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Estimating the multivariate extremal index
function
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The multivariate extremal index function relates the asymptotic distribution of the vector of pointwise max-
ima of a multivariate stationary sequence to that of the independent sequence from the same stationary
distribution. It also measures the degree of clustering of extremes in the multivariate process. In this pa-
per, we construct nonparametric estimators of this function and prove their asymptotic normality under
long-range dependence and moment conditions. The results are illustrated by means of a simulation study.
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1. Introduction

The motivation for this paper comes from an empirical observation that time series from hy-
drology, meteorology, environmental sciences, finance, etc. are heavy-tailed and clustered when
extremal events occur. In particular, it has been recognized in recent decades that the model of
independent and identically distributed (i.i.d.) Gaussian random variables is inappropriate for
modeling extreme returns of risky assets that are observed during a financial crisis. It is impor-
tant for risk managers to understand the relative behavior of the various financial risks to which
their institutions are exposed in the event of large losses because they have to anticipate the di-
versification opportunities so that the risks can be balanced by comovements (between risks) or
reversal movements in short time intervals (within risks).

Although there are well-developed statistical approaches to characterize the cross-sectional
dependence structure of extreme returns of risky assets (see, e.g., [14,20,23,34] and the references
therein), problems concerning the estimation of their temporal dependence structure have not
received much attention. A notable exception is [46], which proposes a specific class of max-
stable processes to model simultaneous dependencies between and within financial time series.
However, this ad hoc class of processes is not necessarily suitable for any multivariate time series.
The multivariate extremal index function, introduced by Nandagopalan [27,28], is a quantity
which allows one to relate the asymptotic distribution of the vector of pointwise maxima of a
stationary sequence to that of the independent sequence from the same stationary distribution. It
also measures the degree of clustering of extremes in the multivariate process since it is equal
to the reciprocal of the mean number of clustered extremal events. Therefore, it is a specific
measure of the temporal dependence structure of the extreme values of the process.

It is the aim of this paper to present a general theory for the inference of this function. We
extend the block declustering approach introduced in [37] to the case of multivariate stationary
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processes: we construct pointwise estimators and study their asymptotic properties. Three as-
sumptions are made: (i) there exist moment restrictions on the amount of clustering of extremes;
(ii) the number of two-level exceedances converges weakly – an assumption which will guaran-
tee the existence of the asymptotic variance–covariance matrix of the estimators; (iii) a mixing
condition weaker than strong mixing is supposed to hold. Under these assumptions, we prove the
asymptotic normality of our estimators.

More formally, let (Xl = (Xl,1, . . . ,Xl,d ))l≥1 be a strictly stationary sequence with stationary
distribution function F(x) = P(Xl,i ≤ xi, i = 1, . . . , d), x = (x1, . . . , xd) ∈ Rd , and univariate
marginal distributions Fi(x) = P(Xl,i ≤ x), i = 1, . . . , d . We assume that there exists a fam-
ily of normalizing sequences in Rd , (un(τ ) = (un,1(τ1), . . . , un,d(τd)))n≥1, τ = (τ1, . . . , τd) ∈
(0,∞)d , such that

lim
n→∞n

(
1 − Fi(un,i(τ ))

) = τ for τ > 0, i = 1, . . . , d, (1.1)

and, for some function H̃ : (0,∞)d �→ [0,1],
lim

n→∞n
(
1 − F(un(τ ))

) = − ln H̃ (τ ), for τ ∈ (0,∞)d . (1.2)

A necessary and sufficient condition for the existence of a sequence (un,i(τ ))n≥1 which satisfies
(1.1) is that limx→xf,i

F̄i (x)/F̄i(x−) = 1, where xf,i = sup{u :Fi(u) < 1} and F̄i = 1 − Fi (see
Theorem 1.7.13 in [22]). A natural choice for un,i(τ ) is then given by F←

i (1 − τ/n), τ ∈ [0, n),
where F←

i is the generalised inverse of Fi , that is, F←
i (τ ) = inf{x ∈ R :Fi(x) ≥ τ }. This as-

sumption is weaker than assuming that Fi is in the domain of attraction of an extreme value
distribution since the normalization is linear in this case. However, the function G̃ defined by
G̃(τ ) = H̃ (τ−1

1 , . . . , τ−1
d ) for τ ∈ (0,∞)d must be a multivariate extreme value distribution re-

gardless of whether the normalization is linear (see [33], Proposition 2.1). In particular, G̃ is a
continuous distribution function with unit Fréchet margins. It is noteworthy that − ln H̃ is a ho-
mogeneous function of degree 1, that is, − ln H̃ (cτ ) = −c ln H̃ (τ ) for all c > 0 and τ ∈ (0,∞)d .
This function is sometimes called the stable tail dependence function of F .

Let Mn,i = max(X1,i , . . . ,Xn,i) be the maximum of the ith component and introduce the
vector of pointwise maxima Mn = (Mn,1, . . . ,Mn,d). If (Xn)n≥1 is a sequence of independent
and identically distributed (i.i.d.) vectors of random variables (r.v.s), then (1.2) is equivalent to

P
(
Mn ≤ un(τ )

) = P
(
Mn,i ≤ un,i(τi), i = 1, . . . , d

) → H̃ (τ ), as n → ∞.

This convergence can be extended to stationary sequences by assuming the long-range depen-
dence D(un(τ ))-condition introduced in [19], which is a natural multivariate version of the well-
known univariate D(un(τ))-condition (see, e.g., [22], page 53). Let S+ ≡ {τ ∈ (0,∞)d : |τ | = 1},
where |τ |2 = ∑d

i=1 τ 2
i . If D(un(τ )) holds for each τ ∈ (0,∞)d and P(Mn ≤ un(τ 0)) converges

as n → ∞ for each τ 0 in S+, then there exists a function θ : (0,∞)d �→ [0,1] such that (see
Proposition 2.3 in [33])

lim
n→∞P

(
Mn ≤ un(τ )

) = H̃ (τ )θ(τ ) for τ ∈ (0,∞)d . (1.3)
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Let H(τ ) = H̃ (τ )θ(τ ). The function G defined by G(τ ) = H(τ−1
1 , . . . , τ−1

d ) is also a multivariate
extreme value distribution and has Fréchet marginals. The function

θ(τ ) = − lnH(τ )

− ln H̃ (τ )
(1.4)

is referred to as the multivariate extremal index function of (Xn)n≥1.
The estimation of the function − ln H̃ for sequences of i.i.d. vectors of r.v.s has been thor-

oughly investigated (see, e.g., [9–11,16,18]). But, extensions to stationary sequences are still at
an early stage (see an example in [42]). The estimation of the multivariate extremal index func-
tion has been little investigated. Recently, some pointwise estimators have been proposed, but
their asymptotic properties have not been studied. In [41], Smith and Weissman introduce the
class of multivariate maxima of moving maxima (M4) processes and establish that the multivari-
ate extremal index function of a very wide class of processes may be approximated arbitrarily
closely by one from a M4 process. Nevertheless, the estimation of θ via a M4 process is prac-
tically infeasible since it necessitates the estimation of an infinite number of parameters, except
if additional approximations are made. Smith and Weissman also give a key characterization
of θ(τ ) as the univariate extremal index of a sequence depending on the standardized Fréchet
components (see Proposition 2.1 in [41] and Proposition 2.1 below). It follows that if one can
transform the data to have unit Fréchet components, then θ(τ ) may be estimated by univariate
methods such as those proposed in [13,40,45], or [37]. To evaluate the accuracy of this approach,
a simulation study is conducted in [12] with Ferro and Segers estimators (see [13]).

In this paper, we introduce two new nonparametric estimators of the multivariate extremal in-
dex function. Its original contribution is to study the asymptotic properties of these estimators.
The paper is organized as follows. In Section 2, we discuss two characterizations of the multi-
variate extremal index function and present some of its properties. In Section 3, we explain how
we construct the estimators. Note that they are based on a block declustering scheme and are
only determined by the block length, as in [37]. In Section 4, we present and discuss technical
conditions. We then give the asymptotic distributions of the estimators. In Section 5, we inves-
tigate their finite-sample behaviors on simulated data. The proof of the asymptotic normality of
the estimators is found in Section 6. Section 7 concludes.

2. The multivariate extremal index

The multivariate extremal index function defined by (1.4) may also be characterized by the as-
ymptotic distribution of the following point process of exceedances:

N(τ )
n (B) =

n∑
l=1

1{l/n∈B,Xl�un(τ )},

where B is a Borel set included in (0,1] and {Xl � un(τ )} = ⋃d
i=1{Xl,i > un,i(τi)}. Contrary to

the univariate case, there are several ways to define a multivariate threshold exceedance. Here,
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we define an exceedance as the event that one of the components of Xl exceeds its associated
threshold. Suppose that (1.3) holds and (Xn)n≥1 satisfies the long-range dependence �(un(τ ))-
condition introduced in [28] (which is a little stronger than the D(un(τ ))-condition). A neces-
sary and sufficient condition for the weak convergence of N

(τ )
n (·) is then the convergence of

N
(τ )
n ((0;qn/n]) to a discrete distribution, π(τ ), given that there is at least one exceedance, that

is,

lim
n→∞P

(
N(τ )

n ((0;qn/n]) = k|N(τ )
n ((0;qn/n]) > 0

) = π(τ )(k),

where (qn) is a �(un(τ ))-separating sequence (see Section 4). π(τ ) is referred to as the cluster-
size distribution. Under these assumptions, the point process converges to an homogeneous com-
pound Poisson process, N(τ ), with intensity −θ(τ ) ln H̃ (τ ) and limiting compound distribution
π(τ ). It may be stressed that, under some mild additional assumptions, we have the following
characterization of the multivariate extremal index function (see [19,24]):

θ(τ ) =
( ∞∑

k=1

kπ(τ )(k)

)−1

,

that is, θ is equal to the reciprocal of the limiting mean number of exceedances in a cluster.
As mentioned in the Introduction, Smith and Weissman give an alternative characterization of

the multivariate extremal index function in [41]. They first propose to standardize the margins
to the unit Fréchet distribution and then to express θ(τ ) as the univariate extremal index of the
constructed sequence as a linear combination of the standardized components. In this paper, we
decide to standardize to the unit Pareto distribution, as in Section 10.5.2 of [4] (see property (v)).

Proposition 2.1. Let τ ∈ (0,∞)d\{0} and assume that limn→∞ P(Mn ≤ un(τ )) = H̃ (τ )θ(τ ).
Define the associated univariate stationary sequence by

Z
(τ )
l = max

i=1,...,d
τiYl,i , l ≥ 1,

where Yl,i = (1 −Fi,−(Xl,i))
−1 and Fi,−(x) = P(Xl,i < x). θ(τ ) is then the univariate extremal

index of the sequence (Z
(τ )
l )l≥1, that is, it satisfies, for κ > 0,

lim
n→∞nP

(
Z

(τ )
l > v(τ )

n (κ)
) = κ and lim

n→∞P

(
max

l=1,...,n
Z

(τ )
l ≤ v(τ )

n (κ)

)
= e−θ(τ )κ,

where v
(τ )
n (κ) = κ−1(− ln H̃ (τ ))n.

