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The purpose of this paper is to extend the investigation of Poisson-type deviation inequalities started by
Joulin (Bernoulli 13 (2007) 782-798) to the empirical mean of positively curved Markov jump processes.
In particular, our main result generalizes the tail estimates given by Lezaud (Ann. Appl. Probab. 8 (1998)
849-867, ESAIM Probab. Statist. 5 (2001) 183-201). An application to birth—death processes completes
this work.
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1. Introduction

Let (X;);>0 be an ergodic Markov process on a Polish state space X', with stationary distribu-
tion 7z. The well-known ergodic theorem asserts that for any integrable function ¢ € L' (), the
empirical mean ¢! fot ¢ (X)ds converges in probability to the average 7 (¢) := [ y@dm as ¢
goes to infinity. Although large deviations theory gives the speed of convergence at infinity, such
an asymptotic bound is unsatisfactory when one wants to estimate the minimum time to run the
simulation algorithm in order to achieve a prescribed level of accuracy. Actually, the problem
of finding non-asymptotic estimates has been raised and addressed by several authors. Using the
Lumer—Philips theorem for a general Markov process (X;);>0, Wu (2000) derived an exponential
decay on the deviation probability

1 t
P(‘—f ¢ (X5)ds — ()
t Jo

Zy>, y >0, (1.1)

available for any fixed time ¢. Although Wu’s estimate is sharp in large time, such an upper
bound is not explicit in the parameter y. More recently, this result has been extended in the dif-
fusion framework by various authors who obtained qualitative upper bounds on (1.1), provided
the stationary distribution  satisfies some functional inequalities such as Poincaré, log-Sobolev
or transportation-type inequalities; see, for instance, the recent articles of Cattiaux and Guillin
(2008), Djellout et al. (2004), Gourcy and Wu (2006) or Guillin et al. (2009). However, the func-
tional inequalities approach does not seem to be relevant for Markov jump processes because this
theory is not yet well developed for discrete gradients. To the author’s knowledge, the problem

1350-7265 © 2009 ISI/BS


http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/08-BEJ158
mailto:ajoulin@insa-toulouse.fr

A new Poisson-type deviation inequality 533

of determining non-asymptotic upper bounds on the deviation probability (1.1) in this context
has been investigated by few authors. For instance, under a spectral gap assumption and using
Kato’s perturbation theory for linear operators, Lezaud (1998, 2001) established Poisson-type
deviation bounds, that is, upper bounds of the order e /Y12 for large y, provided the func-
tion ¢ and the generator of the process are bounded. On the other hand, in the case of birth—death
processes admitting a so-called Lipschitz spectral gap, Liu and Ma (2009) recently extended such
tail estimates to Lipschitz functions ¢ by using martingale techniques and convex concentration
inequalities.

The purpose of this paper is to present a new Poisson-type upper bound for the deviation
probability (1.1) for a general Markov jump process (X;);>0. Our approach relies on the notion
of Wasserstein curvature recently investigated by Joulin (2007), where several tail estimates were
obtained for the random variable ¢ (X;). Hence we extend in this article our previous work to
the path-dependent integral ¢! fot ¢ (X;) ds. In essence, the Wasserstein curvature characterizes
a contraction property of the associated semigroup on the space of probability measures on X,
endowed with a suitable Wasserstein distance. Since the positively curved case is closely related
to the speed of ergodicity of the process, we expect to obtain under this assumption a convenient
upper bound on (1.1) in large time.

The paper is organized as follows: in Section 2, we recall the definition of the Wasserstein
curvature of a Markov jump process (X;);>0. Next, we state the main contribution of the paper,
Theorem 2.6, in which a Poisson-type deviation bound is established in the positively curved
case for the empirical mean ¢! fé ¢ (Xs)ds, where ¢ is only Lipschitz. Hence we extend the tail
estimates given in the bounded case by Lezaud (1998, 2001). Section 3 is devoted to the proof
of Theorem 2.6, which is rather technical and divided into several lemmas. The key point of the
proof corresponds to Lemma 3.2, with the tensorization of a Laplace transform. Section 4 is de-
voted to the case of birth—death processes. More precisely, we compute the explicit expression of
the Wasserstein curvature with respect to a large class of metrics on N. In particular, by choosing
a convenient metric related to the transition rates of the associated generator, we are able to apply
our deviation inequality to birth—death processes with non-necessarily bounded generator such
as the classical M /M /oo queueing process.

2. Preliminaries and main result

Throughout the paper, X is a Polish space endowed with a metric d, the space B(X) consists of
bounded measurable functions on X’ equipped with the supremum norm || f|loc = sup,cy |f (x)|
and Lip, (X) is the space of Lipschitz functions on X with a Lipschitz seminorm defined by

Il fllLip, := sup L&) = fFOI -

+00
XF#Yy d(x, Y)

On a filtered probability space (2, , (¥1):>0, P), let {(X¢)i>0, (Px)rex} be an X-valued
cadlag Markov jump process with a generator given for any function f € B(X) by

Ef(X)=/X(f(y)—f(x))Q(x,dy), xedX.
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Here the transition kernel Q is assumed to be stable and conservative: for any x € X and any
Borel set A,

0, X) <400, lim A Z1a)

in t = Q(x, A) — Q(x, X) 1 4(x).

where P;(x,dy) :=P,(X; € dy) denotes the transition probability of the process. Let (P;);>0 be
the associated Markov semigroup acting on the space B(X) as follows:

P(x) = Ex[ £ (X,)] = fX FOVP(,dy),  xeX.

