕ : R 
→ R satisfying |ϕ(x) − ϕ(x′)| ≤ C|x − x′|r with ζ r ≥ θ2. Then, σκ satisfies
(3.4).

(b) Let σ(xs)κ(s, (xu)u≤s , h) = φ(s, xs,
∫ s

0 ϕ(xu)du,h) with φ : R+ × R × R × S 
→ R satis-
fying the condition |φ(s, x,m,h) − φ(s′, x′,m′, h′)| ≤ C(|s − s′|θ1 + |x − x′|θ2 + |m − m′|θ1 +
‖h − h′‖θ3) and with ϕ : R 
→ R bounded. Then, σκ satisfies (3.4).

Proof of Theorem 3.1. The scheme of the proof is exactly the same as that of Theorem 2.1. For
the sake of simplicity, we show the result only when t = 1.

Step 1. For ε ∈ (0,1), we consider the random variable

Zε := X1−ε +
∫ 1

1−ε

σ (X1−ε)κ
(
1 − ε, (Xu)u≤1−ε,H1−ε

)
dBs.
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Conditioning with respect to F1−ε and using the fact that κ ≥ κ0, we get, for all ξ ∈ R,

|E[eiξZε |F1−ε]| = ∣∣exp
(
iξX1−ε − εσ 2(X1−ε)κ

2(1 − ε, (Xu)u≤1−ε,H1−ε

)
ξ2/2

)∣∣
≤ exp

(−εκ2
0σ 2(X1−ε)ξ

2/2
)
.

Step 2. Using Doob’s inequality, Gronwall’s lemma, (3.3) and (3.2), one easily shows that for
all 0 ≤ s ≤ t ≤ 1,

E

[
sup
[0,1]

X2
t

]
≤ C, E

[
sup

u∈[s,t]
(Xu − Xs)

2
]

≤ C(t − s). (3.5)

Next, using (3.2)–(3.5), we get, for all ε ∈ (0,1),

E[(X1 − Zε)
2]

≤ 2
∫ 1

1−ε

E
[(

σ(Xs)κ(s, (Xu)u≤s ,Hs) − σ(X1−ε)κ
(
1 − ε, (Xu)u≤1−ε,H1−ε

))2]
ds

+ 2E

[(∫ 1

1−ε

b(s, (Xu)u≤s ,Hs)ds

)2]

≤ C

∫ 1

1−ε

E

[(
s − (1 − ε)

)2θ1 + sup
u∈[1−ε,s]

|Xu − X1−ε|2θ2 + ‖Hs − H1−ε‖2θ3
]

ds

+ 2ε

∫ 1

1−ε

E[b2(s, (Xu)u≤s ,Hs)]ds

≤ Cε1+2θ1 + CεE

[
sup

u∈[1−ε,1]
|Xu − X1−ε|2

]θ2

+ Cε sup
u∈[1−ε,1]

E[‖Hu − H1−ε‖2]θ3

+ Cε

∫ 1

1−ε

E

[
1 + sup

u∈[0,s]
X2

u + ‖Hs‖2
]

ds

≤ Cε1+2θ1 + Cε1+θ2 + Cε1+ηθ3 + Cε2 ≤ Cε1+θ ,

where θ := min(2θ1, θ2, ηθ3,1) ∈ (1/2,1], by assumption.
Step 3. Let δ > 0 be fixed and consider the function fδ of Lemma 1.2 and the measure

μδ,X1(dx) = fδ(|σ(x)|)μX1(dx), where μX1 is the law of X1. Then, as in the proof of Theo-
rem 2.1, we may write, for all ξ ∈ R and all ε ∈ (0,1),

|μ̂δ,X1(ξ)| ≤ |E[eiξZεfδ(|σ(X1−ε)|)]| + |ξ |E[|X1 − Zε|]
+ E

[∣∣fδ(|σ(X1)|) − fδ(|σ(X1−ε)|)
∣∣].