The proof of Proposition 2.1 is postponed to Appendix A. Note that it completes the arguments
introduced in Section 10.5.2 of [4], where it is assumed that the Fi are continuous.
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It is well known that, in the univariate case, θ is a constant which does not depend on τ . In
the multivariate case, θ is required to be a constant on the lines through the origin. In the next
section, we will take into account this homogeneity property when constructing the estimators.
More particularly, the multivariate extremal index function has the following properties (see [28,
33], Section 10.5.2 in [4], [24] and [25]):

1. 0 ≤ θ(τ ) ≤ 1 for all τ ∈ (0,∞)d .
2. θ(τ ) is a continuous function of τ ∈ (0,∞)d and is scale invariant, that is, θ(cτ ) = θ(τ )

for all c > 0 and τ ∈ (0,∞)d .
3. θ can be extended by continuity to [0,∞)d\{0}. Let τ (i) = (0, . . . ,0, τi,0, . . . ,0). The

univariate extremal index, θi , say, for the ith component sequence (Xn,i)n≥1 exists and
θi = θ(τ (i)). {0} is a discontinuity of θ if there exist i and j such that θi 
= θj . Note that
the functions H and H̃ can be extended by continuity to [0,∞)d . In particular, we have
H̃ (τ (i)) = e−τi , H(τ (i)) = e−θiτi and H̃ (0) = H(0) = 1.

4. Bounds for θ(τ ) are given by

max(θ1τ1, . . . , θdτd)

− ln H̃ (τ )
≤ θ(τ ) ≤ θ1τ1 + · · · + θdτd

− ln H̃ (τ )
.

The upper bound corresponds to the case where G has independent components and the
lower bound corresponds to the case where G has totally dependent components.

5. If G and G̃ have independent components, then θ(τ ) = ∑d
i=1 θiτi/

∑d
i=1 τi .

In the next sections, we will illustrate our technical conditions and our limiting results with
three examples of bivariate processes. Let us now introduce these processes and discuss their
extremal properties. The first process will be considered as the benchmark because all the tech-
nical conditions can be easily verified and the calculations of the asymptotic variances of the
estimators can be carried out explicitly. It is the bivariate process with independent univariate
sequences and independent components. The second process is a bivariate squared ARCH(1)
process with independent components. There is no cross-sectional dependence, but each com-
ponent is time dependent. The third process is a bivariate autoregressive process of order 1 with
dependent innovations. By modifying the values of the parameters of this process, we may have
cross-sectional dependence or independence and temporal dependence or independence. Recall
that for d = 2, we have (Xl = (Xl,1,Xl,2))l≥1, τ = (τ1, τ2) and un(τ ) = (un,1(τ1), un,2(τ2)).

Example 2.1. The bivariate independent process with independent components: Xl,1 = ξl,1 and
Xl,2 = ξl,2, where (ξl,1)l≥1 and (ξl,2)l≥1, are two independent sequences of i.i.d. standard expo-
nential r.v.s. It is easily seen that un,1(τ ) = un,2(τ ) = ln(n/τ), − ln H̃ (τ ) = τ1 +τ2 and θ(τ ) = 1.

The cluster of exceedances of N(τ ) are of size 1, that is, the cluster-size distribution is given
by π(τ )(1) = 1, π(τ )(k) = 0 for k > 1.

The associated series is given by Z
(τ )
l = max(τ1 exp(ξl,1), τ2 exp(ξl,2)) and we have v

(τ )
n (κ) ∼

nκ−1(τ1 + τ2) as n → ∞.

Example 2.2. A bivariate squared ARCH(1) process with independent components: Xl+1,i =
(ηi + λiXl,i)ξ

2
l+1,i for l ≥ 1 and i = 1,2, where (ξl,1)l≥1 and (ξl,1)l≥2 are two independent se-

quences of i.i.d. standard Gaussian r.v.s, ηi > 0 and 0 < λi < 2eγ, where γ is Euler’s constant.



1032 C.Y. Robert

We assume that X1,1 and X1,2 are drawn from the univariate stationary distributions. Let κi

be such that E(λiξ
2
l,i )

κi = 1 for i = 1,2. There exist constants ci such that F̄i(x) ∼ cix
−κi as

x → ∞. It follows that un,i(τ ) ∼ (nci/τ )1/κi as n → ∞ (see, e.g., [21] and [17]). Let Ri(x) =

{j ≥ 1 : X̃i

∏j

l=1(λiξ
2
l,i ) > x} where X̃i is independent of (ξl,i )l≥1 and P(X̃i > x) = x−κi ,

x ≥ 1, and define pk,i = P(Ri(1) = k), k ≥ 0.
Since the components are independent, we have − ln H̃ (τ ) = τ1 + τ2 and

θ(τ ) = θ1τ1 + θ2τ2

τ1 + τ2
.

Moreover, θi = p0,i = ∫ ∞
1 P(

∨∞
j=1

∏j

l=1(λiξ
2
l,i ) ≤ x)κix

−κi−1 dx, i = 1,2.
The clusters of exceedances may be of any size. One can show that the cluster-size distribution

of N(τ ) is given by

π(τ ) = θ1τ1

θ1τ1 + θ2τ2
π1 + θ2τ2

θ1τ1 + θ2τ2
π2,

where πi(k) = (pk−1,i − pk,i)/p0,i , k ≥ 1 and i = 1,2 (see [17]).
Since there is no analytic expression for the stationary univariate distributions, an explicit form

of the associated sequence cannot be given.

Example 2.3. A bivariate autoregressive process of order 1 with dependent innovations:
Xl+1,i = ρiXl,i + ξl+1,i for l ≥ 1 and i = 1,2, where (ξl,1, ξl,2)l≥1 is a sequence of i.i.d. vectors
with a bivariate unit Fréchet extreme value distribution, that is,

P(ξl,1 ≤ x1, ξl,2 ≤ x2) = exp

(
−

(
1

x1
+ 1

x2

)
A

(
x1

x1 + x2

))
:= exp(−B(x1, x2)),

where A is a convex and differentiable function bounded below by max(x,1 − x) and above
by 1. We assume that 0 < ρi < 1 and that (X1,1,X1,2) is drawn from the stationary distribution.
We have that F̄i(x) ∼ (1 − ρi)

−1x−1 as x → ∞ and it follows that un,i(τ ) ∼ n/((1 − ρi)τ ) as
n → ∞. By Theorem 2.1 in [36], we deduce that

− ln H̃ (τ ) =
∞∑

k=0

B
((

(1 − ρ1)ρ
k
1τ1

)−1
,
(
(1 − ρ2)ρ

k
2τ2

)−1)
.

Similar arguments as in Section 6 of [33] show that

θ(τ ) = − ln H̃ ((τ1, τ2)) + ln H̃ ((ρ1τ1, ρ2τ2))

− ln H̃ ((τ1, τ2))
.
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It is important to note that if ρ1 = ρ2 = ρ, then − ln H̃ (τ ) = B(τ−1
1 , τ−1

2 ) and θ(τ ) = (1 − ρ).
The multivariate index does not depend on τ . If A = 1, that is, if ξl,1 and ξl,2 are independent,
then − ln H̃ (τ ) = τ1 + τ2 and θ(τ ) = ((1 − ρ1)τ1 + (1 − ρ2)τ2)/(τ1 + τ2).

The clusters of exceedances may be of any size. The asymptotic distribution of N
(τ )
n may be

obtained by using results of Section 2 in [6]. Moreover, since there is no analytic expression for
the stationary bivariate distribution, an explicit form of the associated sequence cannot be given.

3. Defining the estimators

In this section, we explain our approach to estimating the multivariate extremal index function.
As in [37], we consider a block declustering scheme and estimate intermediate thresholds such
that we only have to take into account the block length to study the asymptotic distribution of the
estimators.

Let us divide [1, . . . , n] into kn blocks of length rn (kn is the integer part of n/rn), Ij =
[(j −1)rn +1, . . . , jrn] for j = 1, . . . , kn and a last block Ikn+1 = [rnkn +1, . . . , n]. The number

of exceedances for the j th block is defined by N
(τ )
rn,j = ∑

l∈Ij
1{Xl�urn (τ )} for j = 1, . . . , kn,

where urn,i(τi) = F←
i (1 − τi/rn), i = 1, . . . , d . The main issue when using these quantities

to construct estimators is that the thresholds urn,i(τi) are unknown since they depend on the
univariate marginals of the stationary distribution. They have to be estimated from the data.
As in [37], we consider estimators of the thresholds which are based on the order statistics. If
0 < τ ≤ rn, let ûrn,i (τ ) = X(�knτ
),i , where X(k),i is the kth largest of X1,i , . . . ,Xknrn,i and �x

denotes the smallest integer greater than or equal to x. If τ = 0, let ûrn,i (0) = ∞. Now, define
N̂

(τ )
rn,j = ∑

l∈Ij
1{Xl�ûrn (τ )} for τ ∈ [0, rn]d .

In order to estimate the multivariate extremal index function, it seems natural to exploit the
characterization given by (1.4). Let N

(τ )
n ≡ N

(τ )
n ((0,1]) and note that, under appropriate condi-

tions (see the following section),

lim
n→∞P

(
N(τ )

n = 0
) = lim

n→∞P
(
Mn ≤ un(τ )

) = H(τ )

and that, by (1.2),

lim
n→∞ E

(
N(τ )

n

) = lim
n→∞n

(
1 − F(un(τ ))

) = − ln H̃ (τ ).

Let us use the empirical distribution of the number of exceedances to provide empirical counter-
parts of H(τ ) and − ln H̃ (τ ). We define

Ĥn(τ ) = 1

kn

kn∑
j=1

1{N̂(τ )
rn,j =0} and − ln ̂̃

Hn(τ ) = 1

kn

kn∑
j=1

N̂
(τ )
rn,j for τ ∈ [0, rn]d .
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One may consider − ln Ĥn(τ )/(− ln ̂̃
Hn(τ )) in order to estimate θ(τ ). But, unlike the multivari-

ate extremal function, this function is not scale invariant (see Property 2 in the previous section).
Hence, we introduce a first estimator which satisfies the homogeneity property:

θ̂ (1)
n (τ ) = − ln Ĥn(τ/L(τ ))

− ln ̂̃
Hn(τ/L(τ ))

, τ/L(τ ) ∈ [0, rn]d\{0},

where L is a known function from [0,∞)d\{0} to (0,∞) which is homogeneous of order 1. For
example, consider the family Lc,a(τ ) = c(

∑d
i=1 |τi |a)1/a for a > 0 and c > 0.

The second estimator is derived from the characterization of Proposition 2.1. Let us consider
the number of exceedances of (Z

(τ )
n )n≥1 above the threshold v

(τ )
n (κ):

N(κ,τ )
n =

n∑
l=1

1{Z(τ )
l >v

(τ )
n (κ)}.

Proposition 2.1 implies that limn→∞ − lnP(N
(κ,τ )
n = 0) = θ(τ )κ. In order to construct an alter-

native estimator of the extremal index function, we can follow the approach developed in [37].
First, we replace the Z

(τ )
l by their empirical counterparts since the marginal distribution func-

tions Fi are unknown. Let Rl,i denote the rank of Xl,i among (X1,i , . . . ,Xknrn,i ). In the case of
ties, the lowest rank for the ties is used for each tie. We define

Ž
(τ )
l = max

i=1,...,d
τi Y̌l,i ,

where

Y̌l,i = knrn

knrn + 1 − Rl,i

.

