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1. Introduction

Three decades have passed since Hill’s (1975) seminal paper on the estimation of the index

of regular variation of the tail of a distribution function, thereby introducing what is now

unanimously called the Hill estimator for the tail index, the latter being defined as the

reciprocal of the index of regular variation. Since then, the tail-estimation literature has

witnessed a true explosion featuring numerous alternative estimators, each claimed by its

inventors to be better than its competitors in at least a number of more or less well-

specified situations. Despite all this scientific vigour, Hill’s estimator remains as popular as

ever. Why? One reason may be that its expression is so elegant and its implementation

so simple: extract the top k þ 1 observations X n�k:n < X n�kþ1:n < � � � < X n:n from

a given sample X1, . . . , X n and compute

ĤHn(k) ¼
1

k

Xk

i¼1

log X n�iþ1:n � log X n�k:n:

Another reason may be that its interpretations are so convincing: (pseudo-)maximum

likelihood estimator in an exponential model for log-excesses and least-squares estimator of

the slope of the ultimately linear part in a Pareto quantile–quantile plot. A third, more

sophisticated, reason may be that its asymptotic variance is minimal in carefully formulated

settings of allowed models and estimators; see Reiss (1989: Section 9.4), Drees (1998),
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Segers (2001a) and Beirlant et al. (2006). The Hill estimator is probably the most intensively

studied statistic in the extreme-value literature, the first papers on its asymptotic properties

dating back to Mason (1982) and Hall (1982). More recent contributions such as Resnick and

Stărică (1995, 1998) treat the case of dependent data.

Our aim is to add to the understanding of the Hill estimator through the derivation of

detailed asymptotic expansions of its distribution function. These Edgeworth expansions

then serve to derive asymptotic expansions for the coverage probabilities of a number of

two-sided confidence intervals for the tail index which involve the Hill estimator in a

natural way. The confidence intervals under consideration are the Wald, score, likelihood

ratio and Bartlett-corrected likelihood ratio confidence regions that arise from the Pareto

pseudo-log-likelihood given the relative excesses X n�iþ1:n=X n�k:n for i ¼ 1, . . . , k. The

expansions take the form of a main term based upon the asymptotic normality of the Hill

estimator plus a number of correction and remainder terms.

This line of research was initiated in Cheng and Pan (1998), featuring a one-term

expansion in the case of zero asymptotic bias. In the same case, expansions of arbitrary

length in terms of certain gamma distributions were established in Cheng and de Haan

(2001) and Guillou and Hall (2001). In the more difficult case of non-zero asymptotic bias,

the only relevant work we are aware of is Ferreira (2002: Chapter 4), containing a one-term

expansion in the case where the number of order statistics is the one for which the

asymptotic mean squared error of the Hill estimator is minimal. All these expansions,

however, lack the accuracy or – as far as their technical assumptions are concerned – the

flexibility to generate easily comprehensible coverage probability expansions for the

aforementioned two-sided confidence intervals based on the Hill estimator.

The Hill-based confidence intervals for the tail index are described in Section 2. In

Section 3, expansions are derived for intermediate sequences k ¼ k n that grow to infinity

sufficiently slowly with n so that the bias of the Hill estimator does not enter the main

correction term in the coverage probability expansion. We will call this the case of

negligible bias. For such k n, the Bartlett likelihood ratio intervals achieve the highest

accuracy. For intermediate sequences k n growing to infinity at faster rates, even when

converging to zero, the bias enters the coverage probability expansions as well, making the

performance of the various intervals dependent on the sign of this bias; this is the case of

non-negligible bias and the topic of Section 4. The proofs of the two main theorems are