Exactly as in the proof of Theorem 2.1, using the facts that σ is Hölder continuous with exponent
α ∈ (1/2,1] and that fδ is bounded by 1, Lipschitz continuous and vanishes on [0, δ], we obtain



Absolute continuity for some one-dimensional processes 351

from Steps 1 and 2 that for all ε ∈ (0,1),

|μ̂δ,X1(ξ)| ≤ exp(−εκ2
0 δ2ξ2/2) + C|ξ |ε(1+θ)/2 + Cεα/2.

For each |ξ | ≥ 1 fixed, we apply this formula with the choice ε := (log |ξ |)2/ξ2 ∈ (0,1) and
deduce, as in the proof of Theorem 2.1, that

∫
R

|μ̂δ,X1(ξ)|2 dξ < ∞ because θ > 1/2 and α >

1/2. Due to Lemma 1.1, this implies that μδ,X1 has a density for each δ > 0. Thus, μX1 has a
density on {|σ | > 0} thanks to Lemma 1.2. �

4. Stochastic heat equation

On a filtered probability space (�, F , (Ft )t≥0,P ), we consider an (Ft )t≥0 space–time white
noise W(dt,dx) on R+ × [0,1], based on dt dx; see Walsh [26]. For two functions σ,b : R 
→ R,
we consider the stochastic heat equation with Neumann boundary conditions

∂tU(t, x) = ∂xxU(t, x) + b(U(t, x)) + σ(U(t, x))Ẇ (t, x),
(4.1)

∂xU(t,0) = ∂xU(t,1) = 0,

with some initial condition U(0, x) = U0(x) for some deterministic U0 ∈ L∞([0,1]).
Consider the heat kernel Gt(x, y) := 1√

4πt

∑
n∈Z

[e−(y−x−2n)2/(4t) + e−(y+x−2n)2/(4t)]. Fol-

lowing the ideas of Walsh [26], we say that a continuous (Ft )t≥0-adapted process (U(t,

x))t>0,x∈[0,1] is a weak solution to (4.1) if a.s., for all t > 0 and all x ∈ [0,1],

U(t, x) =
∫ 1

0
Gt(x, y)U0(y)dy +

∫ t

0

∫ 1

0
Gt−s(x, y)b(U(s, y))dy ds

(4.2)

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ (U(s, y))W(ds,dy).

In this section, we will show the following result.

Theorem 4.1. Assume that b is measurable and has at most linear growth, and that σ is Hölder
continuous with exponent θ ∈ (1/2,1]. Consider a continuous (Ft )t≥0-adapted weak solution
(U(t, x))t>0,x∈[0,1] to (4.1). Then, for all x ∈ [0,1] and all t > 0, the law of U(t, x) has a density
on {u ∈ R, σ (u) �= 0}.

Again, the existence of solutions is not proved under the assumptions of Theorem 4.1
alone. We mention Gatarek and Goldys [12], from which we obtain the weak existence of
a solution by additionally assuming that b is continuous. On the other hand, Bally, Gyongy
and Pardoux [3] have proven the existence of a solution for a (locally) Lipschitz continu-
ous diffusion coefficient σ bounded below and a (locally) bounded measurable drift coeffi-
cient b.

We will use the following estimates relating to the heat kernel, which can be found in
the Appendix of Bally and Pardoux [4] and Bally, Millet and Sanz-Solé [5], Lemma B1.
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For some constants 0 < c < C, all ε ∈ (0,1), all x, y ∈ [0,1] and all 0 ≤
s ≤ t ≤ 1,

c
√

ε ≤ κε(x) :=
∫ 1

1−ε

∫ 1∧(x+√
ε)

0∨(x−√
ε)

G2
1−u(x, z)dz du

(4.3)

≤
∫ 1

1−ε

∫ 1

0
G2

1−u(x, z)dz du ≤ C
√

ε,

∫ t

0

∫ 1

0

(
Gt−u(x, z) − Gt−u(y, z)

)2 dz du ≤ C|x − y|, (4.4)

∫ s

0

∫ 1

0

(
Gt−u(x, z) − Gs−u(x, z)