We then introduce the number of exceedances of (Ž
(τ )
l )l∈Ij

for the j th block: N
(κ,τ )
rn,j =∑

l∈Ij
1{Ž(τ )

l >v
(τ )
rn (κ)}. As previously, v

(τ )
rn (κ) is unknown. However, it may be estimated by

v̂
(τ )
rn (κ) = Ž

(τ )
(�knκ
), where Ž

(τ )
(�knκ
) is the (�knκ
)th-largest value among Ž

(τ )
1 , . . . , Ž

(τ )
knrn

. Fi-

nally, let us define N̂
(κ,τ )
rn,j as the counterpart of N

(κ,τ )
rn,j , where v

(τ )
rn (κ) is replaced by v̂

(τ )
rn (κ),

and introduce the second estimator

θ̂ (2)
n (τ ) = −κ−1 ln

(
1

kn

kn∑
j=1

1{N̂(κ,τ )
rn,j =0}

)
, τ ∈ [0,∞)d\{0},κ ∈ (0, rn].

Note that this estimator is scale invariant without transformation on τ .
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Remark 3.1. In [37], three estimators of the univariate extremal index are introduced. The first
estimator, denoted by θ̂

(·)
1,n, is very close of our estimators θ̂

(1)
n and θ̂

(2)
n when they are evaluated

at the points τ = τ (i), i = 1, . . . , d . In fact, if L is assumed to be a constant equal to 1 and κ = τi ,
we have

θ̂ (1)
n

(
τ (i)

) = θ̂
(τi )
1,n

knτi

�knτi
 − 1
and θ̂ (2)

n

(
τ (i)

) = θ̂
(τi )
1,n .

It follows that in the univariate case (i.e., d = 1), both estimators have the same asymptotic
behavior as θ̂

(·)
1,n.

4. Main result

In this section, we first present and discuss technical conditions which are required for the as-
ymptotic normality of the estimators. These conditions are quite similar to conditions introduced
in [37] which are used, in particular, to establish the asymptotic properties of the estimator of
the univariate extremal index θ̂

(τ )
1,n (see Remark 3.1 above). They might appear quite stringent in

comparison with those of [45], where the asymptotic properties of the blocks and runs estimators
of the univariate extremal index are studied. This is not the case for two reasons. First, we es-
timate intermediate thresholds and do not consider them as tuning parameters, contrary to [45].
This allows us to establish the asymptotic properties of intermediate empirical processes, which
is more complicated and necessitates more conditions. Second, these conditions guarantee the
existence of the asymptotic variances of the estimators, whereas [45] just assumes the conver-
gence of the variance of a partial sum to the asymptotic variance and does not give any condition
such that this convergence holds. Finally, one can refer to Section 4 of [37] for a comparison of
similar conditions to those in [38] that are needed for convergence of the tail empirical process
of a univariate stationary sequence.

Let us turn to some definitions which are the natural multivariate versions of definitions from
[32] (see also [28] and [33]).

Definition 4.1. Fix an integer m ≥ 1. Let Fp,q = Fp,q(τ 1, . . . ,τm) be the σ -algebra generated
by the events {Xl � un(τ j )}, p ≤ l ≤ q and 1 ≤ j ≤ m, and let

αn,l(τ 1, . . . ,τm) ≡ sup|P(A ∩ B) − P(A)P (B) :A ∈ F1,t ,B ∈ Ft+l,n,1 ≤ t ≤ n − l|.

The �({un(τ j )}1≤j≤m)-condition is said to hold if limn→∞ αn,ln(τ 1, . . . ,τm) = 0 for some se-
quence ln = o(n).

Definition 4.2. Suppose that the �({un(τ j )}1≤j≤m)-condition holds. A sequence of positive in-
tegers (qn)n≥1 is said to be �({un(τ j )}1≤j≤m)-separating if, as n → ∞, qn = o(n) and there
exists a sequence (ln)n≥1 such that limn→∞ nq−1

n αn,ln(τ 1, . . . ,τm) = 0 and ln = o(qn).
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We now give a decomposition of the numbers of exceedances when considering two vectors
of thresholds, un(τ 1) and un(τ 2) for τ 1,τ 2 ∈ [0,∞)d . We define

N
(τ 1,τ 2)
n,0,p =

p∑
l=1

1{Xl�un(τ 1)}∪{Xl�un(τ 2)},

N
(τ 1,τ 2)
n,1,p =

p∑
l=1

1{Xl�un(τ 1)}\{Xl�un(τ 2)},

N
(τ 1,τ 2)
n,2,p =

p∑
l=1

1{Xl�un(τ 2)}\{Xl�un(τ 1)},

N
(τ 1,τ 2)
n,3,p =

p∑
l=1

1{Xl�un(τ 1)}∩{Xl�un(τ 2)}.

Note that N
(τ 1,τ 2)
n,0,p = ∑3

i=1 N
(τ 1,τ 2)
n,i,p and N

(τ i )
n = N

(τ 1,τ 2)
n,i,n + N

(τ 1,τ 2)
n,3,n , i = 1,2.

We continue by presenting the first technical condition and then discussing the weak conver-
gence of the sequence (N

(τ 1,τ 2)
n,1,n ,N

(τ 1,τ 2)
n,2,n ,N

(τ 1,τ 2)
n,3,n )n≥1.

Condition (C1).

(i) The stationary sequence (Xn)n≥1 has a multivariate extremal index function θ > 0.
(ii) For each τ 1,τ 2 ∈ [0,∞)d\{0}, the �(un(τ 1),un(τ 2))-condition holds and there exists

a probability measure π(τ 1,τ 2) such that for all i1 ≥ 0, i2 ≥ 0, i3 ≥ 0, i1 + i2 + i3 ≥ 1,

π(τ 1,τ 2)(i1, i2, i3) = lim
n→∞P

(
N

(τ 1,τ 2)
n,h,qn

= ih, h = 1,2,3|N(τ 1,τ 2)
n,0,qn

> 0
)

(C1.a)

for some �(un(τ 1),un(τ 2))-separating sequence (qn)n≥1.

For τ i = (τ1,i , . . . , τd,i) and i = 1,2, let τ 1 ∨ τ 2 = (τ1,1 ∨ τ1,2, . . . , τd,1 ∨ τd,2). For each
τ 1,τ 2 ∈ [0,∞)d\{0}, let ζ ≡ (ζ

(τ 1,τ 2)
l,1 , ζ

(τ 1,τ 2)
l,2 , ζ

(τ 1,τ 2)
l,3 )l≥1 be an sequence of i.i.d. vectors of

integer r.v.s with distribution π(τ 1,τ 2) and η(τ 1,τ 2) be an r.v. with Poisson distribution and
parameter −θ(τ 1 ∨ τ 2) ln(H̃ (τ 1 ∨ τ 2)) independent of the sequence ζ .

The probability measure π(τ 1,τ 2) is a key parameter to characterize the distribution of the lim-
iting two-level exceedance point process (see Theorem 2.5 and its proof in [32] for the univariate
case). The following proposition is concerned with the weak convergence of the related sequence
of the numbers of exceedances.
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Proposition 4.1. Suppose that (C1) holds. Then,(
N

(τ 1,τ 2)
n,1,n ,N

(τ 1,τ 2)
n,2,n ,N

(τ 1,τ 2)
n,3,n

) D→ (
N

(τ 1,τ 2)
1 ,N

(τ 1,τ 2)
2 ,N

(τ 1,τ 2)
3

)
(4.1)

D=
η(τ 1,τ 2)∑

l=1

(
ζ

(τ 1,τ 2)
l,1 , ζ

(τ 1,τ 2)
l,2 , ζ

(τ 1,τ 2)
l,3

)
.

Moreover π(τ 1,τ 2) is scale invariant, that is, for each τ 1,τ 2 ∈ [0,∞)d\{0} and c > 0,
π(cτ 1,cτ 2) = π(τ 1,τ 2).

The proof of Proposition 4.1 is postponed to Appendix A.
Let us examine the distribution of the cluster sizes of the two-level exceedances, π(τ 1,τ 2), for

the first example introduced in Section 2. The distribution for the second example may be derived
by considering its Laplace transform. The distribution for the third example may be derived by
using results of Section 2 in [6].

Example 2.1 (continued). The clusters of the two-level exceedances are of size 0 or 1. More
precisely, the distribution of the cluster sizes is given by

π(τ 1,τ 2)(1,0,0) = (τ2,1 − τ2,2)
+ + (τ1,1 − τ1,2)

+

τ1,1 ∨ τ1,2 + τ2,1 ∨ τ2,2
,

π(τ 1,τ 2)(0,1,0) = (τ2,2 − τ2,1)
+ + (τ1,2 − τ1,1)

+

τ1,1 ∨ τ1,2 + τ2,1 ∨ τ2,2
,

π(τ 1,τ 2)(0,0,1) = 1 − π
(τ 1,τ 2)
2 (1,0,0) − π

(τ 1,τ 2)
2 (0,1,0).

Let us turn to the second technical condition which is a multivariate version of Condition (C2)
in [37]. Note that, since the estimated thresholds for our estimators are contingent on knτi , i =
1, . . . , d , and knκ, and since kn may be chosen up to a proportional factor, we can assume,
without loss of generality, that τ and κ are bounded. Hence, let us now assume that τ ∈ [0,1]d .

Condition (C2).

(i) Let r > 4d . There exists a constant D = D(r) ≥ 0 such that for all τ 1,τ 2 ∈ [0,1]d ,

sup
n≥1

E
∣∣N(τ 1)

n − N(τ 2)
n

∣∣r ≤ D|τ 1 − τ 2|. (C2.a)

(ii) Let ω > (4d − 1)r/ (r − 4d). There exists a constant C ≥ 0 such that for every choice of
τ 1, . . . ,τm ∈ [0,1]d , m ≥ 1 and n ≥ l ≥ 1,

αn,l(τ 1, . . . ,τm) ≤ αl := Cl−ω. (C2.b)
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(iii) (rn)n≥1 is a sequence such that rn → ∞ and rn = o(n) and there exists a sequence
(ln)n≥1 satisfying

ln = o(r
2/r
n ) and lim

n→∞nr−1
n αln = 0. (C2.c)

Let us describe some intuitions regarding this condition. First, (C2)(i) restricts the size of
clusters by assuming that N

(τ 1)
n − N

(τ 2)
n has a suitably bounded r th moment. It provides an

inequality which will very useful to prove tightness criteria for intermediate empirical processes
introduced in Section 5. Note that

∣∣N(τ 1)
n − N(τ 2)

n

∣∣ ≤
d∑

i=1

(
N

(τ
(i)
1 ∧τ

(i)
2 )

n − N
(τ

(i)
1 ∨τ

(i)
2 )

n

)
.

It follows that it is sufficient to show that for each i = 1, . . . , d , there exists a constant Di ≥ 0
such that for all τ 1,τ 2 ∈ [0,1]d ,

sup
n≥1

E
(
N

(τ
(i)
1 ∧τ

(i)
2 )

n − N
(τ

(i)
1 ∨τ

(i)
2 )

n

)r ≤ Di |τi,1 − τi,2|. (4.2)

It is easily seen that (C2)(ii) is satisfied by strongly mixing stationary sequences where the
mixing coefficients vanish with at least a sufficient hyperbolic rate. The underlying idea of the
block declustering scheme is to split the block Ij into a small block of length ln and a large block
of length rn − ln. (C2)(ii) and (C2)(iii) essentially means that ln is sufficiently large such that
blocks that are not adjacent are asymptotically independent, but does not grow too fast so that
the contributions of the small blocks is negligible. Let us give now some clues explaining why
this condition holds for the examples introduced in Section 2.

