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We discuss the optimal design problem in regression models with long-range dependence error structure.
Asymptotic optimal designs are derived and it is demonstrated that these designs depend only indirectly
on the correlation function. Several examples are investigated to illustrate the theory. Finally, the optimal
designs are compared with asymptotic optimal designs which were derived by Bickel and Herzberg [Ann.
Statist. 7 (1979) 77–95] for regression models with short-range dependent error.

Keywords: asymptotic optimal designs; linear regression; long-range dependence

1. Introduction

Consider the common linear regression model

y(t) = θ1f1(t) + · · · + θpfp(t) + ε(t), (1.1)

where f1(t), . . . , fp(t) are known functions, ε(t) is a random error, θ1, . . . , θp denote the un-
known parameters and t is the explanatory variable. We assume that N observations, say
y1, . . . , yN , can be taken at experimental conditions −T ≤ t1 ≤ · · · ≤ tN ≤ T to estimate the para-
meters in the linear regression model (1.1). If an appropriate estimate, say θ̂ = (θ̂1, . . . , θ̂p)T , has
been chosen, an optimal design minimizes a function of the variance-covariance matrix of this
estimate, which is called an optimality criterion (see, for example, Silvey (1980) or Pukelsheim
(1993)).

Under the assumption of uncorrelated observations, optimal designs have been studied by
numerous authors (see the two books cited above and the textbooks of Fedorov (1972), Pázman
(1986) and Atkinson and Donev (1992)). However, fewer results are available for dependent
observations, although this problem is of particular interest because in many applications, the
variable t in the regression model (1.1) represents time and all observations correspond to one
subject. The reason for this is that optimal experimental designs for regression models with
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correlated observations have a very complicated structure and are difficult to find, even in simple
cases. Because explicit solutions are rarely available, an asymptotic theory was developed by
Sacks and Ylvisaker (1966, 1968). In the Sacks–Ylvisaker approach, the design set is fixed and
the number of design points in this set tends to infinity. As a result of this assumption, the design
points become too close to each other and the corresponding asymptotic optimal designs depend
only on the behavior of the correlation function in a neighborhood of the point 0.

Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981) considered a different
model, where the design interval expands proportionally to the number of observation points and
the correlation structure of errors is not used for the construction of the least-squares estimate.
The variance-covariance matrix of the estimate θ̂ is of order O(1) in the model considered by
Sacks and Ylvisaker (1966) and of order 1/N in the model discussed by Bickel and Herzberg
(1979). Therefore, the approach of Bickel and Herzberg makes the optimal designs derived for
the dependent and independent cases more comparable. These authors assumed that the obser-
vations in model (1.1) have a correlation structure corresponding to a non-degenerate stationary
process with short-range dependence, where a correlation function ρ satisfies ρ(t) = o(1/t) if
t → ∞. As examples, in Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981),
asymptotic optimal designs are derived for the linear regression model with and without intercept
and for the location model.

The purpose of the present paper is to extend the Bickel–Herzberg approach to the case of
a stronger dependence of the errors in the linear regression model (1.1), which corresponds to
an error process with long-range dependence. Long-range dependence is observed in many ap-
plications, including hydrology, geophysics, turbulence, diffusion, economics and finance. The
phenomenon was already observed by Pearson (1902) in astronomy and by Smith (1938) in agri-
culture. Further examples where long-range dependence is discussed can be found in Granger
(1980), Mandelbrot (1973), Porter-Hudak (1990), Beran, Sherman, Taqqu and Willinger (1992),
Barndorff-Nielsen et al. (1990), Beran (1992), Metzler et al. (1999), among many others. The in-
terested reader is referred to the books of Beran (1994) and Doukhan et al. (2003), which contain
a good description of the basic properties of long-range dependence processes and an extensive
bibliography on this subject.

Most of the literature considers the estimation problem but – to the best knowledge of the
authors – design problems for regression models with long-range dependence error structure have
not been considered thus far. In Section 2, we introduce the basic terminology and describe the
optimal design problem. Our main results are given in Section 3, where we derive an asymptotic
expression for the variance-covariance matrix, the basis for the construction of optimal designs in
the regression model (1.1) with a long-range dependent error structure. These results are different
from the findings of Künsch, Beran and Hampel (1993), who considered random explanatory
variables. Finally, in Section 4 several asymptotic optimal designs are derived for the linear
regression model and compared with the results obtained by Bickel and Herzberg (1979) under
the assumption of a short-range error structure.
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2. Optimal designs for dependent observations

Consider the linear regression model (1.1), where the error process ε(t) is the second-order
process with

Eε(t) = 0, Eε(t)ε(s) = σ 2r(t, s), (2.1)

and assume that

(C1). The regression functions f1(t), . . . , fp(t) are linearly independent and bounded on the
interval [−T ,T ] and satisfy a first order Lipschitz condition, that is, |fi(t) − fi(s)| ≤ M|t − s|
and |fi(t)| ≤ M for all t, s ∈ [−T ,T ], i = 1, . . . , p.