2. Confidence intervals

Recall that a positive, measurable function a defined on a neighbourhood of infinity is

called regularly varying (at infinity) with real index �, a 2 R�, if a(ux)=a(u) ! x� as

u ! 1, for all 0 , x , 1. A distribution function F on the real line with support

unbounded above has a positive tail index ª if its tail function F ¼ 1� F is regularly

varying with index �1=ª. A probabilistic interpretation is that the conditional distribution of

the relative excess over a high threshold u is approximately Pareto distributed with

parameter 1=ª, that is, Pr[X=u < xjX . u] ! 1� x�1=ª as u ! 1 for 1 < x , 1.

spelled out in Sections 5 and 6. The Appendix contains a number of auxiliary results.
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Let X1:n < . . . < X n:n be the ordered values of a random sample from a distribution

function F with positive tail index ª. For simplicity, assume F(0) ¼ 0. Choosing the

threshold u as the (k þ 1)th largest order statistic, X n�k:n, and modelling the relative

excesses X n�kþi:n=X n�k:n, i ¼ 1, . . . , k, by the Pareto distributions yields the following

pseudo-log-likelihood for ª:

‘n(ª, k) ¼ �k ª�1 ĤHn(k)þ log ª
� �

: (2:1)

This pseudo-log-likelihood is maximal for ª equal to the Hill estimator, ĤHn(k). The score

function is _‘‘n(ª, k) ¼ ª�1kfª�1 ĤHn(k)� 1g, while the deviance statistic is

Dn(ª, k) ¼ 2 ‘n ĤHn(k), k
� �

� ‘n(ª, k)
� �

¼ 2k
ĤHn(k)

ª
� 1� log

ĤHn(k)

ª

� �
:

The Fisher information in the Pareto model is I(ª) ¼ ª�2.

Standard theory on parametric inference now yields a number of confidence intervals for

ª. Denote the pth tail quantile of the standard normal distribution by z p, so �(z p) ¼ 1� p,

with � the standard normal distribution function. Let Æ be the nominal type I error of the

confidence interval, that is, the probability of covering the true value is equal to 1� Æ in

the limit. The Wald confidence interval

I (1)n (Æ, k) ¼ 1� k�1=2zÆ=2

� �
ĤHn(k), 1þ k�1=2zÆ=2

� �
ĤHn(k)

h i
is based on the limiting normal distribution of the maximum likelihood estimator, ĤHn(k). The

score confidence interval

I (2)n (Æ, k) ¼ 1þ k�1=2zÆ=2

� ��1

ĤHn(k), 1� k�1=2zÆ=2

� ��1

ĤHn(k)

	 


is based on the limiting normal distribution of the score statistic. The likelihood ratio (LR)

confidence interval

I (3)n (Æ, k) ¼ 0 , ª , 1 : Dn(ª, k) < z2Æ=2

n o
is based on the limiting chi-squared distribution of the deviance statistic. Finally, the Bartlett-

corrected LR confidence interval

I (4)n (Æ, k) ¼ 0 , ª , 1 : Dn(ª, k)= 1þ (6k)�1
� �

< z2Æ=2

n o
is the same as the ordinary LR confidence interval but with the deviance statistic divided by

its asymptotic mean. Note that the Wald interval is symmetric around the Hill estimator,

while the others are not.

Our aim is to analyse the performance of the above confidence intervals. Note that, as the

Hill estimator is a sufficient statistic for the pseudo-log-likelihood (2.1), the four confidence

intervals considered above depend on the Hill estimator only. Denoting the standardized Hill

estimator by Hn(ª, k) ¼ k1=2fª�1 ĤHn(k)� 1g, we can write the four types of confidence

intervals as
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I (i)n (Æ, k) ¼ 0 , ª , 1 : qki(�zÆ=2) < Hn(ª, k) < qki(zÆ=2)
� �

(2:2)

with, for all real z, and the functions aij as in Table 1,

qki(z) ¼ zþ
X3
j¼1

aij(z)k
� j=2 þ O k�2

� �
, as k ! 1: (2:3)

The coverage probabilities Pr[ª 2 I (i)n ] of the four confidence intervals can thus be

expressed in terms of the distribution function of the standardized Hill estimator. Edgeworth

expansions for this distribution function combined with the expansion in (2.3) then lead to

asymptotic expansions for these coverage probabilities. This is the programme for the next

two sections.