Denote by #;(X) the space of probability measures © on A" such that f xd(x, y)u(dy) < +oo
for some (or equivalently for all) x € X'. If the Markov kernel P;(x,-) € £;(X) for any ¢ > 0
and any x € X, then the semigroup is well defined on the space Lip,(X) and we introduce in
this case the function

04(t) == —sup{log | P fllLip, | f lILip, = 1}, 1=0,

with 64(0) = 0. By the Markov property, the function 6 is super-additive so that the following
limit is well defined:
oq(t) . .04(1)

04 = lim — inf -2 @2.1)
110t >0 t

In particular, the number oy is the best (maximal) constant « in the contraction inequality

1Pt fllLip, < €™ Il f llLip,» f €Lipy(X), t>0. 2.2)

Let us recall the definition of Wasserstein curvature of the Markov jump process (X;);>0 given
by Joulin (2007), up to a slight modification.

Definition 2.1. Assume P;(x, ) € Py(X) for any t > 0 and any x € X. The number o4 given by
(2.1) is called the Wasserstein curvature of the process (X;);>o with respect to the metric d.

Remark 2.2. In the remainder of this paper, we will remove the metric symbol d in the definition
of the Wasserstein curvature o, when there is no risk of confusion. Moreover, we will assume
implicitly that the Markov kernel P;(x,-) belongs to the space #;(X’) for any # > 0 and any
xeX.

We define the Wasserstein distance W; (i1, v) between two probability measures @, v € £y (X)
as

Wae,v) = inf / d(x, )y (dx, dy),

X
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where the infimum is taken over all y € £, (X x &X’) with marginals p and v. The Kantorovich—
Rubinstein duality theorem allows us to rewrite the Wasserstein distance as

Wai, v) =supW fdu—/ fdv
X X

see, for instance, Chen (2004), Theorem 5.10. Hence the Wasserstein curvature o is also the best
(maximal) constant « in the inequality

A fllLip, < 1},

Wd(PI(-x")’ Pl(ya )) Se_atd(-x? }’)» X,y GX, t>0 (23)

Remark 2.3. As noted by Joulin (2007), our definition of Wasserstein curvature of Markov
processes is inspired by the continuous setting of Brownian motion on Riemannian manifolds
studied by Sturm and Von Renesse (2005), where it is stated that the contraction inequality (2.3)
characterizes uniform lower bounds on the Ricci curvature of the manifold. However, after our
paper was published, we learned that a similar notion of curvature for Markov processes relying
on such an inequality had been previously introduced in the PhD thesis of Sammer (2005) under
the name “Ricci—Wasserstein curvature”, and later independently by Ollivier (2009, 2007b) as
the “Ricci curvature” of Markov chains on metric spaces. Actually, without the link to geome-
try, the inequality (2.3) appeared first in the work of Dobrushin (1970) with his study on random
fields, and is known in statistical mechanics as the “Dobrushin uniqueness condition”. Moreover,
such a contraction inequality is fundamental to estimate the spectral gap A1 (say) of reversible
Markov processes, or equivalently to establish a Poincaré inequality for the stationary distrib-
ution, since we have A1 > o. See, for instance, Chen (2004), Chapter 9, for a summary of and
precise references for this topic.

Actually, the Wasserstein curvature is closely related to the ergodicity of the process, as il-
lustrated by the following result. See, for instance, the very general result of Dobrushin (1970),
Theorem 3, for a proof in the discrete-time case or Chen (2004), Theorem 5.23, in the continuous-
time setting.

Theorem 2.4. Assume o > 0. Then the process (X;):>0 admits a unique stationary distribution
€ Py(X) and is ergodic in the following sense: For any initial point x € X,

Wd(P,(x,~),71)§e*‘”/ d(x,y)m(dy) — 0. 24)
X t——+00

Remark 2.5. When d is the trivial metric on X defined by d(x, y) = 1(x,}, the Wasserstein
distance is nothing but half of the total variation norm. Therefore, the convergence in Wasserstein
distance generalizes the classical convergence in total variation used in the context of general
Markov processes.

Under the ergodic property of the process, the celebrated ergodic theorem states that for any
¢ € L' (xr), the empirical mean ¢! fot ¢ (X)ds converges in probability as ¢ goes to infinity
to the equilibrium 7 (¢) := | y ¢ dm, where 7 denotes the unique stationary distribution given
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by Theorem 2.4. It is well known that the determination of qualitative non-asymptotic deviation
inequalities is of fundamental importance for simulation algorithms. However, the theory of large
deviations provides a bound for this convergence that is only asymptotic in time on the one hand,
and whose behaviour in terms of the deviation level is not explicit on the other hand. Hence
one may wonder if Wasserstein curvature plays a crucial role in the determination of such tail
estimates relating the speed of ergodicity of the process. We give now an affirmative answer
to this question by stating the main result of the paper, the proof of which is given in the next
section. In the remainder of the paper, we denote the function

gw) =1 +u)log(l +u) —u, u > 0. 2.5)

Theorem 2.6. Assume o > 0 and that there exist two positive constants b and V such that
supd(X;—, X;) <b and H/ d(-,y)*Q(.dy) H <V (2.6)
>0 X 00

Letting ¢ € Lip,(X), for any initial state x € X, any t > 0 and any y > 0 we have the Poisson-
type deviation inequality:

t
Py (‘1 / P(X)ds — ()| >y + M;f) < 20~ (V21/b)8((byo) / (V2 (1=~ $lILip,)) 2.7)
tJo ' - - ’

where 7 denotes the unique stationary distribution given in Theorem 2.4 and

(I=e"DIglLip,
ot

M =

/ d(x,z)m(dz) — 0.
X t—+00

Let us give some comments on this result.

