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We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We
mix least-squares estimators from various models according to a procedure inspired by that of Leung and
Barron [IEEE Trans. Inform. Theory 52 (2006) 3396–3410]. We show that in some cases, the resulting
estimator is a simple shrinkage estimator. We then apply this procedure to perform adaptive estimation in
Besov spaces. Our results provide non-asymptotic risk bounds for the Euclidean risk of the estimator.
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1. Introduction

We consider the regression framework, where we have noisy observations

Yi = μi + σεi, i = 1, . . . , n, (1)

of an unknown vector μ = (μ1, . . . ,μn)
′ ∈ R

n. We assume that the εi ’s are i.i.d. standard
Gaussian random variables and that the noise level σ > 0 is unknown. Our aim is to estimate μ.

In this direction, we introduce a finite collection {Sm,m ∈ M} of linear spaces of R
n, which

we shall henceforth call models. To each model Sm, we associate the least-squares estimator
μ̂m = �Sm

Y of μ on Sm, where �Sm
denotes the orthogonal projector onto Sm. The L2-risk of

the estimator μ̂m with respect to the Euclidean norm ‖ · ‖ on R
n is

E[‖μ − μ̂m‖2] = ‖μ − �Sm
μ‖2 + dim(Sm)σ 2. (2)

Two strategies have emerged to handle the problem of the choice of an estimator of μ in this
setting. One strategy is to select a model Sm̂ with a data-driven criterion and use μ̂m̂ to estimate
μ. In the favorable cases, the order of risk of this estimator is the minimum over M of the risks
(2). Model selection procedures have received a lot of attention in the literature, starting from the
pioneering work of Akaike [1] and Mallows [19]. It is beyond the scope of this paper to provide
a historical review of the topic. We simply mention, in the Gaussian setting, the papers of Birgé
and Massart [7,8] (influenced by Barron and Cover [5] and Barron, Birgé and Massart [4]) which
give non-asymptotic risk bounds for a selection criterion generalizing Mallows’ Cp .
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An alternative to model selection is mixing. One estimates μ by a convex (or linear) combina-
tion of the μ̂m’s,

μ̂ =
∑

m∈M
wmμ̂m, (3)

with weights wm which are σ(Y )-measurable random variables. This strategy is not suitable
when the goal is to select a single model Sm̂; nevertheless, it enjoys the nice property that μ̂

may perform better than the best of the μ̂m’s. Various choices of weights wm have been pro-
posed, from an information-theoretic or Bayesian perspective. Risk bounds have been provided
by Catoni [11], Yang [25,27], Tsybakov [23] and Bunea et al. [9] for regression on a random
design, and by Barron [3], Catoni [10] and Yang [26] for density estimation. For the Gaussian
regression framework we consider here, Leung and Barron [18] propose a mixing procedure for
which they derive a precise non-asymptotic risk bound. When the collection of models is not
too complex, this bound shows that the risk of their estimator μ̂ is close to the minimum over
M of the risks (2). Another nice feature of their mixing procedure is that both the weights wm

and the estimators μ̂m are built on the same data set. This enables their procedure to handle
cases where we cannot split the data into several sets, for example, in the fixed-design regression
framework. Unfortunately, their choice of the weights wm depends on the variance σ 2, which is
usually unknown.

In the present paper, we consider the more practical situation where the variance σ 2 is un-
known. Our mixing strategy is akin to that of Leung and Barron [18], but is not dependent on the
variance σ 2. In addition, we show that both our estimator and the estimator of Leung and Bar-
ron are simple shrinkage estimators in some cases. From a theoretical point of view, we relate
our weights wm to a Gibbs measure on M and derive a sharp risk bound for the estimator μ̂.
Roughly, this bound says that the risk of μ̂ is close to the minimum over M of the risks (2) in the
favorable cases. We then discuss the choice of the collection of models {Sm,m ∈ M} in various
situations. Among others, we produce an estimation procedure which is rate-minimax adaptive
over a large class of Besov balls.

Before presenting our mixing procedure, we briefly recall that of Leung and Barron [18].
Assuming that the variance σ 2 is known, they use the weights

wm = πm

Z exp
(−β[‖Y − μ̂m‖2/σ 2 + 2 dim(Sm) − n]), m ∈ M, (4)

where {πm, m ∈ M} is a given prior distribution on M and Z normalizes the sum of the wm’s
to one. These weights have a Bayesian flavor. Indeed, they appear with β = 1/2 in Hartigan
[16], which considers the Bayes procedure with the following (improper) prior distribution: pick
an m in M according to πm and then sample μ ‘uniformly’ on Sm. Nevertheless, in Leung
and Barron [18], the role of the prior distribution {πm, m ∈ M} is to favor models with low
complexity. Therefore, the choice of πm is driven by the complexity of the model Sm rather than
from a prior knowledge of μ. In this sense their approach differs from the classical Bayesian
point of view. Note that the term ‖Y − μ̂m‖2/σ 2 + 2 dim(Sm) − n appearing in the weights (4)
is an unbiased estimator of the risk (2) rescaled by σ 2. The size of the weight wm then depends
on the difference between this estimator of the risk (2) and − log(πm), which can be thought
as a complexity-driven penalty (in the spirit of Barron and Cover [5] or Barron et al. [4]). The



Mixing least-squares estimators when the variance is unknown 1091

parameter β tunes the balance between these two terms. For β ≤ 1/4, Theorem 5 of [18] provides
a sharp risk bound for the procedure.