Following Bickel and Herzberg (1979), we assume that ε(t) = ε(1)(t) + ε(2)(t), where ε(1)(t)

denotes a stationary process with correlation function ρ(t) and ε(2)(t) is white noise. Conse-
quently, we obtain

r(t, s) = γρ(t − s) + (1 − γ )δt,s , (2.2)

where δ is the Kronecker symbol. If N observations, say y = (y1, . . . , yN)T , are available and
the form of the correlation function is known, then the vector of parameters can be estimated by
the weighted least squares, that is, θ̂ = (XT �−1X)−1XT �−1y with XT = (fi(tj ))

j=1,...,N

i=1,...,p , and
the variance-covariance matrix of this estimate is given by

D(θ̂) = σ 2(XT �−1X)−1 (2.3)

with � = (γρ(ti − tj ) + (1 − γ )δi,j )i,j , i, j = 1, . . . ,N . However, in most applications, knowl-
edge about the correlation structure is not available and the unweighted least-squares estimate
θ̃ = (XT X)−1XT y is used. For this estimate, the variance-covariance matrix is given by

D(θ̃) = σ 2(XT X)−1XT �X(XT X)−1. (2.4)

An experimental design ξ = {t1, . . . , tN } is a vector of N points in the interval [−T ,T ], which
defines the time points or experimental conditions where observations are taken. Optimal de-
signs minimize a functional of the variance-covariance matrix of the weighted or unweighted
least-squares estimate. Following Bickel and Herzberg (1979), we consider a correlation func-
tion which depends on the sample size N and is of the form ρN(t) = ρ(Nt), where the function
ρ satisfies ρ(t) → 0 if t → ∞; this corresponds to expanding the interval as the number of ob-
servations grows. The standard least-squares estimate is considered in the following discussion
because when computing this estimate, the form of the correlation function ρ(t) is not used.
Despite this, the least-squares estimate often has good properties compared to the best linear un-
biased estimate; see, for example, Adenstedt (1974), Samarow and Taqqu (1988), Yajima (1988,
1991) and Beran (1994), page 179, among others. For some results regarding nonlinear regres-
sion, the reader is referred to Ivanov and Leonenko (2004, 2008).
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For our asymptotic investigations, we consider a sequence of designs ξN = {t1N, . . . , tNN }
which is generated using a continuous non-decreasing function

a : [0,1] → [−T ,T ] (2.5)

by

tiN = a
(
(i − 1)/(N − 1)

)
, i = 1, . . . ,N, (2.6)

where the function a(u) is the inverse of a distribution function. Note that the function a is
obtained as the weak limit of ξN as N → ∞. The equally spaced design corresponds to the
choice a(u) = (2u−1)T (u ∈ [0,1]); changing the function a yields different types of the design.
For example, the choice a−1(x) = (x3 + 1)/2 yields designs which are more concentrated in
the interval [−1/2,1/2]. We assume several regularity conditions on the function a, which are
required for the asymptotic results which are to follow. More precisely:

(C2). Let a(u) be twice differentiable and assume that there exists a positive constant M < ∞
such that for all u ∈ (0,1),

1

M
≤ a′(u) ≤ M, |a′′(u)| ≤ M. (2.7)

(C3). The correlation function ρ is differentiable with bounded derivative, that is, |ρ′(t)| ≤ M ,
t ∈ (0,∞) and ρ′(t) ≤ 0 for sufficiently large t .

The last assumption implies that ρ(t) is nonnegative for sufficiently large t . In contrast to
Bickel and Herzberg (1979) we assume that∫ ∞

0
|ρ(t)|dt = ∞ (2.8)

and this assumption corresponds to the long-range dependence of the observations. Note that in
this case it follows that ∫ ∞

0
|ρ(t)|dt =

∞∑
k=0

|ρ(k)| = ∞,

where ρ(k) = cov(ε(1)(t), ε(1)(t + k)). The correlation function of a stationary process with
long-range dependence can be written as

ρα(t) = L(t)

|t |α , |t | → ∞, (2.9)

where 0 < α ≤ 1 and L(t) is a slowly varying function (SVF) for large t [Doukhan et al. (2003)],
and satisfies

ρα(t) = O(1/|t |α), |t | → ∞.