Example 2.1 (continued). ((Xl,1,Xl,2))l≥1 is an i.i.d. sequence. Therefore, αn,l(τ 1, . . . ,τm) =
0 for every choice of τ 1, . . . ,τm ∈ [0,1]d , m ≥ 1, n ≥ 1, l ≥ 1. Moreover, N

(τ
(i)
1 ∧τ

(i)
2 )

n −
N

(τ
(i)
1 ∨τ

(i)
2 )

n has a binomial distribution with parameters n and |τi,1 − τi,2|/n. Condition (4.2)
is easily verified for any integer r .

Example 2.2 (continued). The components of ((Xl,1,Xl,2))l≥1 are independent and each com-
ponent is geometrically strong-mixing (see Example 3.1 in [37]). Moreover, bounds for the mo-
ment condition (4.2) can be obtained for any integer r by using the same arguments as for Lemma
6.1 in [37].

Example 2.3 (continued). ((Xl,1,Xl,2))l≥1 is a bivariate positive Harris recurrent Markov chain.
Moreover, it is a particular case of a first-order stochastic equations with random coefficients.
Following [26], one can show that ((Xl,1,Xl,2))l≥1 is geometrically absolute regular and strong-
mixing. Moreover, bounds for the moment condition (4.2) can be obtained for any integer r by
using the Markov property of the components and similar arguments as for Lemma 6.1 in [37].
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Finally, we assume that the convergence rate of rn to infinity is such that the bias of our esti-
mators is asymptotically negligible with respect to their variance. Moreover, we need a condition
on the regularity of H and H̃ to guarantee that the asymptotic distribution is Gaussian.

Condition (C3).

(i) The sequence (rn)n≥1 satisfies

lim
n→∞

√
kn sup

τ∈[0,1]d
∣∣P (

N
(τ )
rn,1 = 0

) − H(τ )
∣∣ = 0

and

lim
n→∞

√
kn sup

τ∈[0,1]d
∣∣rn(1 − F(urn(τ ))

) + ln H̃ (τ )
∣∣ = 0.

(ii) The functions H and H̃ are (Fréchet) differentiable on (0,1)d and their derivatives can
be extended by continuity to [0,1]d .

Example 2.1 (continued). Note that as n → ∞,

√
kn sup

τ∈[0,1]d
∣∣P (

N
(τ )
rn,1 = 0

) − H(τ )
∣∣ ∼ e−1

2

√
kn

rn
∼ e−1

2

n1/2

r
3/2
n

,

√
kn sup

τ∈[0,1]d
∣∣rn(1 − F(urn(τ ))

) + ln H̃ (τ )
∣∣ =

√
kn

rn
∼ n1/2

r
3/2
n

.

It follows that if rn = o(n1/3), then Condition (C3) does not hold.

We end this section by giving the distributional asymptotics of the estimators. Let �(·) be a
pathwise continuous Gaussian process on [0,1]d\{0} with covariance function given in Appen-
dix B.

Let �L ≡ {τ :τ/L(τ ) ∈ [0,1]d\{0}} and �κ ≡ {τ : κτ/(− ln H̃ (τ )) ∈ [0,1]d\{0}}.

Theorem 4.1. Suppose that (C1), (C2) and (C3) hold. If we let m ≥ 1 and τ 1, . . . ,τm ∈ �L,
then √

kn

(
θ̂ (1)
n (τ i ) − θ(τ i )

)
i=1,...,m

D→ (�(τ iL
−1(τ i )))i=1,...,m.

If we let m ≥ 1 and τ 1, . . . ,τm ∈ �κ , then

√
kn

(
θ̂ (2)
n (τ i ) − θ(τ i )

)
i=1,...,m

D→ (
�

(
τ iκ(− ln H̃ (τ i ))

−1))
i=1,...,m

.

Although the estimators are very different from the point of view of their construction, they
share the same asymptotic distribution up to a proportional factor.
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Example 2.1 (continued). The calculation of the asymptotic variance of θ̂
(1)
n (τ ) and θ̂

(2)
n (τ ) can

be carried out explicitly. Let M(τ ) = − ln H̃ (τ )L−1(τ ). We have

Var(�(τL−1(τ ))) = M(τ )−2(eM(τ ) − 1 − M(τ )
)
,

Var
(
�(τκ(− ln H̃ (τ ))−1)

) = (
κ−2(eκ − 1 − κ)

)
.

It is worth mentioning that the asymptotic variance of θ̂
(2)
n (τ ) does not depend on τ . It is smaller

than the asymptotic variance of θ̂
(1)
n (τ ) if κ ≤ M(τ ).

Note that if τ = τ (i), L = 1 and κ = τi , then we obtain the same asymptotic variance as for
θ̂

(τi )
1,n (see Remark 3.1).

Example 2.2 (continued). Let us characterize the asymptotic variance of the second estimator.
We have

Var
(
�(τκ(− ln H̃ (τ ))−1)

)
= κ−2

(
exp

(
κ

θ1τ1 + θ2τ2

τ1 + τ2

)
− 2κ

θ1τ1 + θ2τ2

τ1 + τ2
− 1

)

+ κ−1
θ3

1 τ1
∑∞

j=1 j2π1(j) + θ3
2 τ2

∑∞
j=1 j2π2(j)

τ1 + τ2

+ κ−1θ1θ2
θ1τ1 + θ2τ2

τ1 + τ2

∑
i≥0,j≥0,k≥0

i+j+k≥1

(i + k)(j + l)
(
π(τ (1),τ (2)) + π(τ (2),τ (1))

)
(i, j, k).

For the first estimator, replace κ by M(τ ). A comparison between the two asymptotic variances
is not obvious.

Note that if τ = τ (i), L = 1 and κ = τi , then we obtain the same asymptotic variance as for
θ̂

(τi )
1,n (see Remark 3.1).

It is possible to weaken Condition (C3)(ii) by assuming that there exists an open set O included
in (0,1)d where the functions H and H̃ are (Fréchet) differentiable. One then has to replace
�L by {τ :τ/L(τ ) ∈ O ∩ [0,1]d\{0}} and �κ by {τ : κτ/(− ln H̃ (τ )) ∈ O ∩ [0,1]d\{0}} in
Theorem 4.1.

5. Simulation study

In this section, a simulation study is conducted to investigate the performance of the estimators
on samples of moderate size. Data are simulated from:

• the bivariate independent process with independent components of Example 2.1 – we have
θ(τ ) = 1;
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• the bivariate squared ARCH(1) process with independent components of Example 2.2 – we
choose η = 2 × 10−5, λ1 = 0.7, λ2 = 0.3 so then we have (see [17])

θ(τ ) = 0.579τ1 + 0.887τ2

τ1 + τ2
;

• the bivariate autoregressive process of order 1 with dependent innovations of Example 2.3.
We choose ρ1 = ρ2 = 1/2 and B(x1, x2) = (x−2

1 + x−2
2 )1/2 so then we have θ(τ ) = 1/2.

We study the performances of the first estimator θ̂
(1)
n associated with the functions Lc,a(τ ) =

c(
∑2

i=1 |τi |a)1/a for c = 2 and a = 1, c = 1 and a = 1, c = 2 and a = 2, c = 1 and a = 2, and we

undertake comparisons with the second estimator θ̂
(2)
n associated with κ = 1. For each process,

we generate 500 sequences of length n = 2000 and for each sequence, we compute the estimates
for τ = (cosφ, sinφ) with φ = kπ/22 and k = 1, . . . ,10.

Figures 1, 2 and 3 show the means (left) and the root mean squared errors (RMSE) (right) of
the estimates as functions of the angle, φ, for kn = 50,100,150,200 and for the three processes.
First, observe that the bias of the estimators decreases as the size of the blocks increases. The
estimators are nearly unbiased for kn = 50 and kn = 100, but they show a positive bias when
kn = 200, except in the case of the bivariate squared ARCH process and for the large values
of φ. Conversely, the variances of the estimators increase as the size of the blocks increases.
This is the ordinary variance-bias trade-off encountered with the blocks estimators. Note that the
minimum of the RMSE is generally observed for large values of kn (150 or 200).

For the i.i.d. sequence, the first estimator associated with the function L2,1 performs uniformly
better. The reasons for this may be that the asymptotic variance is smaller and that the estimated
thresholds are higher than those with the choice c = 1 and hence the bias is smaller. The RMSE
is mimimal for kn = 200.

For the bivariate squared ARCH(1) process, θ̂
(1)
n associated with the function L1,1 and θ̂

(2)
n

perform better than the other estimators. Note that, as for the previous process, − ln H̃ and L1,1
are equal, which explains why both estimators have the same asymptotic variance. The RMSE is
mimimal for kn = 150, except for the large values of φ.

For the autoregressive process, there is a relatively small sensivity of the estimates to the choice
of the estimator when kn = 200. The second estimator always performs better.

Overall, θ̂
(2)
n appears as a good candidate to estimate the multivariate extremal index function.

Its performance on samples of moderate size is often better than the performance of θ̂
(1)
n and,

moreover, it does not necessitate the choice of a tuning function.
Figure 4 shows, for the first process, the ratios between the sample variances and the asymp-

totic variances for the estimators of the multivariate extremal index function. It illustrates that for
sequences of length at least n = 2000, the variances of the estimators can be well approximated
by the asymptotic variances when they can be calculated or estimated.

6. Intermediate results and proof of Theorem 4.1

The proof of Theorem 4.1 and some results related to the weak convergence of intermediate
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Figure 1. The i.i.d. sequence. Left: means of the estimates of the multivariate extremal index function;
the gray solid line represents the true function. Right: RMSE of the estimates of the multivariate extremal

index function. The estimators which are considered are θ̂
(1)
n associated with L2,1 (– – –), L1,1 (· · · ·),

L2,2 (- – - –), L1,2 (- - -) and θ̂
(2)
n associated with κ = 1 (——). The graphs show the average over

500 samples.

empirical processes are gathered in this section. We let K be a generic constant whose value may
change from appearance to appearance.
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Figure 2. The bivariate squared ARCH(1) process. Left: means of the estimates of the multivariate ex-
tremal index function; the gray solid line represents the true function; Right: RMSE of the estimates of

the multivariate extremal index function; the estimators which are considered are θ̂
(1)
n associated with

L2,1 (– – –), L1,1 (· · · ·), L2,2 (- – - –), L1,2 (- - -) and θ̂
(2)
n associated with κ = 1 (——). The graphs

show the average over 500 samples.

We first introduce the Skorokhod space of ladcag multiparameter functions and give the es-
sential ingredients that will be required for characterizing the asymptotic behavior of the inter-
mediate processes.
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Figure 3. The bivariate autoregressive process. Left: means of the estimates of the multivariate extremal
index function; the gray solid line represents the true function. Right: RMSE of the estimates of the multi-

variate extremal index function. The estimators which are considered are θ̂
(1)
n associated with L2,1 (– – –),

L1,1 (· · · ·), L2,2 (- – - –), L1,2 (- - -) and θ̂
(2)
n associated with κ = 1 (——). The graphs show the average

over 500 samples.

Let Bd be a cube in Rd . If τ ∈ Bd and if, for i = 1, . . . , d , Ri is one of the relations ≤ and >,
then let QR1,...,Rd

(τ ) be the quadrant

{σ = (σ1, . . . , σd) ∈ Bd :σiRiτi, i = 1, . . . , d}.
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Figure 4. The i.i.d. sequence. Ratios between the sample variances and the asymptotic variances for the
estimators of the multivariate extremal index function are shown. The estimators which are considered are
θ̂
(1)
n associated with L2,1 (– – –), L1,1 (· · · ·), L2,2 (- – - –), L1,2 (- - -) and θ̂

(2)
n associated with κ = 1

(——). The graphs show the average over 1000 samples.