The rest of the paper is organized as follows. We present our mixing strategy in the next sec-
tion and express in some cases the resulting estimator μ̂ as a shrinkage estimator. In Section 3,
we state non-asymptotic risk bounds for the procedure and discuss the choice of the tuning para-
meters. Finally, in Section 4, we propose some weighting strategies for estimating BV functions
or for adaptive regression over Besov balls. Section 6 is devoted to the proofs.

We end this section with some notation which we shall use throughout this paper. We write
|m| for the cardinality of a finite set m and 〈x, y〉 for the inner product of two vectors x and y in
R

n. For any real number x, we denote by (x)+ its positive part and by �x	 its integer part.

2. The estimation procedure

We assume henceforth that n ≥ 3.

2.1. The estimator

We start with a finite collection of models {Sm,m ∈ M} and to each model Sm, we associate
the least-squares estimator μ̂m = �Sm

Y of μ on Sm. We also introduce a probability distribution
{πm, m ∈ M} on M, which is meant to take into account the complexity of the family and to
favor models with low dimension. For example, if the collection {Sm,m ∈ M} has (at most)
ead models per dimension d , we suggest the choise πm ∝ e(a+1/2)dim(Sm); see the example at
the end of Section 3.1. As mentioned before, the quantity − log(πm) can be interpreted as a
complexity-driven penalty associated to the model Sm (in the sense of Barron et al. [4]). The
performance of our estimation procedure strongly depends on the choice of the collection of
models {Sm,m ∈ M} and the probability distribution {πm,m ∈ M}. In Section 4, we discuss
some suitable choices of these families for estimating BV or Besov functions.

Hereafter, we assume that there exists a linear space S∗ ⊂ R
n of dimension p < n such that

Sm ⊂ S∗ for all m ∈ M. We will then roughly estimate the variance of the noise by

σ̂ 2 = ‖Y − �S∗Y‖2

N∗
, (5)

where N∗ = n − p. We emphasize that we do not assume that μ ∈ S∗ and the estimator σ̂ 2 is
(positively) biased in general. It turns out that our estimation procedure does not need a precise
estimation of the variance σ 2 and the choice (5) gives good results; see the discussion in the next
section.

Finally, we associate to the collection of models {Sm,m ∈ M} a collection {Lm,m ∈ M} of
non-negative weights. We recommend setting Lm = dim(Sm)/2, but any (sharp) upper bound
of this quantity may also be appropriate; see the discussion after Theorem 1. Then, for a given
positive constant β , we define the estimator μ̂ by

μ̂ =
∑

m∈M
wmμ̂m with wm = πm

Z exp

(
β

‖μ̂m‖2

σ̂ 2
− Lm

)
, (6)
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where Z is a constant that normalizes the sum of the wm’s to one. An alternative formula for
wm is wm = πm exp(−β‖Y − μ̂m‖2/σ̂ 2 −Lm)/Z ′ with Z ′ = e−β‖Y‖2/σ̂ 2 Z . We can interpret the
term ‖Y − μ̂m‖2/σ̂ 2 + Lm/β appearing in the exponential as a (biased) estimate of the risk (2)
rescaled by σ 2. As in (4), the balance in the weight wm between this estimate of the risk and the
penalty − log(πm) is tuned by β . We refer to the discussion after Theorem 1 for the choice of
this parameter. The weights {wm,m ∈ M} can be viewed as a Gibbs measure on M and we will
use this property to assess the performance of the procedure. We will also see in Section 2.3 that
μ̂ reduces to a simple shrinkage estimator in some cases.

2.2. On the choice of σ̂ 2

In our estimation procedure, we do not assume that μ ∈ S∗, so σ̂ 2 has a bias ‖μ − �S∗μ‖2/N∗.
In particular, if �S∗μ is a poor approximation of μ, then both σ̂ 2 and the {μ̂m, m ∈ M} behave
poorly. As explained in Section 3, we can actually consider spaces S∗ with codimension N∗
of order only logn, which means that S∗ can be very large. A clever choice of S∗ should then
prevent a large bias. For example, let us consider the case where μi = f (xi) and the models
Sm are built on wavelets. The variance is then estimated by regressing the observations on the
wavelets of high order. The result of Section 4.2 shows that when the f belongs to some Besov
ball Bα

p,∞(R), this estimation of the variance is reasonable enough to obtain an adaptive rate-
minimax estimation of the signal.

Finally, we may, in practice, replace the residual estimator σ̂ 2 by a difference-based estimator
(Rice [21], Hall et al. [15], Munk et al. [20], Tong and Wang [22], Wang et al. [28], etc.) or by
any nonparametric estimator (e.g., Lenth [17]). These choices should give good results, but we
are not able to prove any bound similar to (11) or (12) when using one of these estimators.

2.3. A simple shrinkage estimator

In this section, we focus on the case where M consists of all the subsets of {1, . . . , p}, for some
p < n and Sm = span{vj , j ∈ m} with {v1, . . . , vp} an orthonormal family of vectors in R

n. We
use the convention S∅ = {0} and S∗ corresponds here to S{1,...,p}. An example of such a setting
is given in Section 4.1.

To favor models with small dimensions, we choose the probability distribution π ,

πm =
(

1 + 1

pα

)−p

p−α|m|, m ∈ M, (7)

with α > 0. We also set Lm = b|m| for some b ≥ 0.