)2 dz du +
∫ t

s

∫ 1

0
G2

t−u(x, z)dz du ≤ C|t − s|1/2. (4.5)

Proof of Theorem 4.1. We assume that t = 1 for simplicity and we fix x ∈ [0,1].
Step 1. For ε ∈ (0,1), let

Zε :=
∫ 1

0
G1(x, y)U0(y)dy +

∫ 1−ε

0

∫ 1

0
G1−s(x, y)b(U(s, y))dy ds

+
∫ 1−ε

0

∫ 1

0
G1−s(x, y)σ (U(s, y))W(ds,dy)

+
∫ 1

1−ε

∫ 1

0
G1−s(x, y)σ

(
U(1 − ε, y)

)
W(ds,dy).

As before, we observe that

|E[eiξZε |F1−ε]| = exp

(
−|ξ |2

2

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)σ 2(U(1 − ε, y)
)

dy ds

)

≤ exp
(−κε(x)Yε|ξ |2/2

)
,

where, recalling (4.3),

Yε := 1

κε(x)

∫ 1

1−ε

∫ 1∧(x+√
ε)

0∨(x−√
ε)

G2
1−s(x, y)σ 2(U(1 − ε, y)

)
dy ds.

Step 2. Using some classical computations involving (4.3)–(4.5), as well as the fact that t, x 
→∫ 1
0 Gt(x, y)U0(y)dy is of class C∞

b on (t0,1]×[0,1] for all t0 ∈ (0,1), we get, for some constant
C,

∀t ∈ [0,1],∀y ∈ [0,1], E[U2(t, y)] ≤ C; (4.6)

∀s, t ∈ [1/2,1],∀y ∈ [0,1], E
[(

U(t, y) − U(s, y)
)2] ≤ C|t − s|1/2; (4.7)

∀t ∈ [1/2,1],∀y, z ∈ [0,1], E
[(

U(t, y) − U(t, z)
)2] ≤ C|y − z|. (4.8)
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Step 2.1. We now prove that for all ε ∈ (0,1/2),

E
[(

U(1, x) − Zε

)2] ≤ Cε(1+θ)/2.

Since σ is Hölder continuous and since b has at most linear growth, using (4.6) and (4.7), we
obtain

E
[(

U(1, x) − Zε

)2]
≤ 2E

[(∫ 1

1−ε

∫ 1

0
G1−s(x, y)b(U(s, y))dy ds

)2]

+ 2
∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)E
[(

σ(U(s, y)) − σ
(
U(1 − ε, y)

))2]dy ds

≤ 2ε

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)E[b2(U(s, y))]dy ds

+ C

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)E[|U(s, y) − U(1 − ε, y)|2θ ]dy ds

≤ Cε

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)E[1 + U2(s, y)]dy ds

+ C

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)E[|U(s, y) − U(1 − ε, y)|2]θ dy ds

≤ Cε

∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)dy ds + Cεθ/2
∫ 1

1−ε

∫ 1

0
G2

1−s(x, y)dy ds

≤ Cε3/2 + Cε(1+θ)/2 ≤ Cε(1+θ)/2,

where, in the final inequality, we have used (4.3).
Step 2.2. We now check that there exists a constant C such that for all ε ∈ (0,1/2),

Aε := E[|σ 2(U(1, x)) − Yε|] ≤ Cεθ/4.

We have

Aε = 1

κε(x)
E

[∣∣∣∣
∫ 1

1−ε

∫ 1∧(x+√
ε)

0∨(x−√
ε)

G2
1−s(x, y)

[
σ 2(U(1, x)) − σ 2(U(1 − ε, y)

)]
dy ds

∣∣∣∣
]

≤ 1

κε(x)

∫ 1

1−ε

∫ 1∧(x+√
ε)

0∨(x−√
ε)

G2
1−s(x, y)E

[∣∣σ 2(U(1, x)) − σ 2(U(1 − ε, y)
)∣∣]dy ds

≤ sup
y∈[x−√

ε,x+√
ε],

E
[∣∣σ 2(U(1, x)) − σ 2(U(1 − ε, y)