Remark 2.7. According to a classical large deviation result, the estimate (2.7) is optimal in
large time since the order of magnitude is e, and is also sharp in small time. Moreover, the
function u — g(u) is equivalent to u>/2 as u is close to 0 and to ulog(x) as u tends to infinity.
Hence, for sufficiently large ¢ the inequality (2.7) exhibits a Gaussian regime for small values of
the deviation level y, in accordance with the central limit theorem for Markov processes and a
Poisson regime for its large values.

Remark 2.8. Assume that the process is reversible. As noted in Remark 2.3, the positivity of the
Wasserstein curvature ensures the existence of a spectral gap A of the underlying generator, that
is, A1 > o > 0. Therefore, using the Poincaré inequality, the asymptotic variance of the empirical
mean is bounded by V2 ||¢||iipd / )L% and one deduces that the right-hand side of (2.7) is sharp in

—t02y2/(2V?2

2
o in the Gaussian regime since it behaves as e 191En,) for large time.

Remark 2.9. Up to constant factors, we extend the Chernoff inequalities established by Lezaud
(1998, 2001), because boundedness assumptions are required neither on the function ¢ nor on
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the generator. Note, however, that if the metric d is such that infy, d(x, y) > 0, then the finite-
ness of V implies that the generator is bounded. In particular, when d is the trivial metric, we
recover Lezaud’s results since we have in this case Lip,(X) = B(X) and V2=100,X)|s0.
Nevertheless, the price to pay in Theorem 2.6 is to assume ¢ > 0, which is a stronger assumption
in the reversible case than the existence of a spectral gap required by Lezaud.

Remark 2.10. Consider for instance the Langevin-type diffusion process solution of the fol-
lowing stochastic differential equation dX, = V2dB, — VU (X;)dt, where (B;);>0 is a stan-
dard Brownian motion on the Euclidean space (R",d) and U is a regular potential such that
f e~U® dx = 1. Denote by 7 (dx) = e~V dx the stationary distribution of the process (X;)s>0.
Since the Wasserstein curvature can be defined in the diffusion framework, a step-by-step adap-
tation of the proof of Theorem 2.6 below — especially the proof of Lemma 3.1 — entails for any
Lipschitz function ¢ on (R", d) a Gaussian deviation inequality of the form

—1y’0%/ Q0= )21l )

t
qu%/ ¢(Xs)ds — (@) 2y+Mf> <2e
0

provided the Wasserstein curvature of the process (X;);>¢ is positive. A sufficient condition
ensuring this positivity is given by the Bakry—Emery curvature criterion, see Bakry and Emery
(1985), under which the authors established a logarithmic Sobolev inequality for the stationary
distribution 7. On the other hand, it is classical that such a functional inequality entails a similar
Gaussian decay to that given above; see, for instance, Wu (2000) or the recent article of Guillin
et al. (2009). Hence we give under comparable assumptions another proof of this Gaussian tail
estimate.

Remark 2.11. As illustrated for birth—death processes in Section 4, it is sufficient to carry the
analysis in the one-dimensional case since the Wasserstein curvature tensorizes on product spaces
equipped with the ¢ !_metric. Indeed, foreachi = 1, ..., N, consider the Markov process (X ; )i=0
with kernel transition Qi , stationary distribution 7' and Wasserstein curvature o', all valued in
the same Polish space (), p) to simplify. We construct the multidimensional Markov process
(Xt)r=0 valued in (X, d), where X := YV and d is the ¢!-metric defined with respect to p,
as follows: choose first a coordinate uniformly at random and then let the univariate dynamics
run according to this direction. Then the stationary distribution 7 is given by & = ®IN=1 7t
Now let u and v be two product probability measures on X. Then the classical tensorization
property of the Wasserstein distance is given by Wy (u, v) = Z,N: W (u', v'), see for instance
Sammer (2005), Lemma 2.2.6, for a proof. Hence, the Wasserstein curvature o with respect to
the metric d of the Markov process (X;);>0 is computed as 0 = min;—;,_n ol /N. Moreover,
if we denote by b; and V; the numbers in (2.6) related to the coordinate process (X f),zo, then
Theorem 2.6 applies for the multidimensional Markov process (X;);>0 with ¢ and 7 as above
and with b := max;—|__y b; and V? := vazl Viz/N.