In this case, we will say that ρα(t) belongs to the SVF family.
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3. Main results

First, we introduce two parametric families of correlation functions which are important in ap-
plications.

The correlation function ρα(t) belongs to the Cauchy family if it is defined by

ρα(t) = 1

(1 + |t |β)α/β
, (3.1)

where β > 0, 0 < α ≤ 1 [see Gneiting (2000), Anh et al. (2004), Barndorff-Nielsen and Leo-
nenko (2005)]. This family includes

ρ(1)
α (t) = 1

(1 + |t |2)α/2
, ρ(2)

α (t) = 1

1 + |t |α , ρ(3)
α (t) = 1

(1 + |t |)α ,

which have a totally different shape in a neighbourhood of the point t = 0 but the same asymp-
totic behavior for large t (see Figure 1). These three functions are known as the characteristic

Figure 1. The three correlation functions, where α = 0.5.
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functions of the symmetric Bessel distribution, Linnik distribution and symmetric generalized
Linnik distribution, respectively.

The correlation function ρα(t) belongs to the Mittag-Leffler family if it is defined by

ρα(t) = Eν,β(−|t |α), Eν,β(−t) = (β)

∞∑
k=0

(−t)k

(νk + β)
, t > 0, (3.2)

where 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν (see Schneider (1996), Barndorff-Nielsen and Leonenko
(2005)). This family is a smooth interpolation of long-range dependence (0 < α ≤ 1, β = 1,0 <

ν < 1) and short-range dependence (ν = 1,0 < α ≤ 1, β = 1). Note that the case ν = 1, β =
1, α = 1 corresponds to ordinary diffusion �α(t) = e−|t |, which is the correlation function of a
Markovian Ornstein–Uhlenbeck process. On the other hand, the case 0 < ν < 1, β = 1,0 < α <

1 corresponds to subdiffusion or slow diffusion (see Metzler and Klafter (2000)). In particular,

E1,1(−t) = e−t , E1,2(−t) = (1 − e−t )/t, E1,3(−t) = 2(e−t − 1 + t)/t2,

E1/2,1(−t) = et2
(

1 − 2√
π

∫ t

0
e−u2

du

)
.

In the following discussion, we derive optimal designs for the three families of correlation func-
tions, which are given by (2.9), (3.1) and (3.2). The function Q(t) = ∑∞

j=1 ρ(j t) plays an impor-
tant role in the asymptotic analysis by Bickel and Herzberg (1979), but in the case of long-range
dependence, this function is infinite. For an asymptotic analysis under long-range dependence,
we introduce the function

Qα(t) = lim
N→∞

1

dα(N)

N∑
j=1

ρα(j t), (3.3)

where the normalizing sequence is given by

dα(N) =

⎧⎪⎪⎨
⎪⎪⎩

N1−α, if α < 1 and ρα has the form (3.1) or (3.2),
lnN, if α = 1 and ρα has the form (3.1) or (3.2),
L(N)N1−α, if α < 1 and ρα has the form (2.9),
L(N) lnN, if α = 1 and ρα has the form (2.9),

and show in Lemma 1 below that the function Qα(t) is well defined.

Lemma 1. If the correlation function ρα(t) belongs to the Cauchy, SVF family or to the Mittag-
Leffler family with 0 < α ≤ 1,0 < ν ≤ 1, ν ≤ β, (ν,β) 	= (1,1), then the limit in (3.3) exists and
is given by

Qα(t) =

⎧⎪⎨
⎪⎩

c

(1 − α)|t |α , 0 < α < 1,

c

|t | , α = 1,
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where

c =
{

(β)

(β − ν)
, if ρα(t) belongs to the Mittag-Leffler family,

1, otherwise.

Proof. Define the function

Qα,N(t) = 1

dα(N)

N∑
j=1

ρα(j t)

and assume that the correlation function ρα(t) is an element of the Cauchy family. Since the
function ρα(t) defined in (3.1) is positive and decreasing for 0 < α < 1, we have

Qα,N(t) = 1

N1−α

∫ N

0

1

(1 + |st |β)α/β
ds + O

(
1

N1−α

)

= 1

N1−α
N

∫ N

0

d(s/N)

Nα(1/Nβ + |st/N |β)α/β
+ O

(
1

N1−α

)

=
∫ 1

0

dv

(|vt |β)α/β
+ O

(
1

Nα−α2

)
= 1

(1 − α)|t |α + O

(
1

Nα−α2

)

= Qα(t) + O

(
1

Nα−α2

)
.