)∣∣].
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However, using the fact that σ is Hölder continuous and has at most linear growth, using (4.6)–
(4.8), we deduce that for all y ∈ [x − √

ε, x + √
ε],

E
[∣∣σ 2(U(1, x)) − σ 2(U(1 − ε, y)

)∣∣]
≤ E

[∣∣σ(U(1, x)) − σ
(
U(1 − ε, y)

)∣∣2]1/2
E

[∣∣σ(U(1, x)) + σ
(
U(1 − ε, y)

)∣∣2]1/2

≤ CE[|U(1, x) − U(1 − ε, y)|2θ ]1/2

≤ CE[|U(1, x) − U(1 − ε, y)|2]θ/2 ≤ C(ε1/2 + |x − y|)θ/2 ≤ Cεθ/4,

which concludes the step.
Step 3. Denote by μU(1,x) the law of U(1, x). For δ > 0, consider fδ as in Lemma 1.2 and set

μδ,U(1,x)(du) = fδ(σ
2(u))μU(1,x)(du). For all ξ ∈ R and all ε ∈ (0,1/2), we may write, as in

the proof of Theorem 2.1,

| ̂μδ,U(1,x)(ξ)| = |E[eiξU(1,x)fδ(σ
2((U(1, x)))]|

≤ |E[eiξZεfδ(Yε)]| + |ξ |E[|U(1, x) − Zε|] + E[|fδ(σ
2(U(1, x))) − fδ(Yε)|].

Using Steps 1, 2.1 and 2.2, observing that Yε is F1−ε-measurable and recalling that fδ is bounded
by 1 and vanishes on [0, δ], we get

| ̂μδ,U(1,x)(ξ)| ≤ e−κε(x)δξ2/2 + C|ξ |ε(1+θ)/4 + Cεθ/4 ≤ e−cδ
√

εξ2/2 + C|ξ |ε(1+θ)/4 + Cεθ/4,

using (4.3) for the last inequality. For each |ξ | ≥ 1, we choose ε := (log |ξ |)4/ξ4 ∈ (0,1/2) and
get

| ̂μδ,U(1,x)(ξ)| ≤ exp
(−cδ(log |ξ |)2/2

) + C(log |ξ |)1+θ /|ξ |θ + C(log |ξ |)θ /|ξ |θ .
This holding for all |ξ | ≥ 1 and | ̂μδ,U(1,x)(ξ)| being bounded by 1, we conclude, since θ > 1/2,
that

∫
R

| ̂μδ,U(1,x)(ξ)|2 dξ < ∞. Lemma 1.1 ensures that the law of μδ,U(1,x) has a density for
each δ > 0. We conclude, using Lemma 1.2, that μU(1,x) has a density on {σ 2 > 0}. �

5. Lévy-driven SDEs

We conclude this paper by considering Lévy-driven SDEs. For simplicity, we restrict our study
to the case of deterministic coefficients depending only on the position of the process. The result
below extends without difficulty, as in the Brownian case, to SDEs with random coefficients
depending on the whole paths, under some adequate conditions.

We thus consider a filtered probability space (�, F , (Ft )t≥0,P ) and a square-integrable com-
pensated (Ft )t≥0-Lévy process (Lt )t≥0 without drift, without Brownian part and with Lévy mea-
sure ν. Such a process is entirely characterized by its Fourier transform:

E[exp(iξLt )] = exp

(
−t

∫
R∗

(1 − eiξz + iξz)ν(dz)

)
.
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For σ,b : R 
→ R, we consider the one-dimensional SDE

Xt = x +
∫ t

0
σ(Xs−)dLs +

∫ t

0
b(Xs)ds. (5.1)

Our aim in this section is to prove the following result.