Proposition 1. Under the above assumptions, we have the following expression for μ̂:

μ̂ =
p∑

j=1

(cjZj )vj , with Zj = 〈Y,vj 〉 and cj = exp(βZ2
j /σ̂

2)

pα exp(b) + exp(βZ2
j /σ̂

2)
. (8)
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The proof of this proposition is postponed to Section 6.1. The main interest of (8) is to allow
a fast computation of μ̂. Indeed, we only need to compute the p coefficients cj instead of the 2p

weights wm of (6).
The coefficients cj are shrinkage coefficients taking values in [0,1]. They are close to one

when Zj is large and close to zero when Zj is small. The transition from 0 to 1 occurs when
Z2

j ≈ β−1(b + α logp)σ̂ 2. The choice of the tuning parameters α, β and b will be discussed in
Section 3.2.

Remark 1. Other choices are possible for {πm, m ∈ M} and they lead to different cj ’s. Let us
mention the choice πm = ((p + 1)

(
p

|m|
)
)−1, for which the cj ’s are given by

cj =
∫ 1

0 q
∏

k �=j [q + (1 − q) exp(−βZ2
k/σ̂

2 + b)]dq∫ 1
0

∏p

k=1[q + (1 − q) exp(−βZ2
k/σ̂

2 + b)]dq
for j = 1, . . . , p.

This formula can be derived from the Appendix of Leung and Barron [18].

Remark 2. When the variance is known, we can give a formula similar to (8) for the estimator of
Leung and Barron [18]. Let us consider the same setting, with p ≤ n. Then, when the distribution
{πm, m ∈ M} is given by (7), the estimator (3) with weights wm given by (4) takes the form (8)

with cj = eβZ2
j /σ 2

/(pαe2β + eβZ2
j /σ 2

).

3. The performance

3.1. A general risk bound

The next result gives an upper bound on the L2-risk of the estimation procedure. We remind the
reader that n ≥ 3 and set

φ(x) = 1
2 (x − 1 − logx), (9)

which is decreasing on ]0,1[.

Theorem 1. Assume that β and N∗ fulfill the condition

β < 1/4 and N∗ ≥ 2 + logn

φ(4β)
, (10)

with φ defined by (9). Assume also that Lm ≥ dim(Sm)/2 for all m ∈ M. Then, we have the
following upper bounds on the L2-risk of the estimator μ̂:

E(‖μ − μ̂‖2)

≤ −(1 + εn)
σ̄ 2

β
log

[ ∑
m∈M

πme−β[‖μ−�Smμ‖2−dim(Sm)σ 2]/σ̄ 2−Lm

]
+ σ 2

2 logn
(11)
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≤ (1 + εn) inf
m∈M

{
‖μ − �Sm

μ‖2 + σ̄ 2

β
(Lm − logπm)

}
+ σ 2

2 logn
, (12)

where εn = (2n logn)−1 and σ̄ 2 = σ 2 + ‖μ − �S∗μ‖2/N∗.

The proof Theorem 1 is delayed to Section 6.3. Let us comment on this result.
We would like to compare the bounds of Theorem 1 with the minimum over M of the risks

given by (2). Roughly, the bound (12) states that the estimator μ̂ achieves the best trade-off
between the bias ‖μ−�Sm

μ‖2/σ 2 and the complexity term Cm = Lm − logπm. More precisely,
we derive from (12) the (cruder) bound

E(‖μ − μ̂‖2) ≤ (1 + εn) inf
m∈M

{
‖μ − �Sm

μ‖2 + 1

β
Cmσ 2

}
+ R∗

nσ 2, (13)

with

εn = 1

2n logn
and R∗

n = 1

2 logn
+ ‖μ − �S∗μ‖2

βN∗σ 2
sup

m∈M
Cm.

In particular, if Cm is of order dim(Sm), then (13) allows to compare the risk of μ̂ and the
infimum of the risks (2). We discuss this point in the following example.

Example. Assume that the family M has an index of complexity (K,a), as defined in [2], which
means that |{m ∈ M,dim(Sm) = d}| ≤ Kead for all d ≥ 1. If we choose

πm = e−(a+1/2)dim(Sm)∑
m′∈M e−(a+1/2)dim(Sm′ ) and Lm = dim(Sm)/2, (14)

then we have Cm ≤ (a + 1)dim(Sm) + log(3K). Therefore, when β is given by (15) and p ≤ κn

for some κ < 1, we have

E(‖μ − μ̂‖2) ≤ (1 + εn) inf
m∈M

{
‖μ − �Sm

μ‖2 + a + 1

β
dim(Sm)σ 2

}
+ R′

nσ
2,

with

R′
n = log(3K)

β
+ 1

2 logn
+ ‖μ − �S∗μ‖2

σ 2
× (a + 1)κ + n−1 log(3K)

β(1 − κ)
.

In particular, for a given index of complexity (K,a) and a given κ , the previous bound gives an
oracle inequality.

Let us discuss the bound (11). It may look somewhat cumberstone, but it improves (12) when
there are several good models to estimate μ. For example, we can derive from (11) the bound

E(‖μ − μ̂‖2) ≤ (1 + εn) inf
m∈M

{
‖μ − �Sm

μ‖2 + σ̄ 2

β
(Lm − logπm)

}
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+ inf
δ≥0

{
δ − σ̄ 2

β
log |Mδ|

}
+ σ 2

2 logn
,

where Mδ is the set made of those m∗ in M fulfilling

‖μ − �Sm∗ μ‖2 + σ̄ 2

β
(Lm∗ − logπm∗) ≤ δ + inf

m∈M

{
‖μ − �Sm

μ‖2 + σ̄ 2

β
(Lm − logπm)

}
.