To illustrate our argument, consider the symmetric continuous-time random walk (X;);>0 on
the discrete cube {0, 1}V, equipped with the Hamming metric d(x, y) = vazl {x;#y;)- The as-
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sociated semigroup kernel is given by

1

Pl(xvy): 2N

N
[T+ plle=™) x yefo, Y,
i=1

and the stationary distribution is the uniform probability measure on {0, 1}V, say 7®" . Since in
the one-dimensional case a simple calculation shows that the Wasserstein curvature with respect
to the trivial metric equals 1, the Wasserstein curvature on the product space with respect to the
Hamming metric is ¢ = 1/N. Moreover, we have b = 1 and V2 = 1/2 so that by Theorem 2.6 the
following deviation inequality holds for any Lipschitz function ¢ with respect to the Hamming
metric on {0, 1}V:

r

3. Proof of Theorem 2.6

1ftqb(xs)ols -7V (¢)
tJo

>y 4 Mtx) < 26~ 1/28QY/(NI=""™)BlILip,))

This section is devoted to the proof of Theorem 2.6, which is rather technical and divided into
several lemmas. First, we give a convenient upper bound in large time on a univariate Laplace
transform, see Lemma 3.1 below. Using the method of tensorization, the extension to the multi-
dimensional case is considered in Lemma 3.2. Finally, with the help of the previous lemmas and
by a suitable approximation of the empirical mean, we finish the proof of Theorem 2.6.

Let us establish first an upper bound on the Laplace transform of a Lipschitz function of the
process (X;);>0. The proof, which is a straightforward adaptation of Joulin (2007), Theorem 3.1,
is given for completeness.

Lemma 3.1. Under the assumptions of Theorem 2.6, for any f € Lip;(X), any x € X, anyt > 0
and any T > 0, we have

By [er X0 =BT XD < expih(e, 1, b £ lILip,))s 3.1)
where h is the function defined on (R.)3 by

V2(1 _ e—ZGt)

h(t,t,2) = ——

(e —1z—1). (3.2)

Proof. Assume first that the Lipschitz function f is bounded. Then the process (Z &f Jo<s<: given

by Zsf = P f(Xs) — P f(Xp) is a real-valued P,-martingale with respect to the filtration
(Fs)o<s<t- Using (2.2) and (2.6), we have

sup 1Z{ —Z/ | = sup |Pi_y f(Xy) — Py f (X)),

O<s<t O<s<t

< bl fllLip,
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and also
2/ 20y, = /0 fX (Pree f ) = Pr—r f(X+))*Q(Xo_. dy) dt

—2 2 2
_ A=V,
- 20 '

By Kallenberg (1997), Lemma 23.19, the process given for any 7 > 0 by

(exp{vzl =721 flig, (€1 rs —2b) Flluin, — 1127 27 ))

is a Py -supermartingale with respect to (F5)o<s<:. Thus, using the two previous estimates, we
get for any 7 > O:

E, [/ (X0-Edf 0D = i, [e72/ ]

(1 _ 672dt)v2

sz (eI — bl £ uip, - 1)}'

< exp{
To remove the boundedness assumption on f, consider the sequence of bounded functions
fn := max{—n, min{ f, n}} converging pointwise to f. Then it is routine to show that (f}),eN
is uniformly integrable with respect to the probability measure P;(x,-), which implies the
Ll-convergence. Finally, since the functions f,, are Lipschitz with a constant of at most || f[|Lip,
and h is non-decreasing in its last variable, the use of Fatou’s lemma achieves the proof. (]

Our present purpose is to extend to the multidimensional case the Laplace transform estimate
(3.1) by using the method of tensorization.

Given n € N\ {0}, define Lip, (X™) as the space of real Lipschitz functions f on the product
space X", endowed with the seminorm

”f”Lipdn = SUPM <

00,
x#y dn(x7 y)

where d,, is the ¢! distance on X" with respect to the metric d, thatis, d, (x, y) := Z?:l d(xi, yi),
x,ye kX"

Lemma 3.2. We assume that the hypothesis of Theorem 2.6 is fulfilled. Define the sample X"
of the process (X;)i>0 by X" = (X4, ..., Xy,), 0=119g <t; <--- <ty and let f € Lip; (X").
Then for any initial state x € X and any t > 0, we have the multidimensional Laplace transform
estimate:

n
By [e/XDEAT O] <expd > “h(r, t — tior. sebl £ llLipy, ) f - (33)
k=1

where the function h is defined in Lemma 3.1 and sy :=Y_)_, e 0 =1k),
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Proof. Let f, := f and define forany k =1, ...,n — 1, the function f; on Xk by
fk(xlv e 7'xk) = A —k f('x17 e v-xl’l)Ptn—tn_l (xn—11 dxn) e Ptk+]—tk (xkv dxk+l)

= /ka+1(X1,.--,Xk,Xk+1)sz+1—zk(Xk,ka+1)-

We divide the proof of Lemma 3.2 into two parts.
e Step 1: By a downward recursive argument on k, let us show first that the univariate function
Xi > fi(x, xx) is Lipschitz with respect to the metric d, with furthermore the inequality

sup [ fk(xr, o xe—1s ) lILip, < skl fllLip,, - (3.4)
xl,‘..,xk,leX

Since s, = 1, the property (3.4) is trivially true for k = n.
Assume now that (3.4) is satisfied for some k € {2, ..., n}. First, letting x1, ..., xx—2, ¥, 2,
xx € X, we have:

[ fext, oo Xk—2, Y, x1) — fr(x1, ..., Xk—2, 2, Xk)|

= ‘f){ . S5 ey Xk=25 Y5 Xk Xk 1 -+ -5 X)) Pry—,_y (Cn—1, ) -+ Py —g (Xk, AXk4-1)
-
—/X kf(xl,-.-,Xk—z,z,Xk,XkH,---,xn)Pz,l—zn_l(xn—l,dxn)-~'sz+1—zk(xk,ka+1)
-