We denote by D(Bd) the space of functions from Bd to R which are “continuous from below,
with limits from above” in the sense defined by [1]. More precisely, f ∈ D(Bd) if, for each
τ ∈ Bd , fQ(τ ) = limσ→τ ,σ∈Q f (σ ) exists for each of the 2d quadrants Q = QR1,...,Rd

(τ ) and
f (τ ) = fQ≤,...,≤ . Let us assume that it is equipped with the metric do which is equivalent to the
Skorohod metric d and such that it makes D(Bd) a complete separable metric space (see [1],
Section 2 and [3], Section 12).

A sequence (fn)n≥1 of D(Bd)-valued processes converges weakly in the Skorohod topology
to a D(Bd)-valued process f (fn(·) ⇒ f (·)) if Eϕ(fn) → Eϕ(fn) for all Skorohod-continuous
bounded functions ϕ :D(Bd) → R. A criterion for the weak convergence of D(Bd)-valued
processes can be given in terms of the weak convergence of the corresponding finite-dimensional
distributions together with a tightness condition (see Theorem 1 in [1] and the proof of Theo-
rem 6.1).

It is often convenient to consider the restrictions of the functions of D(Bd) to a subset of Bd .
If Cd is a cube included in Bd and if f ∈ D(Bd), we denote by rCd

f the restriction of f to Cd .
We have the following convergence property: if fn(·) ⇒ f (·) in D(Bd) and f is continuous at
the lower boundary of Cd , then rCd

fn(·) ⇒ rCd
f (·) in D(Cd) (see, e.g., Lemma 4.17 in [35] for

the univariate case).
We now turn to the definition of the intermediate processes and characterize their asymptotic
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distribution. First, let us introduce, for τ ∈ [0,1]d ,

Vn(τ ) = √
kn

(
Hn(τ ) − P

(
N

(τ )
rn,1 = 0

))
,

Wn(τ ) = √
kn

(
(− ln H̃n(τ )) − rnP

(
Xl � urn(τ )

))
,

where

Hn(τ ) = 1

kn

kn∑
j=1

1{N(τ )
rn,j =0} and − ln H̃n(τ ) = 1

kn

kn∑
j=1

N
(τ )
rn,j .

We define the first intermediate D([0,1]d) × D([0,1]d)-valued process by Un(τ ) =
(Vn(τ ),Wn(τ ))′. Observe that Un depends on the unknown vector of thresholds urn(τ ) and
cannot be used in practice. In the univariate case, Wn is called the tail empirical process and has
been studied for dependent sequences in [7,8] and [38].

Theorem 6.1. Suppose that (C1) and (C2) hold. There exists a pathwise continuous centered
Gaussian process U with covariance matrix C(·, ·) = (Ci,j (·, ·))1≤i,j≤2 given in Appendix B
such that Un(·) ⇒ U(·) ≡ (V (·),W(·))′ in D([0,1]d) × D([0,1]d).

The proof of Theorem 6.1 is presented as a series of two lemmas. Let us define the large blocks
I

�
j and the small blocks I ∗

j by, for j = 1, . . . , kn,

I
�
j = [(j − 1)rn + 1, . . . , jrn − ln], I ∗

j = [jrn − ln + 1, . . . , jrn].
We introduce the quantities

N
(τ ),�
rn,j =

∑
l∈I

�
j

1{Xl�urn (τ )}, N
(τ ),∗
rn,j =

∑
l∈I∗

j

1{Xl�urn (τ )}, j = 1, . . . , kn,

H�
n (τ ) = 1

kn

kn∑
j=1

1{N(τ ),�
rn,j =0}, H ∗

n (τ ) = − 1

kn

kn∑
j=1

1{N(τ ),�
rn,j =0,N

(τ ),∗
rn,j >0},

− ln H̃�
n (τ ) = 1

kn

kn∑
j=1

N
(τ ),�
rn,j , − ln H̃ ∗

n (τ ) = 1

kn

kn∑
j=1

N
(τ ),∗
rn,j ,

and consider the following processes

V �
n (τ ) = √

kn

(
H�

n (τ ) − P
(
N

(τ ),�
rn,1 = 0

));
V ∗

n (τ ) = √
kn

(
H ∗

n (τ ) + P
(
N

(τ ),�
rn,j = 0,N

(τ ),∗
rn,j > 0

));
W�

n (τ ) = √
kn

(
(− ln H̃�

n (τ )) − (rn − ln)P
(
Xl � urn(τ )

));
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W ∗
n (τ ) = √

kn

(
(− ln H̃ ∗

n (τ )) − lnP
(
Xl � urn(τ )

));
U�

n (τ ) = (V �
n (τ ),W�

n (τ ))′, U∗
n(τ ) = (V ∗

n (τ ),W ∗
n (τ ))′.

Note that Hn(τ ) = H
�
n (τ ) + H ∗

n (τ ), − ln H̃n(τ ) = − ln H̃
�
n (τ ) − ln H̃ ∗

n (τ ), Vn(τ ) = V �
n (τ ) +

V ∗
n (τ ), Wn(τ ) = W�

n (τ ) + W ∗
n (τ ) and Un(τ ) = U�

n (τ ) + U∗
n(τ ).

Lemma 6.1. Suppose that (C1) and (C2) hold. Let m ≥ 1 and τ 1, . . . ,τm ∈ [0,1]d . Then,

(Un(τ i ))i=1,...,m
D→ (U(τ i ))i=1,...,m.

Proof. By similar arguments as in Lemma 6.6 of [37] with

4d ∨ 2ω

ω − 1
< v < r

(this can always be assumed), we have U∗
n(τ )

P→ 0. It is only needed to be checked that

(U�
n (τ i ))i=1,...,m

D→ (U(τ i ))i=1,...,m.

But we can use the arguments of Lemma 6.7 in [37] and replace (C0)(b) in [37] by (C2)(a)
with τ 2 = 0 in order to establish the weak convergence and to conclude that (U (τ i ))i=1,...,m is a
Gaussian centered random vector with covariance matrix

Cov(U(τ l),U (τ k)) = E(U (τ l )U
′(τ k)) = C(τ l ,τ k), 1 ≤ l, k ≤ m. �

Lemma 6.2. Suppose that (C1) and (C2) hold. Let us define the modulus of continuity of f ∈
D([0,1]d) by

wf (δ) = sup{|f (τ ) − f (τ ′)| :τ ,τ ′ ∈ [0,1]d, |τ − τ ′| < δ}.
Let ε > 0. Then,

lim
δ→0

lim sup
n

P
(
wVn(δ) > ε

) = 0, (6.1)

lim
δ→0

lim sup
n

P
(
wWn(δ) > ε

) = 0. (6.2)

Proof. We combine some arguments from Section 5 of [29] and some arguments from the proof
of Theorem 1 in [5]. Let L(2mn) be the set of all points (l1, . . . , ld )/2mn with li ∈ {0,1, . . . ,2mn},
i = 1, . . . , d .
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Since Hn(τ ) is a monotonically non-increasing function in each component of τ and
− ln H̃n(τ ) is a monotonically non-decreasing function in each component of τ , we have (see
[31], page 262)

wVn(δ) ≤ 6 sup|Vn(τ 1) − Vn(τ 2)| + 4d
√

kn2−mn,

wWn(δ) ≤ 6 sup|Wn(τ 1) − Wn(τ 2)| + 4d
√

kn2−mn,

where the “sup” is to be taken over all τ 1,τ 2 ∈ L(2mn) with |τ 1 − τ 2| ≤ δ + 2−mn+1. If mn is
chosen such that limn→∞

√
kn2−mn = 0, (6.1) and (6.2) will follow if we can show that

lim
δ→0

lim sup
n

P
(
sup|Vn(τ 1) − Vn(τ 2)| > ε

) = 0,

lim
δ→0

lim sup
n

P
(
sup|Wn(τ 1) − Wn(τ 2)| > ε

) = 0,

where the “sup” is to be taken over all τ 1,τ 2 ∈ L(2mn) with |τ 1 − τ 2| ≤ δ. Let us define

YV,j (τ 1,τ 2) = (
1{N(τ1)

rn,j =0} − P
(
N

(τ 1)
rn,1 = 0

)) − (
1{N(τ2)

rn,j =0} − P
(
N

(τ 2)
rn,1 = 0

))
,

YW,j (τ 1,τ 2) = (
N

(τ 1)
rn,j − rnP

(
Xl � urn(τ 1)

)) − (
N

(τ 2)
rn,j − rnP

(
Xl � urn(τ 2)

))
,

SV,n(τ 1,τ 2) =
kn∑

j=1

YV,j (τ 1,τ 2), SW,n(τ 1,τ 2) =
kn∑

j=1

YW,j (τ 1,τ 2).

We now want to use equation (4.3) of Theorem 4.1 in [39]. Note that αrnl ≤ αl for l ≥ 1 and
rn ≥ 1. Let 2 < v < p < r ≤ ∞, κ > 0, and assume that ω > v/(v−2) and ω ≥ (p−1)r/(r −p).
We choose p = 4d and r = 2dv with 2 < v < 4, which leads to ω ≥ (4d − 1)r/(r − 4d). We
deduce that

E|SV,n(τ 1,τ 2)|4d ≤ k2d
n ‖YV,j (τ 1,τ 2)‖4d

v + k1+κ
n ‖YV,j (τ 1,τ 2)‖4d

2dv,

E|SW,n(τ 1,τ 2)|4d ≤ k2d
n ‖YW,j (τ 1,τ 2)‖4d

v + k1+κ
n ‖YW,j (τ 1,τ 2)‖4d

2dv.

Note that, for λ ≥ 1,

|YV,j (τ 1,τ 2)|λ ≤ 2λ
(∣∣1{N(τ1)

rn,j =0} − 1{N(τ2)

rn,j =0}
∣∣λ + ∣∣P (

N
(τ 1)
rn,j = 0

) − P
(
N

(τ 2)
rn,j = 0

)∣∣λ),
|YW,j (τ 1,τ 2)|λ ≤ 2λ

(∣∣N(τ 1)
rn,1 − N

(τ 2)
rn,1

∣∣λ + ∣∣EN
(τ 1)
rn,1 − EN

(τ 2)
rn,1

∣∣λ).
Since ∣∣1{N(τ1)

rn,j =0} − 1{N(τ2)

rn,j =0}
∣∣ ≤ ∣∣N(τ 1)

rn,j − N
(τ 2)
rn,j

∣∣,
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we deduce by (C2)(a) that for 1 ≤ λ ≤ r ,

E
∣∣1{N(τ1)

rn,j =0} − 1{N(τ2)

rn,j =0}
∣∣λ ≤ E

∣∣N(τ 1)
rn,j − N

(τ 2)
rn,j

∣∣λ ≤ D|τ 1 − τ 2|.

Moreover,∣∣P (
N

(τ 1)
rn,j = 0

) − P
(
N

(τ 2)
rn,j = 0

)∣∣ ≤ E
∣∣1{N(τ1)

rn,j =0} − 1{N(τ2)

rn,j =0}
∣∣ ≤ E

∣∣N(τ 1)
rn,1 − N

(τ 2)
rn,1

∣∣
and ∣∣EN

(τ 1)
rn,1 − EN

(τ 2)
rn,1

∣∣ ≤ E
∣∣N(τ 1)

rn,1 − N
(τ 2)
rn,1

∣∣ ≤ E
∣∣N(τ 1)

rn,1 − N
(τ 2)
rn,1

∣∣r .
It follows that for λ ≥ 1 and |τ 1 − τ 2| < 1,(∣∣EN

(τ 1)
rn,1 − EN

(τ 2)
rn,1

∣∣)λ ≤ (
E

∣∣N(τ 1)
rn,1 − N

(τ 2)
rn,1

∣∣r)λ ≤ (D|τ 1 − τ 2|)λ ≤ K|τ 1 − τ 2|.