In the extreme case where all the quantities ‖μ − �Sm
μ‖2 + σ̄ 2

β
(Lm − logπm) are equal, (11)

then improves (12) by a factor of β−1σ̄ 2 log |M|.

3.2. How to choose the parameters β and {Lm,m ∈ M}
The choice of the tuning parameters β and {Lm,m ∈ M} is important in practice. The choice
Lm = dim(Sm)/2 seems to be the most accurate since it satisfies the conditions of Theorem 1
and minimizes the right-hand side of (11) and (12). We shall mostly use this one in the following,
but there are some cases where it is easier to use some (sharp) upper bound of the dimension of
Sm instead of dim(Sm) itself; see, for example, Section 4.2.

We now turn to the choice of the parameter β . The largest parameter β fulfilling condition
(10) is

β = 1

4
φ−1

(
logn

N∗ − 2

)
<

1

4
. (15)

The choice of this value for β seems to be advisable, since it minimizes the right-hand side
of (11) and (12). Nevertheless, Bayesian arguments [16] suggest taking a larger value for β ,
namely β = 1/2. We discuss this issue below in the example of Section 2.3.

For the sake of simplicity, we will restrict our discussion to the case where the variance is
known (see [14] for the case where the variance is unknown). We consider the weights (4) pro-
posed by Leung and Barron, with the probability distribution πm = (1 + p−1)−pp−|m|. Accord-
ing to Remark 2 of Section 2.3, the estimator μ̂ then takes the form

μ̂ =
p∑

j=1

sβ(Zj/σ )Zjvj , with Zj = 〈Y,vj 〉 and sβ(z) = eβz2

pe2β + eβz2 . (16)

First, we note that a choice β > 1/2 is not recommended. Indeed, we can compare the shrink-
age coefficient sβ(Zj/σ ) to a threshold at level T = (2 + β−1 logp)σ 2 since sβ(Zj/σ ) ≥
1
2 1{Z2

j ≥T }. For μ = 0, the risk of μ̂ is then larger than a quarter of the risk of the threshold

estimator μ̂T = ∑p

j=1 1{Z2
j ≥T }Zjvj , namely,

E(‖0 − μ̂‖2) =
p∑

j=1

E(sβ(Zj/σ )2Z2
j ) ≥ 1

4

p∑
j=1

E
(
1{Z2

j ≥T }Z
2
j

) = 1
4E(‖0 − μ̂T ‖2).
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Now, when the threshold T is of order 2K logp with K < 1, the threshold estimator is known
to behave poorly for μ = 0; see [7] Section 7.2. Therefore, a choice β > 1/2 would give poor
results, at least when μ = 0.

The next proposition justifies the use of any β ≤ 1/2 by a risk bound similar to (12). For p ≥ 1
and β > 0, we introduce the numerical constants γβ(p) = √

2 + β−1 logp and

cβ(p) = 0.6 ∨ sup

{ ∫
R
(x − (x + z)sβ(x + z))2e−z2/2 dz√

2π(min(x2, γβ(p)2) + γβ(p)2/p)
; x ∈ [0,4γβ(p)]

}
.

The constant cβ(p) can be numerically computed. For example, c1/2(p) ≤ 1 for any 3 ≤ p ≤ 106;
see Figure 1.

Proposition 2. For 3 ≤ p ≤ n and β ∈ [1/4,1/2], the L2-risk of the estimator (16) is upper
bounded by

E(‖μ − μ̂‖2) ≤ ‖μ − �S∗μ‖2

+ cβ(p) inf
m∈M

[‖�S∗μ − �Sm
μ‖2 + (2 + β−1 logp)(|m| + 1)σ 2].

In the light of this risk bound, the choice β = 1/2 seems to be a good one in this case and
corresponds to the choice of Hartigan [16]. The proof of this result can be found in the technical
report [14], together with further comments on the choice of the parameter β . We emphasize
that the risk bound stated in Proposition 2 differs from the best trade-off between the bias and the

Figure 1. Plots of p �→ c1/2(p) (solid line) and p �→ c1/4(p) (dashed line).
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variance term by a factor of logp. This is unavoidable from a minimax point of view, as observed
by Donoho and Johnstone [13].

4. Choice of the models and the weights in two different settings

4.1. Estimation of BV functions

We consider here the functional setting

μi = f (xi), i = 1, . . . , n, (17)

where f : [0,1] → R is an unknown function and x1, . . . , xn are n deterministic points of [0,1].
We assume, for simplicity, that 0 = x1 < x2 < · · · < xn < xn+1 = 1 and n = 2Jn ≥ 8. We set
J ∗ = Jn − 1 and �∗ = ⋃J ∗

j=0 �(j) with �(0) = {(0,0)} and �(j) = {j} × {0, . . . ,2j−1 − 1} for
j ≥ 1. For (j, k) ∈ �∗, we define vj,k ∈ R

n by

[vj,k]i = 2(j−1)/2(1I+
j,k

(i) − 1I−
j,k

(i)
)
, i = 1, . . . , n,

with I+
j,k = {1 + (2k + 1)2−j n, . . . , (2k + 2)2−j n} and I−

j,k = {1 + 2k2−j n, . . . , (2k + 1)2−j n}.
The family {vj,k, (j, k) ∈ �∗} corresponds to the image of the points x1, . . . , xn by a Haar basis
(see Section 6.4) and it is orthonormal for the scalar product

〈x, y〉n = 1

n

n∑
i=1

xiyi .