< ||f||Lip,,nd(y,Z)[X . Py, (Xn—1,dxp) -+ Pr g (g, dXgt1)
= I/ llLip,, d(¥, 2),

from which follows the inequality

sup I feCxea, oo xk—2, - xi) ILip, < 11 flILip,, - (3.5)
xl,...,xk,z,xkeé‘(

Now, let us show that the property (3.4) is satisfied at the step k — 1 with the help of (3.5). Let

X1,...,Xk—2, Y,z € X. Using the contraction property (2.2) in the second inequality below,
| fe—1(x1, oo X2, ¥) = fem1 (X1, oy Xp—2, 2)
S / fk(xla ceey Xk=2, yv-xk)(Plk—lk_l(yvdxk) - Ptk—tk_|(Z7 dxk))
X

+ fX [fexr, ooy Xk—2, Y, Xk) — fe(X1, o ooy Xk—2, 2, Xi) | Py —g_, (2, dx)

<e I ) £ (xr, L X2, Vs )lLip,d(3, 2)
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+/XIIfk(X1,-..,Xk—z,-,Xk)IILipdd(y,Z)sz—zk,l(z,ka)

< (ke 4 1)]| f llLip,, d (7, 2)

= sk—11l flILip,, d (¥, 2),

where in the last inequality we used assumption (3.4) at the step k together with (3.5). Therefore,
we obtain the inequality

I fe—1Cxrs oy Xe—2, I lILip, < sk—11lf lILip,, »

and the parameters x1, . .., Xx—2 being arbitrary, the property (3.4) is established at the step k — 1,
hence in full generality.

e Step 2: Proof of the Laplace transform estimate (3.3).

As before, let us show by a downward recursive argument on k € {2,...,n} the following
inequality:

n
E.[e*"] < exp{Zh(r, ti = ti—1, bsi | fllLip,, )
i =k
' (3.6)

x /Xk_l etttk p - (g, dxg—) - Py (3, dxy).
First let kK = n. By the Markov property, we have
E,[e/ )]
= / ) et (g, dxy) - Py (x, )
< exp{h(t, tqn — ta—1, bl fllLip,, )}

X /X 1 etfntGt - p (o, dxg—1) -+ Py (x, dxp),
.

where we used Lemma 3.1 with the univariate Lipschitz function x, > f; (*, x,,) together with
the inequality (3.4) since the function / is non-decreasing in its last variable. Hence (3.6) is
established in the case k = n.

Now assume that (3.6) is satisfied for some k € {2, ..., n}. Using the same reasoning as above
with the Lipschitz function xz_1 — fr—1(*, xx—1) , We obtain

n
E,[e/ D] < exp{Zh(r, i — rl-_l,bs,-||f||updn>}

i=k

x /X et D Py (k. din1) - Py (3, dxr)
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n
SCXP{ h(z, 1 _ti—l»bsi”f”Lipdn)}
i

X /;(k—Z effk_Z(XI ..... T-2) Ptk,271k73 (xk73a dxk*Z) T Ptl (X, dxl)

so that the inequality (3.6) is satisfied at step k — 1, hence in full generality. Finally, we obtain
from (3.6) with k = 2 the inequality

n
E, [erf(X")] < exp{Zh(r, ti —ti—1, bs; ”f”Lipd )] / erfl(xl)le (x,dxy)
")

i=2

and, using once again the same reasoning as before for the Lipschitz function f; entails the
desired estimate (3.3). The proof of Lemma 3.2 is complete. (]

Now we are able to prove Theorem 2.6, with the help of Lemma 3.2.

Proof of Theorem 2.6. Define the sample X" = (X;,, ..., X;,), where the sequence t; =kt /n,
k=0,...,n, is a regular subdivision of the time interval [0, t]. Since ¢ € Lip,(X), the func-
tion f given by f(z1,...,2x) :=n"" Y k1 9@k, (z1,...,20) € X™, is Lipschitz on the prod-
uct space X with respect to the £'-metric d,, and its Lipschitz seminorm satisfies || f llLip by =

n el Lip,- Note that the function & defined by (3.2) is non-decreasing in its last variable.
Hence, since we have
1 _ e—crt
k:sE?,nSk = 1 —e—ot/n’
the multidimensional Laplace transform estimate (3.3) of Lemma 3.2 implies the following upper
bound:

—ot .
B, [er OB O] < expln (7, L, 2 DMOIip A
- n’ n(l—eot/n)

Therefore, by Chebyshev’s inequality, we get for any y > 0:

P, (f(X") — Ex[f(X")] = y)
< inf e VE, [er/ X EASEDD]

>0

< o (V?/@b%0))(1=e=271/M) g byo (1—e~7!/") [ (V3 (1=e=27"/") (1—e~"") [$l|Lipy))

Applying also the same reasoning to the function — f yields

Pe(1f(X") = Ex[f (X" = ¥)

~(V?/@b0))(1—e727!/")g(2byo (1—~"/") /(VZ (1—e 727"/ ")(1—e ") [ pllLip, )

3.7

<2e
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Now, using the invariance property of the stationary distribution 7 and the contraction prop-
erty (2.2),

IEx[f(X")] —m()| =

1 n
0 Z/X(Pkt/nfp(x) — Prrynd ()7 (dy)
k=1

IA

l — _
L3 ek g, / d(x, Yy (dy)
"= X

_ (1= )lglip,

< / d(x, y)m(dy)
X

to

= M.