Remark 2.1. From (2.2), it is clear how to define the one-sided analogues of the Wald, score,

LR and Bartlett-corrected LR confidence intervals. To analyse the performance of such

intervals, the one-term Edgeworth expansion in Cheng and Peng (2001: Proposition 2) is

sufficiently accurate. In view of our exposition it is straightforward to extend that paper’s

analysis of the one-sided score confidence interval to the other one-sided intervals.

3. Negligible bias

In this section we derive expansions for the coverage probabilities of the confidence

intervals in the previous section for the case where the bias of the Hill estimator is so small

that it does not appear in the main correction term in the expansion. Throughout, we make

the following standing assumption.

Assumption 1. The distribution function F is supported on the positive half-line and has

positive tail index ª. The random variables X1, . . . , X n are independent and have common

distribution function F.

Table 1. The functions aij(z) appearing in (2.3)

Confidence interval j ¼ 1 j ¼ 2 j ¼ 3

Wald i ¼ 1 z2 z3 z4

Score i ¼ 2 0 0 0

LR i ¼ 3
1

3
z2

1

36
z3 � 1

270
z4

Bartlett LR i ¼ 4
1

3
z2

1

36
z3 þ 1

12
z � 1

270
z4 þ 1

18
z2

(z)

(Æ, k)
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The tail quantile function, V , of a distribution function F is defined as

V (y) ¼ inffx : F(x) > 1� 1=yg for 1 , y , 1. The assumption that F has a positive

tail index ª is equivalent to V 2 Rª. In order to study the asymptotics of the Hill estimator,

we need to quantify the speed of convergence in the limit relation embedded in the

definition of regular variation of F or V (Bingham et al. 1987: Chapter 3). This is the aim

of the following assumption. For real � and positive y put

h�(y) ¼
ð y

1

u��1 du ¼
(y� � 1)=�, if � 6¼ 0,

log y, if � ¼ 0:

(

Assumption 2. There exist real constants r < 0 and c 6¼ 0 as well as a function a 2 Rr

vanishing at infinity such that the tail quantile function V of F satisfies

lim
t!1

1

a(t)

V (ty)

V (t)
� yª

� �
¼ cyªhr(y), for all y . 0: (3:1)

For the Hill estimator to be consistent, the number of relative excesses, k, used in its

definition should tend to infinity along with the sample size. On the other hand, for the Hill

estimator to be asymptotically normal, the threshold, to be chosen as the (k þ 1)th largest

order statistic, should also tend to infinity and should do so fast enough to validate the

Pareto approximation to the distribution of relative excesses. To balance these requirements

is the aim of the following assumption.

Assumption 3. The positive integer sequence k n is such that k n ! 1, k n=n ! 0, and

ºn ¼ k1=2n a(n=k n) ! 0 as n ! 1.

Under Assumptions 1–3, the standardized Hill estimator

Hn ¼ Hn ª, k nð Þ ¼ k1=2n ª�1 ĤHn(k n)� 1
� �

is asymptotically standard normal; see, for instance, de Haan and Peng (1998: Theorem 1).

Under a side condition on the behaviour of F near zero, the expectation of Hn is

asymptotically equivalent to

�n ¼ cºn= ª 1� rð Þf g

(see Segers 2001b), so it is not surprising that this �n will show up in the expansions to

come. See Remark 3.4 for a discussion of the case where ºn is allowed to converge to some

arbitrary real number.