We use the collection of models Sm = span{vj,k, (j, k) ∈ m} indexed by M = P (�∗) and
thereby adopt the setting of Section 2.3. We choose the distribution π given by (7) with p = n/2
and α = 1. We also set b = 1 and take some β satisfying β ≤ φ−1(2 log(n/2)/n)/2. According
to Proposition 1, the estimator (6) then takes the form

μ̂ =
J ∗∑

j=0

∑
k∈�(j)

(
Zj,k exp(nβZ2

j,k/σ̂
2)

en/2 + exp(nβZ2
j,k/σ̂

2)

)
vj,k, (18)

with Zj,k = 〈Y,vj,k〉n and σ̂ 2 = 2(〈Y,Y 〉2
n − ∑J ∗

j=0
∑

k∈�(j) Z
2
j,k).

The next corollary gives the rate of convergence of this estimator when f has bounded varia-
tion, in terms of the norm ‖ · ‖n induced by the scalar product 〈·, ·〉n.

Corollary 1. In the setting described above, there exists a numerical constant C such that for
any function f with bounded variation V (f ),

E(‖μ − μ̂‖2
n) ≤ C max

{(
V (f )σ 2 logn

n

)2/3

,
V (f )2

n
,
σ 2 logn

n

}
.
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The proof is delayed to Section 6.4. The minimax rate in this setting is (V (f )σ 2/n)2/3. So,
the rate of convergence of the estimator differs from the minimax rate by a factor of (logn)2/3.
We can actually obtain a rate-minimax estimator by using a smaller collection of models similar
to the one in the next section, but then we do not have the nice formula (18).

4.2. Regression on Besov space Bα
p,∞[0,1]

We again consider the setting (17) with f : [0,1] → R and introduce an L2([0,1],dx)-
orthonormal family {φj,k, j ≥ 0, k = 1, . . . ,2j } of compactly support wavelets with regular-
ity r . We will use models generated by finite subsets of wavelets. If we want our estima-
tor to share some good adaptive properties on Besov spaces, we shall introduce a family of
models induced by the compression algorithm of Birgé and Massart [7]. This collection turns
out to be slightly more intricate than the family used in the previous section. We start with
some κ < 1 and set J∗ = �log(κn/2)/ log 2	. The largest approximation space we will con-
sider is F∗ = span{φj,k, j = 0, . . . , J∗, k = 1, . . . ,2j }, whose dimension is bounded by κn. For
1 ≤ J ≤ J∗, we define

MJ =
{

m =
J∗⋃

j=0

{j} × Aj , with Aj ∈ �j,J

}
,

where �j,J = {{1, . . . ,2j }} when j ≤ J − 1 and

�j,J = {
A ⊂ {1, . . . ,2j } : |A| = �2J /(j − J + 1)3	} when J ≤ j ≤ J∗.

To m in M = ⋃J∗
J=1 MJ , we associate Fm = span{φj,k, (j, k) ∈ m} and define the model Sm by

Sm = {(f (x1), . . . , f (xn)), f ∈ Fm} ⊂ S∗ = {(f (x1), . . . , f (xn)), f ∈ F∗}.
When m ∈ MJ , the dimension of Sm is bounded from above by

dim(Sm) ≤
J−1∑
j=0

2j +
J∗∑

j=J

2J

(j − J + 1)3
≤ 2J

[
1 +

J∗−J+1∑
k=1

k−3

]
≤ 2.2 · 2J (19)

and dim(S∗) ≤ κn. Also, note that the cardinality of MJ is |MJ | = ∏J∗
j=J

( 2j

�2J /(j−J+1)3	
)
. To

estimate μ, we use the estimator μ̂ given by (6) with β given by (15) and

Lm = 1.1 · 2J

and

πm =
[

2J (1 − 2J∗)
J∗∏

j=J

(
2j

�2J /(j − J + 1)3	
)]−1

for m ∈ MJ .
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The next corollary gives the rate of convergence of the estimator μ̂ when f belongs to some
Besov ball Bα

p,∞(R) with 1/p < α < r (we refer to De Vore and Lorentz [12] for a precise
definition of Besov spaces). As is usual in this setting, we express the result in terms of the norm
‖ · ‖2

n = ‖ · ‖2/n on R
n.

Corollary 2. For any p,R > 0 and α ∈]1/p, r[, there exists some constant C not depending on
n and σ 2 such that the estimator μ̂ defined above fulfills

E(‖μ − μ̂‖2
n) ≤ C max

{(
σ 2

n

)2α/(2α+1)

,
1

n2(α−1/p)
,
σ 2

n

}

for any μ given by (17) with f ∈ Bα
p,∞(R).

The proof is delayed to Section 6.5. We recall that the rate 1/n2α/(2α+1) is minimax in this
framework; see Yang and Barron [24]. Therefore, the above procedure is rate-minimax over all
of the Besov balls Bα

p,∞(R) with parameters p > 1/r and α ≥ αp = (1+√
1 + 2p)/2p. We note

that αp ∈]1/p,1/p + 1/2[.