Hence the inequality (3.7) entails for any y > 0,

px(

Ay im V2 1 ety Zbya(l— )
" e V2(1 —e 201y (1 — e~ [$llLip, )

To finish the proof, note that since the process (X;);>o is cadlag and the function ¢ is Lipschitz,

the process (¢ (X;));>o0 itself is cadlag so that the Riemann sum n~1 Zzzl @ (Xkr/n) converges

P, -a.s. to the empirical mean i1 fot ¢ (X;) ds. Therefore, using Fatou’s lemma and the estimate
(3.8), we obtain

1 n
=Y ¢ Xiiyn) —7($)
n k=1

>y+ M;‘) <2e M, (3.8)

where

1! . | «
Px( A / ¢(Xs)ds —mw(P)| =y + Mi‘) = leiggIP’x< o Z¢(th/rz) —T(@|=y+ Mf)
O e
k=1
< liminf2e =4
n——+00
— 2~ (VZ1/b))g((byo) / (V2 (1=~ )| plILip,))
The proof of Theorem 2.6 is established. (]

4. Application to birth—death processes

The purpose of this final part is to apply Theorem 2.6 to birth—death processes. To do so, we
compute the associated Wasserstein curvature with respect to a large class of metrics on N. In
particular, choosing suitably the metric with respect to the transition rates of the generator allows
us to consider processes with non-necessarily bounded generators such as the classical M/ M /oo
queueing process.
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Let (X;);>0 be a birth—death process on the state space X = N. This is a Markov process with
a generator given for any function f:N — R by

L@ =M(fCx+D—f@))+v(fx—D—f(x), x€N,

where the transition rates A and v are positive with vy = 0, conditions ensuring the irreducibility
of the process. Letting

w0 =1, )=l s

we assume in the sequel that the process is ergodic, that is, it satisfies the following properties:

1
Z,u(x) Z Oy = —+o00, C .= Z/L(x) < +00.

x>0 yzx x>0

Then the stationary distribution of the process is 7 (x) = u(x)/C, x € N.

A fundamental example is the M /M /oo queue, also known as the birth—death process with
immigration, which is an ergodic birth—death process (X;);>o with an unbounded generator given
by

Ef(x):k(f(x+1)—f(x))+vx(f(x—1)—f(x)), x €N,

where the parameters A and v are positive. The associated stationary distribution is the Pois-
son measure & on N with parameter & := A/v. Denote by &8, , the binomial distribution with
parameters n € N and p € (0, 1). Using the Mehler-type convolution formula given by Chafai
(2006):

C(X;|X()=)C)=£x)e—ut *‘{Pé(lfe_”’)v t >0,
we obtain by Chebyshev’s inequality the following estimate, available for any y > O:
Pe(X; = Ex[X,]2 y) < inf e™ VB, [er™ 5 0D]
>

< inf e~ FE[Xi (e —1—1)
T >0

_ _ y
= eXp{y Ex[X: ]+ y) log(l + Ex[X,]>}’

where in the second inequality we used log(1 + u) < u, u > 0. Note that the latter Poisson-
type deviation inequality is convenient for large time since we recover as ¢ tends to infinity the
classical tail estimate for a centered Poisson random variable X with intensity &:

P(X —E[X]>y) =< exP{y - ¢ +y)10g(l + g) }

On the one hand, the M /M /oo queueing process is a discrete approximation of the Ornstein—
Uhlenbeck process, whose stationary distribution is Gaussian. On the other hand, Remark 2.10
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states that under the Bakry—Emery curvature criterion, the empirical mean of a Langevin-type
process, which generalizes the Ornstein—Uhlenbeck process, satisfies a Gaussian deviation in-
equality. Hence it is natural, by comparison with the diffusion framework, to investigate Poisson-
type tail estimates for the empirical mean of positively curved birth—death processes, since they
generalize similarly the M /M /oo queueing process. However, if we consider the classical metric
on N, we are not able to apply Theorem 2.6 to processes with unbounded generators because, in
this case, V is infinite. Since the Wasserstein curvature strongly depends on the metric, the idea
to overcome this difficulty is to carry the analysis with a Wasserstein curvature related to another
metric on N that we choose suitably.

Definition 4.1. Given a positive function u on N, define the metric § :N x N — [0, 4-00) as

y—1

U —Zuk

k=

X

8(x,y):= , u_q:=1.

k

Il
=}

Let us compute the Wasserstein curvature associated to this metric. To do so, we use the notion
of coupling operators initiated by Chen (1986).

Definition 4.2. An operator L acting on the space of real-valued functions on N? is said to be a
coupling of the generator L if it satisfies the two following properties:
(1) Marginality:

{cjfl (x.y) = Lfi(x),
Lfr(x,y) = L)

(ii) Normality: .fjh(x, x)=Lg(x).

Here the two real-valued functions fi and f> on N are regarded as bivariate functions on N2,
and g is the univariate function g(x) = h(x, x).