For α = 1, we obtain

Q1(t) = lim
N

1

lnN

N∑
j=1

1

(1 + |j t |β)1/β
= lim

N

1

|t | lnN

∫ N

0

1

(1 + |st |β)1/β
d(st)

= lim
N

1

|t | lnN

∫ Nt

0

1

1 + |v| dv = 1

|t | ,

which completes the proof for the case where ρα(t) belongs to the Cauchy family.
Now assume that the correlation function ρα(t) is an element of the Mittag-Leffler family. For

the sake of brevity, we only consider the case β = 1,0 < α ≤ 1,0 < ν < 1, all other cases being
treated similarly. Since

Eν,1(−|t |α) ∼ 1

|t |α(1 − ν)

as t → ∞ (see, for example, formula (3.17) in Schneider (1996)), we have, for 0 < α < 1,

Qα(t) = lim
N→∞

1

N1−α

N∑
j=1

Eν,1(−|j t |α) = 1

(1 − α)(1 − ν)|t |α .
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Observing that

Eν,β(−|t |) ∼ (β)

|t |(β − ν)

for t → ∞ (see Djrbashian (1993)), we obtain, for α = 1,

Q1(t) = lim
N→∞

1

lnN

N∑
j=1

Eν,β(−|j t |) = (β)

|t |(β − ν)
.

Finally, assume that the correlation function ρα(t) is an element of the SVF family. We then
obtain

Qα(t) = lim
N→∞

1

L(N)N1−α

∫ N

0

L(st)

|st |α ds

= lim
N→∞

1

L(N)N1−α
N

∫ N

0

L(Nts/N)d(s/N)

Nα|st/N |α

= lim
N→∞

∫ 1

0

L(Ntv)dv

L(N)|vt |α =
∫ 1

0

dv

|vt |α = 1

(1 − α)|t |α ,

where we have used Theorem 2.6 from Seneta (1976) in the last line. For α = 1, we have

Q1(t) = lim
N→∞

1

L(N) lnN

∫ N

1

L(st)

|st | ds = lim
N

1

lnN

∫ N

1

L(st)/L(N)

st
ds

= lim
N→∞

1

lnN

∫ N

1

1

|st | ds + lim
N

1

lnN

∫ N

1

L(st)/L(N) − 1

|st | ds

= 1

|t | + lim
N

1

lnN

∫ 1

1/N

L(Nvt)/L(N) − 1

|vt | dv = 1

|t | ,

which completes proof of Lemma 1. �

Next, we find a comfortable asymptotic representation for the main term in the variance-
covariance matrix of the least-squares estimates.

Lemma 2. Assume that the correlation function ρα(t) belongs to the Cauchy, Mittag-Leffler or
SVF family, such that ∫ 1

0
Qα(a′(t))dt < ∞, (3.4)

and that the regularity conditions (C1)–(C3) in Sections 2 and 3 are satisfied. We have

1

dα(N)N

∑
i 	=j

fs(tiN )fr(tjN )ρα

(
N(tjN − tiN )

) = 2
∫ 1

0
fs(a(u))fr(a(u))Qα(a′(u))du + o(1)
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as N → ∞ for all s, r = 1, . . . , p, 0 < α ≤ 1.

Proof. We only give a proof for the correlation function from the Cauchy family and 0 < α < 1,
the proof for the other cases being similar. We use the notation f = fs , g = fr , ρ = ρα and the
decomposition

Nα−2
∑
i 	=j

f (tiN )g(tjN )ρ
(
N(tjN − tiN )

) = S1 + S2,

where

S1 = 2Nα−2
N∑

i=1

f (tiN )g(tiN )

N∑
j=i+1

ρ
(
N(tjN − tiN )

)
, (3.5)

S2 = 2Nα−2
N∑

i=1

f (tiN )

N∑
j=i+1

(
g(tjN ) − g(tiN )

)
ρ
(
N(tjN − tiN )

)
. (3.6)

With the notation iN = (i − 1)/(N − 1), we obtain from the differentiability of the functions a

and ρ

ρ
(
N(tjN − tiN )

) = ρ
(
N

(
a(jN) − a(iN)

)) = ρ
(
a′(iN )(j − i)

) + ν
(j − i)2

N − 1
,

where |ν| ≤ M2/2. Let rN denote a sequence such that rN → ∞ slowly as o(N(1−α)/3) and
consider the cases i ≤ rN and i > rN in (3.5) and (3.6) separately. Note that

∣∣∣∣∣
N∑

j=i+rN

ρ
(
N(tjN − tiN )

)∣∣∣∣∣ =
N∑

j=i+rN

ρ
(
N

(
a(jN) − a(iN)

))