We deduce that for |τ 1 − τ 2| < 1,

‖YV,j (τ 1,τ 2)‖4d
v ≤ K|τ 1 − τ 2|4d/v, ‖YV,j (τ 1,τ 2)‖4d

2dv ≤ K|τ 1 − τ 2|2/v,

‖YW,j (τ 1,τ 2)‖4d
v ≤ K|τ 1 − τ 2|4d/v, ‖YW,j (τ 1,τ 2)‖4d

2dv ≤ K|τ 1 − τ 2|2/v

and it follows that for any κ > 0,

E|SV,n(τ 1,τ 2)|4d ≤ K(k2d
n |τ 1 − τ 2|4d/v + k1+κ

n |τ 1 − τ 2|2/v),

E|SW,n(τ 1,τ 2)|4d ≤ K(k2d
n |τ 1 − τ 2|4d/v + k1+κ

n |τ 1 − τ 2|2/v).

Since right-hand sides of the previous two inequalities are the same, we only consider the case
of the process Wn. We then deduce that

E|Wn(τ 1) − Wn(τ 2)|4d ≤ K(|τ 1 − τ 2|4d/v + k1+κ−2d
n |τ 1 − τ 2|2/v).

If k1+κ−2d
n ≤ |τ 1 − τ 2|4d/v−2/v or, equivalently, |τ 1 − τ 2| ≥ k

v(1+κ−2d)/(2(d−1))
n , then

E|Wn(τ 1) − Wn(τ 2)|4d ≤ K|τ 1 − τ 2|4d/v.

In particular, if τ 2 = τ 1 + ei2−γ , where ei = 1(i) such that 2−γ ≥ k
v(1+κ−2d)/(2(d−1)
n , we get

E|Wn(τ 1) − Wn(τ 2)|4d ≤ K(2−r )4d/v.

Let m(δ) = max{γ ∈ N : δ2γ ≤ 1} and 0 < a < 1. By using the same arguments as in Section 5
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of [29], we have

P
(
sup{|Wn(τ 1) − Wn(τ 2)| :τ 1,τ 2 ∈ L(2mn), |τ 1 − τ 2| ≤ δ} > ε

)
≤

d∑
i=1

mn∑
γ=m(δ)

2γ∑
j1=1

· · ·
2γ −1∑
ji=0

· · ·
2γ∑

jd=1

P
(|Wn(j) − Wn(j + ei2

−γ )|

> (1 − a)aγ−m(δ)ε(4d2)−1)
where j = (j1, . . . , jd) ∈ L(2γ ). If 2−γ ≥ 2−mn ≥ k

v(1+κ−2d)/(2(2d−1))
n , then we get, by Cheby-

shev’s inequality,

P
(|Wn(j) − Wn(j + ei2

−γ )| > (1 − a)aγ−m(δ)ε(4d2)−1)
≤ E|Wn(τ 1) − Wn(τ 2)|4d

((1 − a)aγ−m(δ)ε(4d2)−1)4d
≤ K(2−γ )4d/v

((1 − a)aγ−m(δ)ε(4d2)−1)4d
.

It follows that

P
(
sup

{|Wn(τ 1) − Wn(τ 2)| :τ 1,τ 2 ∈ L(i)(2mn), |τ 1 − τ 2| ≤ δ
}

> ε
)

≤ dK

((1 − a)ε(4d2)−1)4d

mn∑
γ=m(δ)

(2−γ )d(4/v−1) 1

aγ−m(δ)

= dK

((1 − a)ε(4d2)−1)4d(2d(4/v−1))m(δ)

mn∑
γ=m(δ)

1

(2d(4/v−1)a)γ−m(δ)
.

Let us choose a such that 2d(4/v−1)a > 1, which is possible since v < 4, and let us choose mn

such that

lim
n→∞

√
kn2−mn = 0 and lim

n→∞ k
v(1+κ−2d)/(2(2d−1))
n 2mn = 0,

that is, such that

k
−v(1/2−κ/(2(2d−1)))
n = o(2−mn) and 2−mn = o(k

−1/2
n ).

This is clearly possible since v > 2 and κ is arbitrarily small. Now let mn tend to infinity. The
infinite series converges since 2d(4/v−1)a > 1. Finally, let δ tend to 0 or, equivalently, m(δ) tend
to infinity. The upper bound tends to zero since 2d(4/v−1) > 1 and the result follows. �

Proof of Theorem 6.1. Lets define the diameter of a rectangle as the length of its shortest side.
Call a partition of [0,1]d formed by finitely many hyperplanes parallel to the coordinate axes a
δ-grid if each element of the partition is a “right-closed, left-open” rectangle of diameter at least
δ and define w′

(·)(δ) :D([0,1]d) → R by

w′
f (δ) = inf

�
max
G∈�

sup
σ ,τ∈G

|f (τ ) − f (σ )|,
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where the infinimum extends over all δ-grids � on [0,1]d . Let us define �S :D([0,1]d) → RS by
�S(f ) = (f (s))s∈S for each finite set S ⊂ [0,1]d . Let T be the collection of subsets of [0,1]d
of the form U1 × · · · × Ud where each Uj contains 0 and 1 and has countable complement.
According to Theorem 2 in [1], Vn ⇒ V (resp., Wn ⇒ W ) if and only if

(i) �S(Vn) ⇒ �S(V ) for all finite subsets S of some member of T (resp., �S(Wn) ⇒
�S(W));

(ii) limδ→0 lim supn P (w′
Vn

(δ) > ε) = 0 for all ε > 0 (resp., limδ→0 lim supn P (w′
Vn

(δ) >

ε) = 0).

By Lemma 6.1, we derive the first condition. Now, according to equation (1.7) in [29], we
have

w′
Vn

(δ) ≤ wVn(2δ) and w′
Wn

(δ) ≤ wWn(2δ), 0 < δ < 1/2.

By Lemma 6.2, we derive the second condition. Moreover, by using the same arguments as in
the proof of Theorem 15.5 in [2], we can show that V and W belong to C([0,1]d), the subset of
D([0,1]d) consisting of continuous functions. �

We now substitute the unknown vector of thresholds in the first intermediate process by its
estimate, ûrn(τ ), and replace P(N

(τ )
rn,1 = 0) and P(Xl � urn(τ )) by their respective limits. Let

us introduce

V̂n(τ ) = √
kn

(
Ĥn(τ ) − H(τ )

)
,

Ŵn(τ ) = √
kn

(
(− ln ̂̃

Hn(τ )) − (− ln H̃ (τ ))
)

and define the second intermediate D([0,1]d) × D([0,1]d)-valued process by Ûn(τ ) =
(V̂n(τ ), Ŵn(τ ))′. We now establish the weak convergence of this process.

Proposition 6.1. Suppose that (C1), (C2) and (C3) hold. Then,

Ûn(·) ⇒ Û(·) ≡ (V̂ (·), Ŵ (·))′

in D([0,1]d) × D([0,1]d), where

Û(τ ) = U(τ ) +
( −∇H(τ )′Z(τ )

H̃−1(τ )∇H̃ (τ )′Z(τ )

)
,

∇H(τ ) = (∂H(τ )/∂τi)i=1,...,d , ∇H̃ (τ ) = (∂H̃ (τ )/∂τi)i=1,...,d and Z(τ ) = (W(πi(τ )))i=1,...,d

with πi(τ ) = τ (i), i = 1, . . . , d .

Note that Û is well defined on [0,1]d\{0} and can be extended by continuity at {0} by setting
Û(0) = U(0) = (0,0)′. Moreover, if G̃ has independent components, then Ŵ = 0.

Proof of Proposition 6.1. Let us define the functions p̄n,i by

p̄n,i (τi) = − ln
(
H̃n

(
τ (i)

)) = − ln(H̃n((0, . . . ,0, τi,0, . . . ,0))), i = 1, . . . , d.
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The generalized inverse of p̄n,i is given for 0 < τ̄ ≤ rn by

p̄←
n,i(τ̄ ) = inf

{
τ ≥ 0 :

rnkn∑
j=1

1{Xj,i>F←
i (1−τ/rn)} ≥ knτ̄

}
= rnF̄i

(
X(�knτ̄
),i

)
since F←

i (Fi(X(�knτ̄
),i )) = X(�knτ̄
),i . Without loss of generality, assume that p̄←
n,i(0) = 0. Note

that p̄←
n,i(·) is a caglad function on [0,1]. Letting π̃i (τ ) = τi , we have

Ĥn(τ ) = Hn(p̄
←
n,1(π̃1(τ )), . . . , p̄←

n,d(π̃d(τ ))).

Let us introduce the functions p̄n, p̄inv
n and ed from [0,1]d to Rd defined by

p̄n(τ ) = (p̄n,1(π̃1(τ )), . . . , p̄n,d (π̃d(τ )))′,

p̄inv
n (τ ) = (p̄←

n,1(π̃1(τ )), . . . , p̄←
n,d(π̃d(τ )))′,

ed(τ ) = τ .

By Theorem 6.1, we have p̄n(·) ⇒ ed(·) in D([0,1]d) × · · · × D([0,1]d). It is easily deduced
that p̄inv

n (·) ⇒ ed(·) in D([0,1]d) × · · · × D([0,1]d).
Let us define the processes

Ṽn(τ ) = √
kn

(
Hn(τ ) − H(τ )

)
= Vn(τ ) + √

kn

(
P

(
N

(τ )
rn,1 = 0

) − P
(
N(τ ) = 0

))
,

W̃n(τ ) = √
kn

(
(− ln H̃n(τ )) − (− ln H̃ (τ ))

)
= Wn(τ ) + √

kn

(
rn

(
1 − F(urn(τ ))

) + ln H̃ (τ )
)

and let Ũn(τ ) = (Ṽn(τ ), W̃n(τ ))′. By (C3)(i), we have

sup
τ∈[0,1]d

∣∣√kn

(
P

(
N

(τ )
rn,1 = 0

) − P
(
N(τ ) = 0

))∣∣ → 0 as n → ∞,

sup
τ∈[0,1]d

∣∣√kn

(
rn

(
1 − F(urn(τ ))

) + ln H̃ (τ )
)∣∣ → 0 as n → ∞

and it follows that

Ũn(·) ⇒ U(·)
in D([0,1]d) × D([0,1]d). By using the continuous mapping theorem (CMT) and similar argu-
ments as in the beginning of the proof of Theorem 4.2 in [37], we deduce that

Ũn(p̄
inv
n (·)) ⇒ U(·)

in D([0,1]d) × D([0,1]d).
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Next, note that

V̂n(τ ) = Ṽn(p̄
inv
n (τ )) + √

kn

(
H(p̄inv

n (τ )) − H(τ )
)
,

Ŵn(τ ) = W̃n(p̄
inv
n (τ )) + √

kn

(− ln H̃ (p̄inv
n (τ )) − (− ln H̃ (τ ))

)
.