Denote by I the identity operator I (f) = f. Following Chen (1986), we introduce the classical
coupling £ by

Lo, =L +T®L)f(x, Mty +LLC, ) xay)s x,yeN.
Using the metric §, we have

~ Aylly — Vylly | — Axlly + Vxlix_1, ifx <y,

L3Gx, y) = { —AyUy + Vylty 1+ Ayly — Vyly—1, otherwise.

Theorem 4.3. The Wasserstein curvature os with respect to the metric & of the birth—death
process (X;);>0 is given by the formula

— Axyl 4.1

Ux—1 A Ux+1 }
X X

os = inf Jvyq1 + Ay — vy
xeN
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Ux—1 Ux+1
Uy Uy

Proof. Denote o := infyen{vys) +Ax — vy } and assume first that o5 and o are
not —oo.
Consider on N the increasing Lipschitz function f(x) = Zz;é uy with Lipschitz seminorm

| fllLip, = 1. We have for any integers x <y and any 7 > 0:

Pfy)—fy) . Pfx)—fx) _ Pf)—Pfx) -8, y)
t t B t
e—Ugt_

=< 78 ) )
=— (x,y)

- )\x+1

so that we obtain at the limit t — O:
Aytby — Vyiy_ | — Aytty +veux 1 =Lf(y) — Lf(x) < —058(x,y).

Therefore, taking y = x + 1 and dividing by u, entail the inequality o5 < .

On the other hand, we aim at proving that the Wasserstein curvature o is bounded below by «.
To do so, we use the coupling argument derived from the proof of Chen (1996), Theorem 1.1.
Note that « rewrites as

. —ﬁS(x,x—}—l)
o=inf ———,
xeN d(x,x+1)

where £ is the classical coupling operator defined above, so that we have
Lo(x,x +1) < —ad(x,x+1), xeNl.

As the following identities hold for any x, y € N such that x < y:

y—1
L8(x,y)=Y L8k k+1),
k=x
y—1
8(x.y) =Y 8(k.k+1),
k=x

we get from the latter inequality and using the symmetry between x and y the inequality
L8(x,y) < —ad(x,y),  x,yeN, 4.2)

which ensures the contraction property (2.3), and so the desired estimate o5 > «. The proof is
achieved in the finite case.

Finally, if at least o or « is —00, we are able to adapt the previous argument to show that both
are actually infinite. O

Remark 4.4. Van Doorn (1985, 1987) proved that the spectral gap A1, which equals the so-called
decay parameter in his papers, is actually the supremum of the Wasserstein curvatures given in
Theorem 4.3 over the possible metrics § defined in Definition 4.1. Later, such a result has been
rediscovered by Chen (1996) with the coupling method emphasized in the proof above.
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Once the metric 6 has been introduced in full generality, let us introduce an assumption relating
the weight u and the transition rates of the generator of the birth—death process (X;);>0. We

denote in the sequel a A b := min{a, b}.

Assumption A. There exist two constants K > 0 and C > 0 such that

. . 1 1
(;rzlgkx>A<;rzlflvx)zK and MXSC( vx+1A\/E>’ x eN.

Under Assumption A, we have a control on the metric § as follows. The proofs are straightfor-
ward.

Lemma 4.5. Under Assumption A, the two inequalities below hold:

c
(D 3(x,y) < —=Ix—yl, x,yeN;
y ﬁl Vvl y
() suprSx,x+ D2 +v8(x, x — 1) <202
xeN

Remark 4.6. If at least one of the transition rates of the generator is unbounded, then the function
u vanishes at infinity so that the two metrics in Lemma 4.5(1) are not bi-Lipschitz equivalent. In
particular, the identity function f(x) = x is not Lipschitz on N with respect to the metric §.

Now we are able to state the following tail estimate for the empirical mean of the birth—death
process (X;)s>0.

Corollary 4.7. Assume that the Wasserstein curvature og given by (4.1) is positive and that

Assumption A is satisfied. Letting ¢ € Lipg(N), for any initial state x € N, any t > 0 and any
y > 0, we have the following Poisson-type deviation inequality:

1 t
m(‘—/ $(X,)ds — 7(9)
t Jo

>y+ Mf) < 2e~2K18((yos)/QVKCA=e"D9lLipy ) (4.3)

where M := aa_lt_l(l — e_”‘5’)||¢||Lip(S Y .en0(x, 2)7(2) and g is the function given in (2.5).

Proof. Using Lemma 4.5, we get the result by applying Theorem 2.6 with b = C/+/K and
vi=2C2 0

Remark 4.8. The Poisson-type deviation inequality (4.3) is comparable to that obtained recently
by Liu and Ma (2009) by using martingale techniques together with the so-called Lipschitz spec-
tral gap. We mention, however, that there is a one-to-one correspondence between this object
and the Wasserstein curvature according to the variational formulas given by Chen (1996), The-
orem 1.1.

To finish this work, let us return to the case of the M /M /oo queueing process. For the sake
of simplicity, we assume in the sequel that the intensity & of the process equals 1. Choosing
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Uy = (x + 1)’1/ 2 x e N, in the definition of the metric §, a brief computation shows that the
Wasserstein curvature o5 equals v/2, which is half of the exact curvature v given by Chafai
(2006). Moreover, the transition rates of the generator satisfy Assumption A with C = VK =
+/v. Hence, Corollary 4.7 entails for any Lipschitz function ¢ € Lips(N), any ¢ > 0, any initial
state x € N and any y > 0,

i

Remark 4.9. An inequality such as the one above allows us to consider unbounded functions ¢
as, for instance, the square root function, which is Lipschitz with respect to the metric §. However,
as noted in Remark 4.6, the price to pay is to require ¢ € Lips(N), which unfortunately excludes
the identity function since the generator is unbounded. Hence we conjecture that in the case of
the M /M /oo queueing process, the deviation of the empirical mean of Lipschitz functions with
respect to the classical metric is of the Poisson type. See also the recent work of Guillin et al.
(2009) for an approach to this problem through transportation-information inequalities.