≤ M̃

N∑
j=i+rN

ρ
(
(j − i)/M

) ≤ M̃

∞∑
k=rN

ρ(k/M) = o(N1−α)

as N → ∞ uniformly with respect to j , where M̃ is a constant and where we have used the fact
that the function a′(u) is bounded from below and Lemma 1. Similarly, we obtain

∣∣∣∣∣
N∑

j=i+rN

(
g(tjN ) − g(tiN )

)
ρ
(
N(tjN − tiN )

)∣∣∣∣∣
≤ 2MT

∞∑
j=i+rN

∣∣ρ(
N(tjN − tiN )

)∣∣ = o(N1−α)
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as N → ∞ uniformly with respect to j because the function g is bounded. This implies that

S1 = 2Nα−2
N∑

i=1

f (tiN )g(tiN )

i+rN∑
j=i+1

ρ
(
N(tjN − tiN )

) + o(1), (3.7)

S2 = 2Nα−2
N∑

i=1

f (tiN )

i+rN∑
j=i+1

(
g(tjN ) − g(tiN )

)
ρ
(
N(tjN − tiN )

) + o(1) (3.8)

as N → ∞. For the first term on the right-hand side of (3.8), we obtain the estimate

S̃2 = Nα−2

∣∣∣∣∣
N∑

i=1

f (tiN )

i+rN∑
j=i+1

(
g(tjN ) − g(tiN )

)
ρ
(
N(tjN − tiN )

)∣∣∣∣∣
≤ 2Nα−1M2T

i+rN∑
j=i+1

∣∣ρ(
N(tjN − tiN )

)∣∣

≤ 2Nα−1M2T

i+rN∑
j=i+1

(∣∣ρ(
a′(iN )(j − i)

)∣∣ + M2 (j − i)2

N − 1

)

≤ 2Nα−1M2T (MrN + M2r3
N/N) = o(1)

as N → ∞, while the dominating term on the right-hand side of (3.7) is given by

S̃1 = Nα−2
N∑

i=1

f (tiN )g(tiN )

i+rN∑
j=i+1

ρ
(
N(tjN − tiN )

)

= Nα−2
N∑

i=1

f (tiN )g(tiN )

i+rN∑
j=i+1

ρ
(
a′(iN )(j − i)

) + o(1)

= N−1
N∑

i=1

f (tiN )g(tiN )Qα(a′(iN )) + o(1) =
∫ 1

0
f (a(u))g(a(u))Qα(a′(u))du + o(1)

as N → ∞, which proves the assertion of Lemma 2. �

Theorem 1. Let the correlation function ρα(t) be an element of the Cauchy, Mittag-Leffler or
SVF family. If (3.4) and the regularity assumptions (C1)–(C3) stated in Sections 2 and 3 are
satisfied, then we obtain for the variance-covariance matrix of the least-squares estimate defined
in (2.4)

σ 2 N

dα(N)
D(θ̃) = 2γW−1(a)Rα(a)W−1(a) + O

(
1/dα(N)

)
,
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where the matrices W and Rα are given by

W(a) =
(∫ 1

0
fi(a(u))fj (a(u))du

)p

i,j=1
,

Rα(a) =
(∫ 1

0
fi(a(u))fj (a(u))Qα(a′(u))du

)p

i,j=1
.

Proof. In view of (2.2), we obtain that

XT �X =
(

γ
∑
i 	=j

fk(tiN )fl(tjN )ρα

(
N(tjN − tiN )

) +
N∑

i=1

fk(tiN )fl(tjN )

)p

k,l=1

,

where XT = (fi(tjN ))
j=1,...,N

i=1,...,p and tiN = a((i − 1)/(N − 1)), i = 1, . . . ,N . An application of
Lemma 2 yields

XT X

N
= W(a) + O

(
1

N

)
,

XT �X

dα(N)N
= 2γRα(a) + O

(
1

dα(N)

)
.

The assertion of the theorem now follows by inserting these limits into (2.4). �

Note that the constant γ only appears as a factor in the asymptotic variance-covariance matri-
ces of the least-squares estimate. Because most optimality criteria are positively homogeneous
(see, for example, Pukelsheim (1993)), it is reasonable to consider the matrix

W−1(a)Rα(a)W−1(a),

which is proportional to the asymptotic variance-covariance matrix of the least-squares estimate.
Moreover, if the function a corresponds to a continuous distribution with a density, say φ, then
a′(t) = 1/φ(t) and the asymptotic variance-covariance matrix of the least-squares estimate is
proportional to the matrix