Theorem 5.1. Assume that
∫

R∗ z2ν(dz) < ∞ and that for some λ ∈ (3/4,2), c > 0, ξ0 ≥ 0,

∀|ξ | ≥ ξ0

∫
R∗

(
1 − cos(ξz)

)
ν(dz) ≥ c|ξ |λ (5.2)

and for some γ ∈ [1,2] (with, necessarily, γ ≥ λ),∫
R∗

|z|γ ν(dz) < ∞. (5.3)

We also assume that b is measurable with at most linear growth and that σ is Hölder continuous
with exponent θ ∈ (3γ /(2λ) − 1,1]. If λ ∈ (3/4,3/2), we additionally suppose that b is Hölder
continuous with index α ∈ (3γ /(2λ) − γ,1].

Let (Xt )t≥0 be a cadlag (Ft )t≥0-adapted solution to (5.1). Then, for all t > 0, the law of Xt

has a density on the set {x ∈ R, σ (x) �= 0}.

Here, again, the (weak or strong) existence of solutions to (5.1) probably does not hold under
the assumptions of Theorem 5.1 alone. See Jacod [16] for many existence results.

Let us comment on this result.
(a) Observe that (5.3) implies

∫
R∗(1 − cos(ξz))ν(dz) ≤ C|ξ |γ so that under (5.2), (5.3) can

hold only for some γ ≥ λ.
Indeed, since 0 ≤ 1−cosx ≤ 2(x2 ∧1), we may write

∫
R∗(1−cos(ξz))ν(dz) ≤ 2

∫
|z|≤1/|ξ | ξ

2 ×
z2ν(dz)+2

∫
|z|≥1/|ξ | ν(dz) ≤ 2ξ2

∫
|z|≤1/|ξ | |z|γ |ξ |γ−2ν(dz)+2

∫
|z|≥1/|ξ | |z|γ |ξ |γ ν(dz) ≤ 2|ξ |γ ×∫

R∗ |z|γ ν(dz).
(b) Using a standard localization procedure, one may easily eliminate large jumps, that is,

replace the assumptions
∫

R∗(|z|2 + |z|γ )ν(dz) < ∞ by
∫

R∗ min(1, |z|γ )ν(dz) < ∞.
(c) If (5.2) holds with λ > 3/2, we assume no regularity on the drift coefficient b. Observe,

here, that no trick using Girsanov’s theorem may allow us to remove the drift: there is a clear
difference in nature between the paths of a Lévy process without Brownian part with and without
drift.

(d) Assume that ν satisfies
∫

R∗ z2ν(dz) < ∞ and that the following property holds for some
λ ∈ (3/4,2): there exist 0 < c0 < c1 such that for all ε ∈ (0,1],

c0ε
2−λ ≤

∫
|z|≤ε

z2ν(dz) ≤ c1ε
2−λ. (5.4)

Then, (5.2) holds and (5.3) holds with any γ ∈ (λ,2]. Indeed, since 1 − cosx ≥ x2/2 for x ∈
[0,1], we get, for |ξ | > 1,

∫
R∗(1 − cos(ξz))ν(dz) ≥ (ξ2/4)

∫
|z|≤1/|ξ | z

2ν(dz) ≥ c0|ξ |λ/4, whence
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(5.2). Next, let γ ∈ (λ,2) be fixed. To show that (5.3) holds, it clearly suffices to prove that∫
|z|<1 |z|γ ν(dz) < ∞. Let us, for example, show that

∫ 1
0 zγ ν(dz) < ∞. Using an integration by

parts, one easily gets
∫ 1

0 zγ ν(dz) = ∫ 1
0 zγ−2z2ν(dz) = ∫ 1

0 (2 − γ )zγ−3[∫ z

0 y2ν(dy)]dz ≤ (2 −
γ )c1

∫ 1
0 zγ−3z2−λ dz < ∞ since γ − λ > 0.

Thus, our result holds in the following situations:

• λ > 3/2, σ is Hölder continuous with exponent θ > 1/2;
• λ ∈ [1,3/2], σ is Hölder continuous with index θ > 1/2, b is Hölder continuous with expo-

nent α > 3/2 − λ;
• λ ∈ (3/4,1], σ and b are Hölder continuous with exponent θ > 3/(2λ) − 1.