5. Conclusion

In this paper, we adapt the mixing procedure of Leung and Barron [18] to handle regression
when the variance of the noise is unknown. The resulting estimator does not require the data to
be split into two (or more) sets and can thus handle frameworks like fixed-design regression. It
also reduces, in some cases, to a simple shrinkage estimator and can be computed efficiently. Our
main result exploits the Gibbs form of the weight wm to provide a new risk bound for β < 1/4.
Another nice feature of this bound is that it underlines the interest of mixing (compared to model
selection) when there are several good models to approximate μ. We emphasize that we only
need a small number of ‘degrees of freedom’ to estimate the variance and obtain an oracle bound
with a 1 + εn constant in front of the bias term. In practice, the choice of the tuning parameter β

is crucial: the choice β > 1/2 is not recommended in the case of Section 3.2, but any choice of
β ≤ 1/2 is suitable. From a more theoretical point of view, we give new approximation bounds
for BV functions in Proposition 3 of Section 6.4.

6. Proofs

To save space, we give here only the main lines of the proofs. The details can be found in the
technical report [14].
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6.1. Proof of Proposition 1

We express the weights wm in terms of the Zj ’s and τ = α logp + b:

wm = exp(
∑

k∈m(βZ2
k/σ̂

2 − τ))∑
m′∈M exp(

∑
k∈m′(βZ2

k/σ̂
2 − τ))

.

Since cj = ∑
m∈M 1j∈mwm, we obtain (8) by factoring out j for any m including j as {j} ∪ m′

for some subset m′ not including j .

6.2. A preliminary lemma

The next lemma gives a control on the deviations of σ̂ 2.

Lemma 1. Consider an integer N larger than 2 and a random variable X such that NX is
distributed as a χ2 of dimension N . Then, for any 0 < a < 1,

E[(a − X)+] ≤ E

[(
a

X
− 1

)
+

]
≤ 2

(1 − a)(N − 2)
exp(−Nφ(a)), (20)

with φ(a) = 1
2 (a − 1 − loga) > 1

4 (1 − a)2.

Proof. The first inequality follows directly from the opposite monotonicity of x and (a/x −1)+.
For the second inequality, we start with the Markov bound

P

(
X ≤ 1

t

)
≤ eλ/t

(
1 + 2λ

N

)−N/2

for any λ ≥ 0.

Choosing λ = N(t − 1)/2, we obtain

E

[(
a

X
− 1

)
+

]
= a

∫ +∞

1/a

P

(
X ≤ 1

t

)
dt ≤ a

∫ +∞

1/a

exp

(
N

2
(1 − 1/t)

)
dt

tN/2
.

Iterating integrations by parts finally gives, for 0 < a < 1,

E

[(
a

X
− 1

)
+

]
≤ exp

(
N

2
(1 − a)

)
2aN/2

N − 2

∑
k≥0

ak(N/2)k∏k−1
i=0 (N/2 + i)

≤ 2

(1 − a)(N − 2)
exp(−Nφ(a)). �
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6.3. Proof of Theorem 1

To keep formulas short, we write dm for the dimension of Sm and use the following notation for
the various projections:

μ̂∗ = �S∗Y, μ∗ = �S∗μ and μm = �Sm
μ, m ∈ M.

We derive from Theorem 1 of Leung and Barron [18] that

S(μ̂) =
∑

m∈M
wm

[‖μ̂∗ − μ̂m‖2

σ 2
+ 2dm +

(
4β − σ̂ 2

σ 2

)‖μ̂m − μ̂‖2

σ̂ 2

]
− p

is an unbiased estimate of σ−2
E(‖μ∗ − μ̂‖2) (note that the β here is half of the β in [18]). We

control the last term with the bound∑
m∈M

wm‖μ̂m − μ̂‖2 =
∑

m∈M
wm‖μ̂∗ − μ̂m‖2 − ‖μ̂ − μ̂∗‖2 ≤

∑
m∈M

wm‖μ̂∗ − μ̂m‖2

and get

S(μ̂) ≤
[
σ̂ 2

σ 2
+

(
4β − σ̂ 2

σ 2

)
+

] ∑
m∈M

wm

[‖μ̂∗ − μ̂m‖2

σ̂ 2
+ Lm

β

]
− p

+
∑

m∈M
wm

(
2dm −

[
σ̂ 2

σ 2
+

(
4β − σ̂ 2

σ 2

)
+

]
Lm

β

)
,

where (x)+ = max(0, x). First, note that when Lm ≥ dm/2 we have

2dm −
[
σ̂ 2

σ 2
+

(
4β − σ̂ 2

σ 2

)
+

]
Lm

β
≤

[
2 − σ̂ 2

2βσ 2
− 1

2β

(
4β − σ̂ 2

σ 2

)
+

]
dm

≤ min

(
0,2 − σ̂ 2

2βσ 2

)
dm ≤ 0.

Therefore, setting δ̂β = (4βσ 2/σ̂ 2 − 1)+, we get

S(μ̂) ≤ σ̂ 2

σ 2
(1 + δ̂β)

∑
m∈M

wm

[‖μ̂∗ − μ̂m‖2

σ̂ 2
+ Lm

β

]
− p.

Let us introduce the Kullback divergence between two probability distributions {αm,m ∈ M}
and {πm,m ∈ M} on M,

D(α|π) =
∑

m∈M
αm log

αm

πm

≥ 0,
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and the function

E π
β (α) =

∑
m∈M

αm

[‖μ̂∗ − μ̂m‖2

σ̂ 2
+ Lm

β

]
+ 1

β
D(α|π).

The latter function is convex on the simplex S+
M = {α ∈ [0,1]|M|,

∑
m∈M αm = 1} and can be

interpreted as a free energy function. It is minimal for the Gibbs measure {wm,m ∈ M}, so for
any α ∈ S+

M,

S(μ̂) ≤ (1 + δ̂β )

[ ∑
m∈M

αm

[‖μ̂∗ − μ̂m‖2

σ 2
+ σ̂ 2

βσ 2
Lm

]
+ σ̂ 2

βσ 2
D(α|π)

]
− p.