1 t
—/ d(X5)ds — P1(d)
t Jo

>y M}‘) < 2e~2v18 (/AU =" )l lILipg))

References

Bakry, D. and Emery, M. (1985). Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84.
Lecture Notes in Math. 1123 177-206. Berlin: Springer. MR0889476

Cattiaux, P. and Guillin, A. (2008). Deviation bounds for additive functionals of Markov processes. ESAIM
Probab. Statist. 12 12-29. MR2367991

Chafai, D. (2006). Binomial-Poisson entropic inequalities and the M /M /oo queue, ESAIM Probab. Statist.
10 317-339. MR2247924

Chen, M. (1986). Coupling for jump processes. Acta Math. Sinica 2 123-136. MR0877376

Chen, M. (1996). Estimation of spectral gap for Markov chains. Acta Math. Sinica 12 337-360. MR1457859

Chen, M. (2004). From Markov Chains to Non-equilibrium Particle Systems, 2nd ed. River Edge, NJ: World
Scientific.

Djellout, H., Guillin, A. and Wu, L. (2004). Transportation cost-information inequalities and applications
to random dynamical systems and diffusions. Ann. Probab. 32 2702-2732. MR2078555

Dobrushin, R.L. (1970). Prescribing a system of random variables by conditional distributions. Theory
Probab. Appl. 15 458-486.

Gourcy, M. and Wu, L. (2006). Logarithmic Sobolev inequalities of diffusions for the L2-metric. Potential
Anal. 25 77-102. MR2238937

Guillin, A., Léonard, C., Wu, L. and Yao, N. (2009). Transportation-information inequalities for Markov
processes. Probab. Theory Related Fields. To appear.

Joulin, A. (2007). Poisson-type deviation inequalities for curved continuous time Markov chains. Bernoulli
13 782-798. MR2348750

Kallenberg, O. (1997). Foundations of Modern Probability. New York: Springer. MR1464694

Lezaud, P. (1998). Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 849-867.
MR1627795

Lezaud, P. (2001). Chernoft and Berry—Esséen inequalities for Markov processes. ESAIM Probab. Statist.
5 183-201 (electronic). MR1875670

Liu, W. and Ma, Y. (2009). Spectral gap and convex concentration inequalities for birth-death processes.
Ann. Inst. H. Poincaré Probab. Statist. 45 58—69.


http://www.ams.org/mathscinet-getitem?mr=0889476
http://www.ams.org/mathscinet-getitem?mr=2367991
http://www.ams.org/mathscinet-getitem?mr=2247924
http://www.ams.org/mathscinet-getitem?mr=0877376
http://www.ams.org/mathscinet-getitem?mr=1457859
http://www.ams.org/mathscinet-getitem?mr=2078555
http://www.ams.org/mathscinet-getitem?mr=2238937
http://www.ams.org/mathscinet-getitem?mr=2348750
http://www.ams.org/mathscinet-getitem?mr=1464694
http://www.ams.org/mathscinet-getitem?mr=1627795
http://www.ams.org/mathscinet-getitem?mr=1875670

A new Poisson-type deviation inequality 549

Ollivier, Y. (2009). Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256 810-864.

Ollivier, Y. (2007b). Ricci curvature of metric spaces. C. R. Acad. Sci. Paris 345 643-646. MR2371483

Sammer, M. (2005). Aspects of mass transportation in discrete concentration inequalities. Ph.D. Thesis,
Georgia: Georgia Institute of Technology. Available at http://smartech.gatech.edu/dspace/handle/1853/
7006.

Sturm, K. and Von Renesse, M. (2005). Transport inequalities, gradient estimates, entropy, and Ricci cur-
vature. Comm. Pure Appl. Math. 58 923-940. MR2142879

Van Doorn, E. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a
birth—death process. Adv. in Appl. Probab. 17 514-530. MR0798874

Van Doorn, E. (1987). Representations and bounds for zeros of orthogonal polynomials and eigenvalues of
sign-symmetric tri-diagonal matrices. J. Approx. Theory 51 254-266. MR0913621

Wau, L. (2000). A deviation inequality for non-reversible Markov processes. Ann. Inst. H. Poincaré Probab.
Statist. 36 435-445. MR1785390

Received November 2007 and revised June 2008


http://www.ams.org/mathscinet-getitem?mr=2371483
http://smartech.gatech.edu/dspace/handle/1853/7006
http://www.ams.org/mathscinet-getitem?mr=2142879
http://www.ams.org/mathscinet-getitem?mr=0798874
http://www.ams.org/mathscinet-getitem?mr=0913621
http://www.ams.org/mathscinet-getitem?mr=1785390
http://smartech.gatech.edu/dspace/handle/1853/7006

	Introduction
	Preliminaries and main result
	Proof of Theorem 2.6
	Application to birth-death processes
	References