Since W̃n ⇒ W in D([0,1]d), we have√
kn

(
p̄n(·) − ed(·)) ⇒ Z(·)

in D([0,1]d) × · · · × D([0,1]d). By using Vervaat’s lemma [44], we get√
kn

(
p̄inv

n (·) − ed(·)) ⇒ −Z(·)
in D([0,1]d)×· · ·×D([0,1]d). We deduce from the differentiability of H and H̃ , and the finite
increments formula, that√

kn

(
H(p̄inv

n (·)) − H(·)
− ln H̃ (p̄inv

n (·)) − (− ln H̃ (·))
)

⇒
( −∇H(·)′Z(·)

H̃−1(·)∇H̃ (·)′Z(·)
)

in D([0,1]d) × D([0,1]d).
Finally, we get

Ûn(·) ⇒ U (·) +
( −∇H(·)′Z(·)

H̃−1(·)∇H̃ (·)′Z(·)
)

in D([0,1]d) × D([0,1]d). �

Let κ̄ = 1/ sup{(− ln H̃ (τ ))−1 ∨d
i=1 τi :τ ∈ [0,1]d\{0}} and introduce, for (κ,τ ) ∈ [0, κ̄] ×

[0,1]d ,

V Ž
n (κ,τ ) = √

kn

(
HŽ

n (κ,τ ) − e−θ(τ )κ)
,

WŽ
n (κ,τ ) = √

kn

(
QŽ

n (κ,τ ) − κ
)
,

where

HŽ
n (κ,τ ) = 1

kn

kn∑
j=1

1{N(κ,τ )
rn,j =0} and QŽ

n (κ,τ ) = 1

kn

kn∑
j=1

N
(κ,τ )
rn,j .

We define an additional intermediate D([0, κ̄]) × D([0, κ̄])-valued process by U Ž
n (κ,τ ) =

(V Ž
n (κ,τ ),WŽ

n (κ,τ ))′, κ ∈ [0, κ̄]. Observe that U Ž
n depends on the estimated series (Ž

(τ )
l )l≥1

and on the unknown threshold v
(τ )
n (κ). It is worth mentioning that U Ž

n and Ûn are closely related
since

U Ž
n (κ,τ ) = Ûn(κ(− ln H̃ (τ ))−1τ).
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Corollary 6.1. Suppose that (C1), (C2) and (C3) hold. Then for τ ∈ [0,1]d\{0},

U Ž
n ((·),τ ) ⇒ Û

(
τ (− ln H̃ (τ ))−1(·))

in D([0, κ̄]) × D([0, κ̄]).

Proof. We have

N
(κ,τ )
rn,j =

∑
l∈Ij

1{Ž(τ )
l >v

(τ )
rn (κ)} =

∑
l∈Ij

1{maxi=1,...,d τi
knrn

(knrn+1−Rl,i )
>(− ln H̃ (τ ))rn/κ}

=
∑
l∈Ij

1{⋃i=1,...,d (Rl,i>knrn+1−τiκ(− ln H̃ (τ ))−1kn)}

=
∑
l∈Ij

1{⋃i=1,...,d (Xl,i>X
(�τiκ(− ln H̃ (τ ))−1kn
),i )} = N̂

(κ(− ln H̃ (τ ))−1τ )
rn,j

and it follows that

U Ž
n (κ,τ ) = Ûn(τ (− ln H̃ (τ ))−1κ).

Fix τ ∈ [0,1]d\{0} and consider the function κ �→ U Ž,κ
n (κ,τ ) from [0, κ̄] to R2 as an el-

ement of D([0, κ̄]) × D([0, κ̄]). Since the map from D([0,1]d) to D([0, κ̄]) taking f (·) to
f ((− ln H̃ (τ ))−1τ (·)) is continuous for any τ ∈ [0,1]d\{0}, we deduce, by the CMT, that

U Ž
n ((·),τ ) ⇒ Û(τ (− ln H̃ (τ ))−1(·))

in D([0, κ̄]) × D([0, κ̄]). �

We now derive, from Proposition 6.1 and Corollary 6.1, the distributional asymptotics of the
estimators. Let us define, for τ ∈ [0,1]d\{0},

θ̃n(τ ) = − ln Ĥn(τ )

− ln ̂̃
Hn(τ )

, �(τ ) = 1

ln H̃ (τ )

(
V̂ (τ )H−1(τ ) + Ŵ (τ )θ(τ )

)
.

Note that �(·) has continuous sample paths on [0,1]d\{0}.
By proper cube we mean a cube included in [0,1]d which does not contain {0}.

Corollary 6.2. Suppose that (C1), (C2) and (C3) hold. Let Cd be a proper cube. Then,√
kn

(
rCd

θ̃n(·) − rCd
θ(·)) ⇒ rCd

�(·)

in D(Cd).
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Proof. We first recall that a map � between topological vector spaces Bi , i = 1,2, is called
Hadamard differentiable tangentially to some subset S ⊂ B1 at f ∈ B1 if there exists a continu-
ous linear map ∇�(f ) from B1 to B2 such that

�(f + tngn) − �(f )

tn
→ ∇�(f ) · g

for all sequences tn ↓ 0 and gn ∈ B1 converging to g ∈ S. Let D(Cd ,E) (resp., C(Cd ,E)) be the
space of functions from Cd to the set E ⊂ R which are “continuous from below, with limits from
above” (resp., continuous). Let us consider the map � from D(Cd , (0,1)) × D(Cd, (0,∞)) to
D(Cd , (0,∞)) defined by

�(f1, f2) = − lnf1

f2
.

Note that this map is Hadamard differentiable tangentially to C(Cd ,R) × C(Cd ,R) at any
(f1, f2) ∈ C(Cd , (0,1)) × C(Cd , (0,∞)). Moreover, ∇�(f1, f2) is defined and continuous on
C(Cd,R) × C(Cd ,R) and is given by

∇�(f1, f2) · (g1, g2) = − 1

f1f2
g1 + lnf1

(f2)2
g2.

Since

rCd
θ̃n(·) = �

(
rCd

Ĥn(·), rCd
(− ln ̂̃

Hn)(·)
)
,

we deduce by the δ-method (see Theorem 3.9.4 in [43]) and Proposition 6.1 that√
kn

(
rCd

θ̃n(·) − rCd
θ(·)) ⇒ rCd

�(·)

in D(Cd). �

We end this section with the proof of Theorem 4.1.

Proof of Theorem 4.1. Let m ≥ 1 and τ 1, . . . ,τm ∈ �L. There exists Cd ⊂ [0,1]d such that
τ 1/L(τ 1), . . . ,τm/L(τm) ∈ Cd . By Corollary 6.2, we deduce that

√
kn

(
θ̂ (1)
n (τ i ) − θ(τ i )

)
i=1,...,m

⇒
(

�

(
τ i

L(τ i )

))
i=1,...,m

.

Let m ≥ 1 and τ 1, . . . ,τm ∈ �κ . By using similar arguments as for the proof of Corollary 6.1,
we have

(U Ž
n (·,τ i ))i=1,...,m ⇒

(
Û

(
τ i

(− ln H̃ (τ i ))
(·)

))
i=1,...,m
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in (D([0, κ̄]))2m. Let us consider the thresholds

v̂(τ i )
rn

(κ) = Ž
(τ i )
(�knκ
) = v(τ i )

rn

(
rn(− ln H̃ (τ i ))

Ž
(τ i )
(�knκ
)

)
, i = 1, . . . ,m.

Recall that √
kn

(
QŽ

n ((·),τ i ) − (·)) ⇒ Ŵ

(
(·) τ i

(− ln H̃ (τ i ))

)
in D([0, κ̄]). By using Vervaat’s lemma [44], we deduce that

√
kn

(
rn(− ln H̃ (τ i ))

Ž
(τ i )
(�kn(·)
)

− (·)
)

⇒ −Ŵ

(
(·) τ i

(− ln H̃ (τ i ))

)
in D([0, κ̄]). Note that

√
kn

(
1

kn

kn∑
j=1

1{N̂(κ,τ )
rn,j =0} − e−θ(τ i )(·)

)

= V Ž
n

(
rn(− ln H̃ (τ i ))

Ž
(τ i )
(�kn(·)
)

,τ i

)
+ √

kn

(
e−θ(τ i )rn(− ln H̃ (τ i ))/Ž

(τ i )

(�kn(·)
) − e−θ(τ i )(·)).
We then deduce by the CMT and Corollary 6.1 that

V Ž
n

(
rn(− ln H̃ (τ i ))

Ž
(τ i )
(�kn(·)
)

,τ i

)
⇒ V̂

(
(·) τ i

(− ln H̃ (τ i ))

)
in D([0, κ̄]), by the finite increments formula and the CMT that√

kn

(
e−θ(τ i )rn(− ln H̃ (τ i ))/Ž

(τ i )

(�kn(·)
) − e−θ(τ i )(·)) ⇒ θ(τ i )e
−θ(τ i )(·)Ŵ

(
(·) τ i

(− ln H̃ (τ i ))

)
and by the δ-method that√

kn

(
θ̂ (2)
n (τ i ) − θ(τ i )

)
⇒ eθ(τ i )(·)

−(·)
(

V̂

(
(·) τ i

(− ln H̃ (τ i ))

)
+ θ(τ i )e

−θ(τ i )(·)Ŵ
(

(·) τ i

(− ln H̃ (τ i ))

))
= 1

−(·)
(

eθ(τ i )(·)V̂
(

(·) τ i

(− ln H̃ (τ i ))

)
+ θ(τ i )Ŵ

(
(·) τ i

(− ln H̃ (τ i ))

))
.

Since

ln H̃

(
κ

τ i

(− ln H̃ (τ i ))

)
= −κ and H

(
κ

τ i

(− ln H̃ (τ i ))

)
= e−θ(τ i )κ,
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we have

1

−κ

(
eθ(τ i )κV̂

(
κ

τ i

(− ln H̃ (τ i ))

)
+ θ(τ i )Ŵ

(
κ

τ i

(− ln H̃ (τ i ))

))
= �

(
κ

τ i

(− ln H̃ (τ i ))

)
.

Finally, fix κ and deduce that

√
kn

(
θ̂ (2)
n (τ i ) − θ(τ i )

)
i=1,...,m

⇒
(

�

(
κ

τ i

(− ln H̃ (τ i ))

))
i=1,...,m

. �

7. Discussion

In this paper, we have developed new estimators for the multivariate extremal index function. In
order to construct scale invariant estimators, we have used a homogeneous transformation for the
first estimator, but it leads to the question of the choice of the optimal transformation. We have
also considered a second estimator which is scale invariant without transformation. One may also
exploit averaging methods and consider, for example, the estimator defined by

θ̂ (3)
n (τ ) = 1

φ − σ

∫ φ

σ

− ln Ĥn(κτ 0)

− ln ̂̃
Hn(κτ 0)

dκ, τ ∈ Lτ0 ≡ {κτ 0 : κ > 0},

where 0 < σ < φ < ∞. We have studied the weak convergence of our estimators as pointwise es-
timators and given their asymptotic distributions. To study their weak convergence as functional
estimators, one must construct a specific functional space which is different from the Skoro-
hod space of caglad functions which does not contain the set of scale invariant functions, then
study their asymptotic properties in this space. This seems to be an important avenue for future
research.