Approximations of the distribution of Hn typically feature standardized sums of

independent standard exponential random variables, and indeed our first result features the

classical Edgeworth expansion for such sums. Let (Ei)i>1 be a sequence of independent

random variables, exponentially distributed with mean one. There exist polynomials Pj

indexed by a positive integer j such that, for every positive integer m, we have uniformly in

x 2 R,
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Pr
1

k1=2

Xk

i¼1

(Ei � 1) < x

" #
¼ �(x)þ

Xm
j¼1

Pj(x)j(x)k� j=2 þ O(k�(mþ1)=2), (3:2)

as k ! 1; see Petrov (1975: Theorem VI.4). The polynomials Pj are defined in terms of

Hermite polynomials and the cumulants of the standard exponential distribution. In general,

Pj is a polynomial of degree 3 j� 1 and Pj is even (odd) if j is odd (even). Some explicit

expressions are

P1(x) ¼ � 1

3
x2 � 1
� �

and P2(x) ¼ � 1

36
x 2x4 � 11x2 þ 3
� �

: (3:3)

Theorem 3.1. Under Assumptions 1–3, we have, for every integer m > 1 and uniformly in

x 2 R,

Pr[Hn < x] ¼ �(x)þ
Xm
j¼1

Pj(x)j(x)k� j=2
n þ O(k�(mþ1)=2

n )� �nj(x)þ o(j�nj),

as n ! 1, where the polynomials Pj are the ones appearing in (3.2).

Combine the expansion in Theorem 3.1 for m ¼ 3 with equations (2.2) and (2.3) to

derive expansions for the coverage probabilities of the considered confidence intervals. Note

that we do not need an explicit expression for P3: since P3 is even, the corresponding

correction terms cancel out.

Corollary 3.2. Under Assumptions 1–3, the coverage probabilities of the Wald, score, LR and

Bartlett-corrected LR confidence intervals at nominal coverage probability 1� Æ admit the

expansion

Pr[ª 2 I (i)n (Æ, k n)] ¼ 1� Æþ zQi(z)j(z)k�1
n þ O(k�2

n )þ o(j�nj) (3:4)

as n ! 1, where z ¼ zÆ=2 and

Qi(z) ¼

� 1
18

8z4 � 11z2 þ 3ð Þ, if i ¼ 1 (Wald),

� 1
18

2z4 � 11z2 þ 3ð Þ, if i ¼ 2 (score),

�1
6
, if i ¼ 3 (LR),

0, if i ¼ 4 (Bartlett LR):

8>>><
>>>:

(3:5)

Example 3.1. The asymptotic normality of the Hill estimator was studied in Hall (1982) for

distribution functions F with the property that there exist constants ª . 0, r , 0, A . 0 and

B 6¼ 0 such that

F(x) ¼ Ax�1=ª 1þ Bxr=ª þ o(xr=ª)
� �

, as x ! 1: (3:6)

For these distribution functions, Assumption 2 is satisfied with the same r and with a(t) ¼ tr

and c ¼ ªrArB. An example is the distribution function

F(x) ¼ (1� x�1=ª)�, for all x > 1, (3:7)
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with parameters ª . 0 and � . 0. If � 6¼ 1, then (3.6) holds true with A ¼ �, B ¼ (1� �)=2
and r ¼ �1; if � ¼ 1, then F is the Pareto distribution.

We generated 100 000 pseudo-random samples of size 500 from this distribution and

compared the coverage probability expansions in Corollary 3.2 (ignoring the remainder

terms, of course) to the simulated coverage probabilities. Figure 1 shows the results for

nominal type I error Æ ¼ 0:1 and parameter vectors (ª, �) ¼ (0:5, 1) (left) and

(ª, r) ¼ (0:5, 2) (right). The simulated rejection probabilities are indicated by circles along

the curves.

If � ¼ 1, then the version of (3.4) without the o(j�nj) term holds true for every sequence

k n tending to infinity. Indeed, in the left-hand panel of Figure 1, the predicted rejection

probabilities Æ� zQi(z)j(z)k�1 are close to the simulated ones for all k. For � 6¼ 1, the

o(j�nj) term ruins the expansion for larger k. In all cases, the LR confidence intervals are

only slightly less accurate than their Bartlett-corrected versions. The score and in particular

the Wald confidence intervals are much less reliable.