We fix a probability distribution α ∈ S+
M and take the expectation in this last inequality to get

E[S(μ̂)] ≤ (
1 + E(δ̂β)

) ∑
m∈M

αmE

[‖μ̂∗ − μ̂m‖2

σ 2

]

+ E

[
σ̂ 2

βσ 2
(1 + δ̂β)

][ ∑
m∈M

αmLm + D(α|π)

]
− p.

Since σ̂ 2/σ 2 is stochastically larger than a random variable X with χ2(N∗)/N∗ distribution,
Lemma 1 ensures that

E

[
σ̂ 2

σ 2
δ̂β

]
≤ E[δ̂β ] ≤ 2

(1 − 4β)(N∗ − 2)
exp(−N∗φ(4β)),

with φ(x) = (x − 1 − log(x))/2. Furthermore, the condition N∗ ≥ 2 + (logn)/φ(4β) guarantees
that

2

(1 − 4β)(N∗ − 2)
exp(−N∗φ(4β)) ≤ 2φ(4β)e−2φ(4β)

(1 − 4β)n logn
≤ 1

2n logn
= εn.

Putting the pieces together, we obtain

E[‖μ − μ̂‖2]
σ 2

= ‖μ − μ∗‖2

σ 2
+ E[S(μ̂)]

≤ ‖μ − μ∗‖2

σ 2
+ (1 + εn)

∑
m∈M

αmE

[‖μ̂∗ − μ̂m‖2

σ 2

]

+
(

σ̄ 2

βσ 2
+ εn

)[ ∑
m∈M

αmLm + D(α|π)

]
− p

≤ (1 + εn)

[ ∑
m∈M

αm

[‖μ − μm‖2

σ 2
− dm + σ̄ 2

βσ 2
Lm

]
+ σ̄ 2

βσ 2
D(α|π)

]
+ εnp.
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This inequality holds for any non-random probability distribution α ∈ S+
M, so it holds, in partic-

ular, for the Gibbs measure

αm = πm

Zβ

exp

[
− β

σ̄ 2
(‖μ − μm‖2 − dmσ 2) − Lm

]
, m ∈ M,

where Zβ normalizes the sum of the αm’s to one. For this choice of αm, we obtain

E[‖μ − μ̂‖2]
σ 2

≤ − (1 + εn)σ̄
2

βσ 2
log

[ ∑
m∈M

πm exp

[
− β

σ̄ 2
(‖μ − μm‖2 − dmσ 2) − Lm

]]
+ εnp,

which ensures (11) since p ≤ n. To get (12), simply note that

∑
m∈M

πm exp

[
− β

σ̄ 2
(‖μ − μm‖2 − dmσ 2) − Lm

]

≥ πm∗ exp

[
− β

σ̄ 2
(‖μ − μm∗‖2 − dm∗σ 2) − Lm∗

]

for any m∗ ∈ M.

6.4. Proof of Corollary 1

We start by proving some results on the approximation of BV functions with the Haar wavelets.
We remain in the setting of Section 4.1, with 0 = x1 < x2 < · · · < xn < xn+1 = 1 and n = 2Jn .
For 0 ≤ j ≤ Jn and p ∈ �(j), we define tj,p = xp2−j n+1. We also set φ0,0 = 1 and

φj,k = 2(j−1)/2(1[tj,2k+1,tj,2k+2) − 1[tj,2k,tj,2k+1)

)
for 1 ≤ j ≤ Jn and k ∈ �(j).

This family of Haar wavelets is orthonormal for the positive semi-definite quadratic form

(f, g)n = 1

n

n∑
i=1

f (xi)g(xi)

on functions mapping [0,1] into R. For 0 ≤ J ≤ Jn, we write fJ for the projection of f onto the
linear space spanned by {φj,k,0 ≤ j ≤ J, k ∈ �(j)} with respect to (·, ·)n, namely,

fJ =
J∑

j=0

∑
k∈�(j)

cj,kφj,k, with cj,k = (f,φj,k)n.

We also consider, for 1 ≤ J ≤ Jn, an approximation of f à la Birgé and Massart [6],

f̃J = fJ−1 +
Jn∑

j=J

∑
k∈�′

J (j)

cj,kφj,k,
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where �′
J (j) ⊂ �(j) is the set of indices k we obtain when we select the Kj,J largest coefficients

|cj,k| among {|cj,k|, k ∈ �(j)}, with Kj,J = �(j − J + 1)−32J−2	 for 1 ≤ J ≤ j ≤ Jn. Note
that the number of coefficients cj,k in f̃J is bounded from above by

1 +
J−1∑
j=1

2j−1 +
∑
j≥J

(j − J + 1)−32J−2 ≤ 2J−1 + 2J−2
∑
p≥1

p−3 ≤ 2J .

The next proposition states approximation bounds for fJ and f̃J in terms of the (semi-)norm
‖f ‖2

n = (f,f )n.

Proposition 3. When f has bounded variation V (f ), we have

‖f − fJ ‖n ≤ 2V (f )2−J/2 for J ≥ 0 (21)

and

‖f − f̃J ‖n ≤ cV (f )2−J for J ≥ 1, with c =
∑
p≥1

p32−p/2+1. (22)

Proof. (21) and (22) are based on the following fact.