�α(φ) = W−1(φ)Rα(φ)W−1(φ),

where the matrices W(φ) and Rα(φ) are given by

W(φ) =
(∫ T

−T

fi(t)fj (t)φ(t)dt

)
i,j=1,...,p

,

Rα(φ) =
(∫ T

−T

fi(t)fj (t)Qα

(
1/φ(t)

)
φ(t)dt

)
i,j=1,...,p

= c

1 − α

(∫ T

−T

fi(t)fj (t)φ
1+α(t)dt

)
i,j=1,...,p
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and we have used the representation Qα(t) = c/((1−α)|t |α) for the last identity. An (asymptotic)
optimal design minimizes an appropriate function of the matrix �α(φ) (for classical least-squares
estimation). Note that under long-range dependence, the variance-covariance matrix of the least-
squares estimate converges slower to zero than in the case of independent or short-range depen-
dent errors. In the case of short-range dependence, no other normalization is necessary, apart
from normalizing the variance-covariance matrix. Under long-range dependence, an additional
factor dα(N)/N is needed. Moreover, it is worthwhile to note that under long-range dependence,
the asymptotic variance-covariance matrix is fully determined by the function Qα(t) and does
not otherwise depend on the particular correlation function ρα(t). In the following section, we
discuss several examples in order to illustrate the concept.

4. Examples

In most cases, the asymptotic optimal designs for the regression model (1.1) have to be found nu-
merically; explicit solutions are only possible for very simple models. In this section, we consider
models with one or two parameters.

4.1. Optimal designs for linear models with one parameter

Consider the linear regression model with p = 1, that is, y(t) = θf (t) + ε(t) (θ ∈ R). In this
case, the problem of minimizing the asymptotic variance-covariance of the least-squares estimate
reduces to the minimization of the function

�α(p) =
∫

f 2(t)Qα(1/p(t))p(t)dt

(
∫

f 2(t)p(t)dt)2

∫
p(t)dt

in the class of all non-negative functions p(t) on the interval [−T ,T ]. Note that we have
represented the density φ by p/

∫
p(x)dx, which simplifies the calculation of the directional

derivatives in the following discussion. Because Qα(t) is strictly convex on (0,∞), it follows
from Theorem 3.1 in Bickel and Herzberg (1979) that a minimizer, say p∗(t), exists and that
φ∗(t) = p∗(t)/

∫
p∗(t)dt is the asymptotic optimal density. For the minimizing function p∗, we

obtain

∂

∂ε
�α

(
p∗ + ε(p − p∗)

)∣∣∣∣
ε=0

≥ 0

for all non-negative functions p on the interval [−T ,T ]. Consequently, the asymptotic optimal
density should satisfy

∫
p∗(t)dt = 1 and

∫ (
f 2(t)

(
Hα

(
1/p∗(t)

) − μ
) + τ̃

)(
p(t) − p∗(t)

)
dt ≥ 0 (4.1)
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for all non-negative functions p on the interval [−T ,T ], where the function Hα : (0,∞) → R
+

is given by

Hα(t) = Qα(t) − tQ′
α(t) =

{ 1 + α

1 − α
/tα, 0 < α < 1,

2/t, α = 1,

μ = 2

∫
f 2(t)Qα(1/p∗(t))p∗(t)dt∫

f 2(t)p∗(t)dt
, (4.2)

τ̃ =
∫

f 2(t)Qα

(
1/p∗(t)

)
p∗(t)dt.

First, assume that 0 < α < 1. Note that the function Hα is strictly decreasing with Hα(+0) = ∞,
Hα(∞) = 0 and that its inverse is given by

H−
α (t) =

(
1 + α

t(1 − α)

)1/α

.

Hence the solution of (4.1) has the form

p∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

H−1
α

(
μ − τ/f 2(t)

)
=

(
1 − α

1 + α

(
μ − τ/f 2(t)

))1/α

, μ − τ/f 2(t) ≥ 0,

0, otherwise,

(4.3)

where μ is defined by (4.2) and

τ =
∫

f 2(t)Qα

(
1/p∗(t)

)
p∗(t)dt +

∫
f 2(t)Q′

α

(
1/p∗(t)

)
dt. (4.4)

Note that τ is a solution of the equation
∫

p(t)dt = 1. Indeed, multiplying f 2(t)Hα(1/p∗(t)) ≡
μf 2(t) − τ by p∗(t) and integrating with respect to t yields∫

f 2(t)Hα

(
1/p∗(t)

)
p∗(t)dt =

∫ (
μf 2(t) − τ

)
p∗(t)dt = μ

∫
f 2(t)p∗(t)dt − τ.