Remark 3.1. Using the expansion in Theorem 3.1 for m ¼ 2pþ 1, the coverage probability

expansion (3.4) can be extended to include correction term of order O(k� j
n ) for j ¼ 1, . . . , p

and a remainder term of order O(k� p�1
n ). However, these higher-order terms are likely to be

blurred by the o(j�nj) remainder term, so that such an expansion is statistically not very

relevant. A better idea is to try to make the o(j�nj) term explicit, as we will do in Corollary

4.2.

Remark 3.2. Under the assumptions of Corollary 3.2, the Wald and score confidence intervals

can also be corrected to make the O(k�1
n ) term in (3.4) vanish, for example by changing the

nominal level Æ to Æk,i ¼ Æþ zQi(z)j(z)k�1 with z ¼ zÆ=2, for i ¼ 1, 2. However, the finite-

sample properties of these confidence intervals are not as good as those of the Bartlett-

�� �� �� �� ���

��
��
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��
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�
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Figure 1. Simulated and predicted [by (3.4)] rejection probabilities of Wald, score, LR and Bartlett-

corrected LR confidence intervals for the tail index at nominal rejection probability 0:1. Based on

100 000 samples of size 500 of the distribution function in (3.7) with ª ¼ 0:5 and � ¼ 1 (left) and

� ¼ 2 (right).
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corrected LR confidence intervals, since the corrections to be made for the Wald and score

intervals are much larger than for the LR interval.

Remark 3.3. The special case m ¼ 1 of Theorem 3.1 has been proven in Cheng and Pan

(1998: Theorem 1) under the assumption that k na(n=k n) converges to some non-negative

constant, leading to a one-term Edgeworth expansion with an O(k�1=2
n ) correction term and

an o(k�1=2
n ) remainder term; see also Cheng and Peng (2001: Proposition 2). The expansions

in Cheng and de Haan (2001: Theorem 1) and Guillou and Hall (2001: Theorem 1) involve

versions of gamma distributions depending on k n instead of the limiting normal distribution.

These approximations are stated under extra growth conditions on k n and in Guillou and Hall

(2001) for a submodel of Assumption 2.

Remark 3.4. If the limit of ºn in Assumption 3 is allowed to be any real º, then the

standardized Hill estimator is asymptotically normal with mean � ¼ cº=fª(1� r)g and

variance one; see, for instance, de Haan and Peng (1998: Theorem 1). If º and thus � are

different from zero, then confidence intervals for ª based on the postulated asymptotic

standard normality of Hn are inconsistent in the sense that nominal and asymptotic coverage

probabilities do not match. If r , 0, this situation arises if k n is chosen to minimize the

asymptotic mean squared error of the Hill estimator; see de Haan and Peng (1998: Theorem

2). For such k n, bias-corrected confidence intervals are constructed in Ferreira and de Vries

(2004). If r ¼ 0, then the asymptotic mean squared error of the Hill estimator is minimized

for sequences k n such that ºn tends to infinity at a certain rate, and for such k n the

asymptotic distribution of the Hill estimator is actually the same as that of a large class of

estimators; see Drees (1998).

4. Non-negligible bias

In Corollary 3.2, if �n ¼ O(k�1
n ), then the O(k�1

n ) term on the right-hand side of (3.4) is

indeed the main correction term in the expansion. However, if k n is so large that �n is of

larger order than k�1
n , then the expansion, although correct, is not very informative as it

does not say anything about the o(j�nj) remainder term. In order to derive a more detailed

expansion, we need to refine Assumption 2. Note that (3.1) is equivalent to

lim
t!1

log V (ty)� log V (t)� ª log y

a(t)
¼ chr(y), for all y . 0: (4:1)

The appropriate refinement corresponding to (4.1) is suggested by the theory of second-order

regular variation; see de Haan and Stadtmüller (1996).