(e) For example, ν(dz) = z−1−λ1[0,1](z)dz satisfies (5.4), as well as ν(dz) = ∑
n≥1 nλ−1δ1/n,

or, more generally, ν(dz) = ∑
n≥1 nλα−1δn−α with α > 0.

(f) Our assumption that λ > 3/4 might seem strange. However, our method does not seem to
work for smaller values of λ, even if σ,b are Lipschitz continuous.

As noted by the anonymous referee, however, it is possible to obtain some results for λ ∈
(1/2,3/4] if there is no drift part (b ≡ 0).

Proof of Theorem 5.1. By scaling, it suffices to consider the case t = 1. We will often write the
Lévy process as

Lt =
∫ t

0

∫
R∗

zÑ(ds,dz),

where Ñ(ds,dz) is a compensated Poisson measure on R+ ×R∗ with intensity measure dsν(dz).
Thus, (5.1) can be rewritten as

Xt = x +
∫ t

0

∫
R∗

σ(Xs−)zÑ(ds,dz) +
∫ t

0
b(Xs)ds. (5.5)

Step 1. For ε ∈ (0,1), we consider the random variable

Zε := X1−ε +
∫ 1

1−ε

σ (X1−ε)dLs +
∫ 1

1−ε

b(X1−ε)ds.

For δ > 0, consider the function fδ of Lemma 1.2. Recall that fδ is bounded and vanishes on
[0, δ]. Conditioning with respect to F1−ε and using (5.2), we get, for all |ξ | ≥ ξ0/δ,

|E[eiξZεfδ(|σ(X1−ε)|)|F1−ε]|

= fδ(|σ(X1−ε)|)
∣∣∣∣exp

(
iξX1−ε + iξεb(X1−ε)

− ε

∫
R∗

(
1 − eiξσ (X1−ε)z + iξσ (X1−ε)z

)
ν(dz)

)∣∣∣∣
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= fδ(|σ(X1−ε)|) exp

(
−ε

∫
R∗

(
1 − cos(ξσ (X1−ε)z)

)
ν(dz)

)

≤ fδ(|σ(X1−ε)|) exp(−cεδλ|ξ |λ) ≤ exp(−cεδλ|ξ |λ).

We have used the fact that fδ is bounded by 1 and vanishes on [0, δ] to obtain the two last
inequalities.

Step 2. Recall that σ and b are Hölder continuous with exponent θ ∈ (0,1] and α ∈ [0,1]
(when there is no regularity assumption on b, we say that it is Hölder with exponent 0). The goal
of this step is to show that for all ε ∈ (0,1),

Iε := E[|X1 − Zε|γ ] ≤ Cε1+θ + Cεγ+α ≤ Cε1+ζ , (5.6)

where ζ := min(θ, γ + α − 1) ∈ (3γ /2λ − 1,1], by assumption. We first show that for all 0 ≤
s ≤ t ≤ 1,

E

[
sup
[0,1]

|Xs |γ
]

≤ C, E[|Xt − Xs |γ ] ≤ C|t − s|. (5.7)

First, using (5.5), the Burkholder–Davies–Gundy inequality (see Dellacherie and Meyer [9]), the
subadditivity of x 
→ xγ/2, the Hölder inequality, (5.3) and the fact that b, σ have at most linear
growth, we obtain, for all t ∈ [0,1],

E

[
sup

u∈[0,t]
|Xu|γ

]

≤ C|x|γ + CE

[
sup

u∈[0,t]

∣∣∣∣
∫ u

0

∫
R∗

σ(Xs−)zÑ(ds,dz)

∣∣∣∣γ
]

+ CE

[(∫ t

0
|b(Xs)|ds

)γ ]

≤ C|x|γ + CE

[(∫ t

0

∫
R∗

|σ(Xs−)z|2N(ds,dz)

)γ /2]
+ CE

[(∫ t

0
|b(Xs)|ds

)γ ]

≤ C|x|γ + CE

[∫ t

0

∫
R∗

|σ(Xs−)z|γ N(ds,dz)

]
+ Ctγ−1E

[∫ t

0
|b(Xs)|γ ds

]