Now, the definition of Hα(t) and μ gives∫
f 2(t)Qα

(
1/p∗(t)

)
p∗(t)dt −

∫
f 2(t)Q′

α

(
1/p∗(t)

)
dt

= 2
∫

f 2(t)Qα

(
1/p∗(t)

)
p∗(t)dt − τ,

which yields (4.4). Consequently, we have proven the following result.
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Theorem 2. Assume that the correlation function ρα(t) is an element of the Cauchy, Mittag-
Leffler or SVF family. Then, for the one-parameter linear regression model, the asymptotic op-
timal design exists, is absolute continuous with respect to the Lebesgue measure and has the
density p∗(t) defined in (4.3), where μ and τ are given by (4.2) and (4.4), respectively.

We now consider two special cases, which are of particular importance. If p = 1 and f (t) ≡ 1,
then we obtain the location model and the asymptotic optimal density is the uniform density, that
is,

p∗(t) =
{ 1

2T
, |t | ≤ T ,

0, otherwise.
(4.5)

Similarly, in the linear regression through the origin, we have p = 1, f (t) ≡ t and the asymptotic
optimal density is given by

p(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, |t | ≤ √
τ/μ,(

1 − α

1 + α

(
μ − τ/t2))1/α

,
√

τ/μ ≤ |t | ≤ T ,

0, otherwise,

where

μ = 2

∫
t2p1+α(t)dt

(1 − α)
∫

t2p(t)dt
, τ =

∫
t2p1+α(t)dt

and α is the parameter of the correlation function. The above formulas are given for 0 < α < 1.
For α = 1 and f (t) = t , the asymptotic optimal density is the uniform density (4.5). The optimal
densities for the parameters α = 1/4,1/2,3/4,0.95 and T = 1 are displayed in Figure 2. The
parameters μ and τ and the efficiency of uniform design are shown in Table 1. We observe that
the uniform design is rather inefficient for small values of the parameter α. The uniform design
has a reasonable efficiency only if α is close to 1.

It is worthwhile to mention that the asymptotic optimal designs derived thus far depend sen-
sitively on the parameter α, which is usually not available before the experiment. Because mis-
specification of this parameter can result in a substantial loss of efficiency of the optimal design,
we propose the construction of robust designs which are less sensitive with respect to such mis-
specifications. More precisely, we denote by p∗

α(t) the optimal density design for parameter α.
Following Dette (1997) or Müller and Pázman (1998), a robust version of the optimality criterion
is of the form

�A(p) = min
α∈A

eff(p,α) = min
α∈A

�α(p∗
α)

�α(p)
,

where p∗
α is the optimal design for the correlation function ρα and A is set of possible α val-

ues specified by the experimenter. A design maximizing �A is called standardized maximin
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Figure 2. Asymptotic optimal design densities for the linear regression through the origin, T = 1.

optimal. Numerical optimization of this function for the set A = {0.1,0.2, . . . ,0.9} shows that
standardized maximin optimal design has a density which can be approximated by the function

p∗
A(t) = (5.7275t2 − 1.16963 − 3.0264t4)+, (4.6)

Table 1. Parameters of the asymptotic optimal design density for the linear regression through the origin
and the efficiency of uniform design (4.5), T = 1 (the optimal density for α = 1 is p(t) = 1/2, −1 ≤ t ≤ 1)

α μ τ
√

τ/μ effuni

0.05 2.34 1.06 0.67 0.40
0.25 3.19 0.96 0.55 0.59
0.50 4.32 0.70 0.40 0.78
0.75 6.84 0.44 0.25 0.93
0.95 24.78 0.25 0.10 0.99
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Table 2. Efficiency of the standardized maximin optimal design p∗
A defined by (4.6) in the linear regression

through the origin (the correlation structure is given by the SVF family with parameter α)

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

eff(p∗, α) 0.84 0.92 0.97 0.99 0.99 0.97 0.94 0.89 0.84

which is close to the optimal density p∗
α for α = 0.44. In Table 2, we show the efficiency of this

design for various values of α. We observe that the design p∗
A is very efficient for all elements

in the set A.

4.2. Linear regression

Consider the case p = 2, f1(t) = 1, f2(t) = t , which corresponds to the linear regression model.
In this case, the asymptotic variance-covariance matrix is proportional to

�α(p) =
⎛
⎜⎝ 1

∫
tp(t)dt∫

tp(t)dt

∫
t2p(t)dt

⎞
⎟⎠

−1

R(p)

⎛
⎜⎝

∫
tp(t)dt∫

tp(t)dt

∫
t2p(t)dt

⎞
⎟⎠

−1

,

where

R(p) =
⎛
⎜⎝

∫
Qα

(
1/p(t)

)
p(t)dt

∫
tQα

(
1/p(t)

)
p(t)dt∫

tQα

(
1/p(t)

)
p(t)dt

∫
t2Qα

(
1/p(t)

)
p(t)dt

⎞
⎟⎠ .