Assumption 4. There exist real constants r < 0, � < 0, and c 6¼ 0 as well as functions

a 2 Rr and b 2 R� vanishing at infinity such that the limit

B(y) :¼ lim
t!1

1

b(t)

log V (ty)� log V (t)� ª log y

a(t)
� chr(y)

� �
(4:2)
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exists for all y . 0.

From the proof of Theorem 1 in de Haan and Stadtmüller (1996) applied to

f (t) ¼ logft�ªV (t)g, it is immediate that the limit function B in (4.2) must be of the form

B(y) ¼
c1(log y)2 þ c2 log y, if r ¼ � ¼ 0,

c1 y
r log yþ c2hr(y), if r , 0 ¼ �,

c1hrþ�(y)þ c2hr(y), if � , 0,

8><
>:

for some c1, c2 2 R; see also equation (2.9) in de Haan and Stadtmüller (1996). Moreover,

necessarily

lim
t!1

1

b(t)

a(ty)

a(t)
� yr

� �
¼ dyrh�(y), for all y . 0, (4:3)

for some real constant d determined by r, �, c, c1 and c2. Set B0 ¼
Ð 1
0
B(1=u)du and recall

the polynomials P1 and P2 in (3.3).

Theorem 4.1. Under Assumptions 1, 3 and 4, we have, as n ! 1 and uniformly in x 2 R,

Pr[Hn < x] ¼ �(x)þ P1(x)j(x)k�1=2
n þ P2(x)j(x)k�1

n þ o(k�1
n )

� j(x)�n �
1

2
xj(x)�2n þ o(�2n)

� x
1

3
x2 þ r

1� r

� �
j(x)k�1=2

n �n

� c�1(1� r)B0j(x)�nb
n

k n

� �
þ o j�njb

n

k n

� �� �
:

Combine Theorem 4.1 with equations (2.2) and (2.3) to obtain the following coverage

probability expansions for the confidence intervals considered in Section 2.

Corollary 4.2. Under Assumptions 1, 3 and 4, the coverage probabilities of the Wald, score,

LR and Bartlett-corrected LR confidence intervals at nominal coverage probability 1� Æ
admit the expansions

Pr[ª 2 I (i)n (Æ, k n)]

¼ 1� Æþ zj(z) Qi(z)k
�1
n þ aiz

2 � 2r
1� r

� �
k�1=2
n �n � �2n

� �

þ o k�1
n

� �
þ o �2n

� �
þ o j�njb

n

k n

� �� �
(4:4)

as n ! 1, with z ¼ zÆ=2, Qi as in (3.5) and(z)
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ai ¼
4=3, if i ¼ 1 (Wald),

�2=3, if i ¼ 2 (score),

0, if i ¼ 3, 4 (LR and Bartlett LR):

8><
>:

Example 4.1. A distribution function F, the tail function of which admits the expansion, as

x ! 1,

F(x) ¼ Ax�1=ª 1þ Bxr=ª þ Cx(rþ�)=ª þ o(x(rþ�)=ª)
� �

, (4:5)

with some C and � , 0 and the other constants as in Example 3.1, satisfies Assumption 4

with � ¼ max(r, �), b(t) ¼ t� and B(y) ¼ dhrþ�(y), where

d ¼
ªr(2r� 1)A2rB2, if � , r , 0,

ªrA2rf(2r� 1)B2 þ 2Cg, if � ¼ r , 0,

ª(rþ �)Arþ�C, if r , � , 0:

8<
:

Expansion (4.5) is valid for, among others, the Fréchet, Burr, F and Student t distributions as

well as the distribution in (3.7).