≤ C|x|γ + C

∫ t

0

∫
R∗

E[|σ(Xs−)|γ ]|z|γ ν(dz)ds + Ctγ−1
∫ t

0
E[|b(Xs)|γ ]ds

≤ C|x|γ + C

∫ t

0
E[1 + |Xs |γ ]ds

and Gronwall’s lemma allows us to conclude that E[sup[0,1] |Xs |γ ] ≤ C. The same arguments

ensure that for 0 ≤ s ≤ t ≤ 1, E[|Xt − Xs |γ ] ≤ C
∫ t

s
E[1 + |Xu|γ ]du, whence the second in-

equality of (5.7). We may now check (5.6). Using similar arguments and the Hölder continuity
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assumptions, we obtain

Iε ≤ CE

[(∫ 1

1−ε

∫
R∗

∣∣(σ(Xs−) − σ(X1−ε)
)
z
∣∣2

N(ds, dz)

)γ /2]

+ CE

[(∫ 1

1−ε

|b(Xs) − b(X1−ε)|ds

)γ ]

≤ C

∫ 1

1−ε

E[|σ(Xs−) − σ(X1−ε)|γ ]ds + Cεγ−1
∫ 1

1−ε

E[|b(Xs−) − b(X1−ε)|γ ]ds

≤ C

∫ 1

1−ε

E[|Xs − X1−ε|γ θ ]ds + Cεγ−1
∫ 1

1−ε

E[|Xs − X1−ε|αγ ]ds

≤ C

∫ 1

1−ε

E[|Xs − X1−ε|γ ]θ ds + Cεγ−1
∫ 1

1−ε

E[|Xs − X1−ε|γ ]α ds

≤ Cε1+θ + Cεγ+α,

where, in the final inequality, we have used (5.7).
Step 3. Let δ > 0 be fixed and consider the measure μδ,X1(dx) = fδ(|σ(x)|)μX1(dx), where

μX1 is the law of X1. Then, as before, for all ξ ∈ R and all ε ∈ (0,1), we may write

|μ̂δ,X1(ξ)| ≤ |E[eiξZεfδ(|σ(X1−ε)|)]| + |ξ |E[|X1 − Zε|] + E
[∣∣fδ(|σ(X1)|) − fδ(|σ(X1−ε)|)

∣∣].
Using the Hölder continuity of σ and (5.7), one easily gets (recall that 0 < θ ≤ 1 ≤ γ , by as-
sumption) E[|fδ(|σ(X1)|)−fδ(|σ(X1−ε)|)|] ≤ CE[|X1 −X1−ε|θ ] ≤ Cεθ/γ . Next, using Steps 1
and 2, we obtain, for all ε ∈ (0,1) and all |ξ | ≥ ξ0/δ,

|μ̂δ,X1(ξ)| ≤ exp(−cδλε|ξ |λ) + C|ξ |ε(1+ζ )/γ + Cεθ/γ .

For each |ξ | ≥ ξ1 ∨ (ξ0/δ), we choose ε := (log |ξ |)2/|ξ |λ ∈ (0,1) (this holds if ξ1 is large
enough). This gives

|μ̂δ,X1(ξ)| ≤ exp(−cδλ(log |ξ |)2) + C(log |ξ |)2(1+ζ )/γ /|ξ |λ(1+ζ )/γ−1

+ C(log |ξ |)2θ/γ /|ξ |λθ/γ .

This holding for all |ξ | ≥ ξ1 ∨ (ξ0/δ) and μ̂δ,X1 being bounded by 1, we get that∫
R

|μ̂δ,X1(ξ)|2 dξ < ∞. Indeed, λ(1+ζ )/γ −1 > 1/2 (because ζ > 3γ /2λ−1) and λθ/γ > 1/2
(because θ > 3γ /2λ − 1 and λ ≤ γ ). Lemma 1.1 implies that the measure μδ,X1 has a density
(for δ > 0 fixed) and we conclude using Lemma 1.2 that μX1 has a density on {|σ | > 0}. �
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