For a symmetric density, this matrix is diagonal and

�α(p) = diag

(∫
Qα

(
1/p(t)

)
p(t)dt,

∫
t2Qα(1/p(t))p(t)dt

(
∫

t2p(t)dt)2

)
.

Consequently, the optimal symmetric design for estimating the slope in the linear regression
has the density (4.3), where μ and τ are defined in (4.2) and (4.4) (this follows from the fact
that the element in position (2,2) of the matrix �α(p) corresponds to the optimality criterion
for the linear regression through the origin). Numerical results indicate that the optimal sym-
metric design for estimating the slope is optimal in the class of all (not necessarily symmetric)
designs.

The D-optimal designs for the linear regression model have to be determined numerically in all
cases. Some D-optimal design densities corresponding to the parameters α = 1/4,1/2,3/4,0.95
and T = 1 are displayed in Figure 3.
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Figure 3. Asymptotic D-optimal design densities for the linear regression, T = 1.

4.3. Comparison of optimal designs under long- and short-range
dependence

It is of some interest to compare the asymptotic optimal designs under short- and long-range
dependence. For this purpose, we again consider the linear regression model with no intercept.
Bickel and Herzberg (1979) discussed the correlation function ρλ(t) = e−λ|t |. The asymptotic
optimal designs are given by

p(t) =

⎧⎪⎨
⎪⎩

0, |t | ≤ √
τ/μ,

1

H−(μ − τ/t2)
,

√
τ/μ ≤ |t | ≤ T ,

0, otherwise,

where the quantities μ,τ are defined by

μ = 1

2γ
+ 2

∫
f 2(t)Qα(1/p∗(t))p∗(t)dt∫

f 2(t)p∗(t)dt
,
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Figure 4. Asymptotic optimal design densities for the linear regression through the origin, where the cor-
relation function is given by ρλ(t) = e−λ|t |.

τ = 1

2γ

∫
f 2(t)p∗(t)dt +

∫
f 2(t)Qα

(
1/p∗(t)

)
p∗(t)dt +

∫
f 2(t)Q′

α

(
1/p∗(t)

)
dt,

respectively (see Bickel, Herzberg and Schilling (1981)) and depend on the parameters λ and γ

defined in (2.2). Some of these designs are shown in Figure 4, while the relevant parameters are
given in Table 3, which also contains the efficiency of the uniform design. We observe that – in

Table 3. Parameters of the asymptotic optimal design density for the linear regression through the origin,
where the correlation function is given by ρλ(t) = e−λ|t | (the last column of the table shows the efficiency
of the uniform design (4.5))

λ γ μ τ
√

τ/μ effuni

0.5 0.5 3.41 0.32 0.30 0.89
0.5 0.1 9.82 3.23 0.57 0.63
0.5 0.9 2.38 0.08 0.18 0.97
0.1 0.5 12.70 0.22 0.13 0.99
2.5 0.5 1.45 0.54 0.61 0.57
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Table 4. Efficiency of the asymptotic optimal design density for the correlation function ρλ(t) = e−λ|t | in
the linear regression through the origin, while the “true” correlation function belongs to the SVF family

α 0.05 0.25 0.50 0.75 0.95

λ = 0.5 γ = 0.5 0.62 0.82 0.96 1.00 0.97
λ = 0.5 γ = 0.1 0.81 0.97 0.99 0.89 0.77
λ = 0.5 γ = 0.9 0.53 0.73 0.90 0.99 1.00
λ = 0.1 γ = 0.5 0.50 0.70 0.88 0.98 1.00
λ = 2.5 γ = 0.5 0.81 0.97 0.98 0.89 0.77

contrast to the case of long-range dependence – the uniform design is rather efficient, provided
either that the parameter λ is not too large or that γ is not too small.

We now compare asymptotic optimal designs derived under the assumption of a long-range
dependence with asymptotic optimal designs under short-range dependence. In Table 4, we show
the efficiency of a design derived under the assumption of short-range dependence, in the situa-
tion where the “true” correlation structure is a member of the SVF family. We observe that the
loss of efficiency is only substantial if the parameter α is small. The opposite situation is dis-
played in Table 5, which shows the efficiency of the asymptotic optimal design under long-range
dependence (from the SVF family), but the “true” correlation structure is in fact of exponential
type. Again, the asymptotic optimal designs derived under the long-range dependence are rather
efficient, except when the parameter α is very small.
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