Lemma 2. When f has bounded variation V (f ), we have∑
k∈�(j)

|cj,k| ≤ 2−(j+1)/2V (f ) for 1 ≤ j ≤ Jn.

Proof. We assume, for simplicity, that f is non-decreasing. Then, we have

cj,k = 〈f,φj,k〉n = 2(j−1)/2

n

[ ∑
i∈I+

j,k

f (xi) −
∑
i∈I−

j,k

f (xi)

]
,

with I+
j,k and I−

j,k defined in Section 4.1. Since |I+
j,k| = 2−j n and f is non-decreasing,

|cj,k| ≤ 2(j−1)/2

n
|I+

j,k|
[
f

(
x(2k+2)2−j n

) − f
(
x(2k)2−j n

)]
≤ 2−(j+1)/2[f (

x(2k+2)2−j n

) − f
(
x(2k)2−j n

)]
,

and Lemma 2 follows. �

We first prove (21). Since the {φj,k, k ∈ λ(j)} have disjoint supports, we have, for 0 ≤ J ≤ Jn,

‖f − fJ ‖n ≤
∑
j>J

∥∥∥∥∥ ∑
k∈�(j)

cj,kφj,k

∥∥∥∥∥
n

≤
∑
j>J

[ ∑
k∈�(j)

|cj,k|2 ‖φj,k‖2
n︸ ︷︷ ︸

=1

]1/2

≤
∑
j>J

∑
k∈�(j)

|cj,k|.
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Formula (21) then follows from Lemma 2.
To prove (22), we introduce the set �′′

J (j) = �(j) \ �′
J (j). Then, for 1 ≤ J ≤ Jn, we have

‖f − f̃J ‖n ≤
Jn∑

j=J

[ ∑
k∈�′′

J (j)

|cj,k|2 ‖φj,k‖2
n︸ ︷︷ ︸

=1

]1/2

≤
Jn∑

j=J

[
max

k∈�′′
J (j)

|cj,k|
∑

k∈�(j)

|cj,k|
]1/2

.

The choice of �′
J (j) guarantees the inequalities

(1 + Kj,J ) max
k∈�′′

J (j)
|cj,k| ≤

∑
k∈�′′

J (j)

|cj,k| +
∑

k∈�′
J (j)

|cj,k| ≤
∑

k∈�(j)

|cj,k|.

To complete the proof of Proposition 3, we combine this bound with Lemma 2:

‖f − f̃J ‖n ≤
∑
j≥J

2−(j+1)/2V (f )(1 + Kj,J )−1/2

≤
∑
j≥J

2−(j+1)/2V (f )2−(J−2)/2(j − J + 1)3.

≤ V (f )2−J
∑
p≥1

p32−p/2+1.
�

6.4.1. Proof of Corollary 1

First, note that vj,k = (φj,k(x1), . . . , φj,k(xn))
′ for (j, k) ∈ �∗. Then, according to (21) and (22),

there exists, for any 0 ≤ J ≤ J ∗, a model m ∈ M fufilling |m| ≤ 2J and

‖μ − �Sm
μ‖2

n = ‖μ − �S∗μ‖2
n + ‖�S∗μ − �Sm

μ‖2
n

≤ 2c2V (f )2(2−J ∗ ∨ 2−2J ),

with c = ∑
p≥1 p32−p/2+1. Putting together this approximation result with Theorem 1 gives

E(‖μ − μ̂‖2
n) ≤ C inf

0≤J≤J ∗

[
V (f )2(2−J ∗ ∨ 2−2J ) + 2J logn

n
σ 2

]

for some numerical constant C, when 4β ≤ φ−1(logn/(n/2 − 2)). We refer to [14] for the case
2β ≤ φ−1(2 log(n/2)/n). To conclude the proof of Corollary 1, we apply the previous bound
with J given by the minimum between J ∗ and the smallest integer such that

2J ≥ V (f )2/3
(

n

σ 2 logn

)1/3

.
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6.5. Proof of Corollary 2

First, according to the inequality
(
n
k

) ≤ (en/k)k , we have the bound for m ∈ MJ ,

− logπm ≤ log 2J +
J∗∑

j=J

2J

(j − J + 1)3
log

(
e2j−J+1(j − J + 1)3)

≤ 2J

(
1 +

∑
k≥1

k−3(1 + 3 logk + k log 2)

)
≤ 4 · 2J . (23)

Second, when f belongs to some Besov ball Bα
p,∞(R) with 1/p < α < r , Birgé and Massart

[6] give the following approximation results. There exists a constant C > 0 such that for any
J ≤ J∗ and f ∈ Bα

p,∞(R), there exists m ∈ MJ fulfilling

‖f − �̄Fm
f ‖∞ ≤ ‖f − �̄F∗f ‖∞ + ‖�̄F∗f − �̄Fm

f ‖∞ ≤ C max
(
2−J∗(α−1/p),2−αJ

)
,

where �̄F denotes the orthogonal projector onto F in L2([0,1]). In particular, under the previous
assumptions, we have

‖μ − �Sm
μ‖2

n ≤ 1

n

n∑
i=1

[f (xi) − �̄Fm
f (xi)]2

≤ ‖f − �̄Fm
f ‖2∞ ≤ C2 max

(
2−2αJ ,2−2J∗(α−1/p)

)
. (24)

To conclude the proof of Corollary 2, we combine Theorem 1 with (19), (23) and (24) to obtain

J = min

(
J∗,

⌊
log[max(n/σ 2,1)]

(2α + 1) log 2

⌋
+ 1

)
.
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