Appendix A. Proofs of Propositions 2.1 and 4.1

Proof of Proposition 2.1. Let λ > 0. We have

nP
(
Z

(τ )
l > nλ−1)

= nP

(
d⋃

i=1

((
1 − Fi,−(Xl,i)

)−1
> n(τiλ)−1))

= nP

(
d⋃

i=1

(
Xl,i > F←

i,−(1 − n−1τiλ)
))

,
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where F←
i,−(τ ) = inf{x ∈ R :Fi(x) > τ }. Since F←

i (τ ) ≤ F←
i,−(τ ) for each τ ∈ (0,1), we have

0 ≤ nP

(
d⋃

i=1

(
Xl,i > un,i(τiλ)

)) − nP

(
d⋃

i=1

(
Xl,i > F←

i,−(1 − n−1τiλ)
))

≤ nP

(
d⋃

i=1

(
F←

i (1 − n−1τiλ) < Xl,i ≤ F←
i,−(1 − n−1τiλ)

))

= nP

(
d⋃

i=1

(
Xl,i = F←

i,−(1 − n−1τiλ)
))

≤
d∑

i=1

nP
(
Xl,i = F←

i,−(1 − n−1τiλ)
)
.

Note that

lim
n→∞

P(Xl,i = F←
i,−(1 − n−1τiλ))

τiλ/n
= lim

n→∞
P(Xl,i = F←

i,−(1 − n−1τiλ))

P (Xl,i > un,i(τiλ))

= lim
x→xf,i

F̄i (x) − F̄i(x−)

F̄i(x)
= 0

and then

lim
n→∞nP

(
Z

(τ )
l > nλ−1) = lim

n→∞nP

(
d⋃

i=1

(
Xl,i > un,i(τiλ)

))
.

By (1.2) and the homogeneity property of − ln H̃ , it follows that

lim
n→∞nP

(
Z

(τ )
l > nλ−1) = lim

n→∞n
(
1 − F(un(λτ ))

) = − ln H̃ (λτ ) = λ(− ln H̃ (τ )).

By taking λ = κ(− ln H̃ (τ ))−1, we deduce that

lim
n→∞nP

(
Z

(τ )
l > v(τ )

n (κ)
) = κ.

We now have

P

(
max

l=1,...,n
Z

(τ )
l ≤ v(τ )

n (κ)

)
= P

(
max

l=1,...,n
max

i=1,...,d
τiYl,i ≤ n(− ln H̃ (τ ))κ−1

)
= P

(
max

i=1,...,d
τi max

l=1,..,n
Yl,i ≤ n(− ln H̃ (τ ))κ−1

)
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= P

(
max

i=1,...,d

τi

1 − Fi,−(Mn,i)
≤ n(− ln H̃ (τ ))κ−1

)
= P

(
Mn,i ≤ F←

i,−
(
1 − n−1κτi(− ln H̃ (τ ))−1), i = 1, . . . , d

)
.

Note that

P
(
Mn,i ≤ F←

i,−
(
1 − n−1κτi(− ln H̃ (τ ))−1), i = 1, . . . , d

)
−P

(
Mn,i ≤ F←

i

(
1 − n−1κτi(− ln H̃ (τ ))−1), i = 1, . . . , d

)
= P

(
Mn,i = F←

i,−
(
1 − n−1κτi(− ln H̃ (τ ))−1), i = 1, . . . , d

)
≤

d∑
i=1

nP
(
Xl,i = F←

i,−
(
1 − n−1κτi(− ln H̃ (τ ))−1)) →

n→∞ 0.

It follows that

lim
n→∞P

(
M(Z)

n ≤ v(τ )
n (κ)

)
= lim

n→∞P
(
Mn,i ≤ F←

i

(
1 − n−1κτi(− ln H̃ (τ ))−1), i = 1, . . . , d

)
= H(κτ (− ln H̃ (τ ))−1) = H̃ (κτ (− ln H̃ (τ ))−1)θ(κτ (− ln H̃ (τ ))−1)

= e−θ(τ )κ,

which means that θ(τ ) is the univariate extremal index of the stationary sequence (Z
(τ )
n )n≥1. �

Proof of Proposition 4.1. The proof follows the corresponding lines of the proof of Proposi-
tion 1 in [30]. Let τ 1,τ 2 ∈ [0,∞)d\{0} and s be a positive constant. Define

Rn(sn,τ 1,τ 2) = (
N

(τ 1,τ 2)
n,0,sn ,N

(τ 1,τ 2)
n,1,sn ,N

(τ 1,τ 2)
n,2,sn ,N

(τ 1,τ 2)
n,3,sn

)′
.

By considering a �(un(τ 1),un(τ 2))-separating sequence, (rn)n≥1, and Berstein’s blocks method
(see Lemma 2.2 in [15] or the proof of Lemma 6.7 in [37]), we get

lim
n→∞

∣∣E(
eiv′Rn(sn,τ 1,τ 2)

) − (
E

(
eiv′Rn(rn,τ 1,τ 2)

))mn
∣∣ = 0,

where mn = �sn/rn�, �x� denotes the integer part of x and v ∈ R4. Now, note that

E
(
eiv′Rn(rn,τ 1,τ 2)

) = P
(
N

(τ 1,τ 2)
n,0,rn

= 0
) + E

(
eiv′Rn(rn,τ 1,τ 2)|N(τ 1,τ 2)

n,0,rn
> 0

)
P

(
N

(τ 1,τ 2)
n,0,rn

> 0
)
.

Since (rn)n≥1 is a �(un(τ 1),un(τ 2))-separating sequence and

lim
n→∞P

(
N

(τ 1,τ 2)
n,0,n = 0

) = e−θ(τ 1∨τ 2) ln(H̃ (τ 1∨τ 2)),
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we have

lim
n→∞

n

rn
P

(
N

(τ 1,τ 2)
n,0,rn

> 0
) = −θ(τ 1 ∨ τ 2) ln

(
H̃ (τ 1 ∨ τ 2)

)
.

We then deduce that

E
(
eiv′Rn(sn,τ 1,τ 2)

) = exp
(
mnP

(
N

(τ 1,τ 2)
n,0,rn

> 0
)
E

(
eiv′Rn(rn,τ 1,τ 2) − 1|N(τ 1,τ 2)

n,0,rn
> 0

)) + o(1).

On one hand, we have

lim
n→∞ E

(
eiv′Rn(sn,τ 1,τ 2)

) = exp
(−sθ(τ 1 ∨ τ 2) ln

(
H̃ (τ 1 ∨ τ 2)

)(
Eeiv′ζ (τ1,τ2)

l − 1
))

where ζ
(τ 1,τ 2)
l = (ζ

(τ 1,τ 2)
1,l + ζ

(τ1,τ 2)
2,l + ζ

(τ 1,τ2)
3,l , ζ

(τ1,τ 2)
1,l , ζ

(τ 1,τ 2)
2,l , ζ

(τ 1,τ 2)
3,l )′. In particular, we de-

rive the weak convergence of the sequence (Rn(n,τ 1,τ 2))n≥1 by choosing s = 1.
On the other hand, it is easily seen by using the definition of un(τ ) that

lim
n→∞ E

(
eiv′Rn(sn,τ 1,τ 2)

) = lim
n→∞ E

(
eiv′Rsn(sn,sτ 1,sτ2)

) = lim
n→∞ E

(
eiv′Rn(n,sτ 1,sτ 2)

)
= exp

(−sθ(τ 1 ∨ τ 2) ln
(
H̃ (τ 1 ∨ τ 2)

)(
Eeiv′ζ (sτ1,sτ2) − 1

))
.

Therefore, Eeiv′ζ (sτ1,sτ2) = Eeiv′ζ (τ1,τ2)
and it follows that π(τ 1,τ 2) is scale invariant. �

Appendix B. Covariance function of �

Let us define the functions Ci,j (·, ·) for i = 1,2 and j = 1,2 by

C1,1(τ 1,τ 2) = H(τ 1 ∨ τ 2) − H(τ 1)H(τ 2),

C2,2(τ 1,τ 2) = −θ(τ 1 ∨ τ 2) ln
(
H̃ (τ 1 ∨ τ 2)

)
E

((
ζ

(τ1,τ 2)
1 + ζ

(τ 1,τ 2)
3

)(
ζ

(τ1,τ 2)
2 + ζ

(τ 1,τ 2)
3

))
,

C1,2(τ 1,τ 2) = E
(
N

(τ1,τ 2)
2 1{N(τ1,τ2)

1 =0,N
(τ1,τ2)

3 =0}
) + H(τ 1) ln H̃ (τ 2),

C2,1(τ 1,τ 2) = E
(
N

(τ1,τ 2)
1 1{N(τ1,τ2)

2 =0,N
(τ1,τ2)

3 =0}
) + H(τ 2) ln H̃ (τ 1).

Note that C1,2(τ 2,τ 1) = C2,1(τ 1,τ 2).
Let us now characterize the covariance function of the process �. We have

cov(�(τ 1),�(τ 2))

= 1

H(τ 1) ln H̃ (τ 1)

1

H(τ 2) ln H̃ (τ 2)
G1,1(τ 1,τ 2) + θ(τ 2)

H(τ 1) ln H̃ (τ 1)
G1,2(τ 1,τ 2)

+ θ(τ 1)

H(τ 2) ln H̃ (τ 2)
G2,1(τ 1,τ 2) + θ(τ 1)θ(τ 2)G2,2(τ 1,τ 2),



The multivariate extremal index function 1061

where

G1,1(τ 1,τ 2) = C1,1(τ 1,τ 2) − H(τ 1)

d∑
i=1

∂ lnH(τ 1)

∂τi,1
C2,1

(
τ

(i)
1 ,τ 2

)

−H(τ 2)

d∑
i=1

∂ lnH(τ 2)

∂τi,2
C1,2

(
τ 1,τ

(i)
2

)

+H(τ 1)H(τ 2)

d∑
i=1

d∑
j=1

∂ lnH(τ 1)

∂τi,1

∂ lnH(τ 2)

∂τj,2
C2,2

(
τ

(i)
1 ,τ

(j)

2

)
,

G1,2(τ 1,τ 2) = C1,2(τ 1,τ 2) − H(τ 1)

d∑
i=1

∂ lnH(τ 1)

∂τi,1
C2,2

(
τ

(i)
1 ,τ 2

)

+
d∑

i=1

∂ ln H̃ (τ 2)

∂τi,2
C1,2

(
τ 1,τ

(i)
2

)

−H(τ 1)

d∑
i=1

d∑
j=1

∂ lnH(τ 1)

∂τi,1

∂ ln H̃ (τ 2)

∂τj,2
C2,2

(
τ

(i)
1 ,τ

(j)

2

)
,

G2,1(τ 1,τ 2) = C2,1(τ 1,τ 2) +
d∑

i=1

∂ ln H̃ (τ 1)

∂τi,1
C2,1

(
τ

(i)
1 ,τ 2

)

−H(τ 2)

d∑
i=1

∂ lnH(τ 2)

∂τi,2
C2,2

(
τ 1,τ

(i)
2

)

−H(τ 2)

d∑
i=1

d∑
j=1

∂ ln H̃ (τ 1)

∂τi,1

∂ lnH(τ 2)

∂τj,2
C2,2

(
τ

(i)
1 ,τ

(j)

2

)
,

G2,2(τ 1,τ 2) = C2,2(τ 1,τ 2) +
d∑

i=1

∂ ln H̃
(
τ 1

)
∂τi,1

C2,2
(
τ

(i)
1 ,τ 2

)

+
d∑

i=1

∂ ln H̃ (τ 2)

∂τi,2
C2,2

(
τ 1,τ

(i)
2

)

+
d∑

i=1

d∑
j=1

∂ ln H̃ (τ 1)

∂τi,1

∂ ln H̃ (τ 2)

∂τj,2
C2,2

(
τ

(i)
1 ,τ

(j)

2

)
.
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