We compared the coverage probability expansions in Corollary 4.2 with Monte Carlo

approximations based on 100 000 samples of size 500 of the distribution in (3.7). Figure 2

shows the results for nominal rejection probability Æ ¼ 0:1 and parameters ª ¼ 0:5 and

� ¼ 0:5 (top left) and � ¼ 2 (top right). As c ¼ ª(�� 1)=(2�), the sign of c and hence of

�n is positive or negative according to whether � is larger or smaller than one. This sign

determines the way in which the two components of the correction term, the classical

Edgeworth expansion for standardized gamma distributions and the bias term, interact (see

also Remark 4.2 below). In particular, the two components may reinforce or neutralize each

other, a phenomenon which is clearly visible for the Wald confidence intervals.

We also ran simulations for the Burr distribution, F(x) ¼ 1� (x�r=ª þ 1)1=r, for x > 0,

which satisfies (4.5) with A ¼ 1, B ¼ 1=r, C ¼ (1� r)=(2r2), and � ¼ r. The sign of

c ¼ ª and thus of the bias term �n is always positive. Indeed, the two bottom plots in

Figure 2 have the same qualitative features as the top right-hand plot in the same figure (see

the previous paragraph). The value of r determines the speed at which the bias term tends

to zero, with r closer to zero implying a larger bias. This is clearly visible from the

difference in the range of k-values with reasonable simulated rejection probabilities in the

plots on the left (r ¼ �1) and the right (r ¼ �0:5).

Example 4.2. Let X be a random variable so that log X has a gamma distribution with shape

parameter � and scale parameter ª, that is, the probability density function of X is given by

f (x) ¼ ª��ˆ(�)�1(log x)��1x�1=ª�1, for x . 1. If � 6¼ 1, then Assumption 4 is satisfied with

r ¼ � ¼ 0, c ¼ ª(�� 1), and a(t) � (log t)�1 as t ! 1. As the rate function a disappears

only at a logarithmic rate, astronomical sample sizes are needed for the asymptotics in the

coverage probability expansions to become visible.

Remark 4.1. Unlike the expansion in Corollary 3.2, the expansion in Corollary 4.2 cannot be

used directly to improve the accuracy of the confidence intervals as in Remark 3.2, because
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this time the correction term involves the unknown quantities r and �n. Of course, one could

estimate these second-order quantities and use them to estimate the correction term in (4.4).

However, given such estimates, a better idea is to compute the Hill estimator at the value for

k n that minimizes the asymptotic mean squared error and then to subtract the estimated bias;

see, for instance, Gomes and Martins (2002) and Ferreira and de Vries (2004).

Remark 4.2. Since the term in curly brackets on the right-hand side of (4.4) is equal to k�1
n

times a quadratic polynomial in k na(n=k n), there may be zero, one, or two values for k n for

which it vanishes. A possible threshold selection method then might be to try to locate such

k n, provided it exists. But as in Remark 4.1, this would require estimates of the second-order

parameters. For one-sided score confidence intervals, this programme was carried out in

Cheng and Peng (2001).
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Figure 2. Simulated and predicted [by (4.4)] rejection probabilities of Wald, score, LR and Bartlett-

corrected LR confidence intervals for the tail index at nominal rejection probability 0:1, based on

100 000 samples of size 500. Top: distribution function in (3.7) with ª ¼ 0:5 and � ¼ 0:5 (left) and

� ¼ 2 (right). Bottom: Burr distribution with ª ¼ 0:5 and r ¼ �1 (left) and r ¼ �0:5 (right).
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Remark 4.3. In Ferreira (2002: Appendix 4.B), a one-term expansion for the distribution

function of Hn is derived in the case where the intermediate sequence k n is the one for

which the asymptotic mean squared error of the Hill estimator is minimal (see Remark 3.4)

and for � , r , 0, forcing k�1=2
n ¼ o b(n=k n)f g. The expansion of Pr[Hn < x] takes the

form �(x� �n) plus a correction term of the order b(n=k n).

Remark 4.4. Theorem 4.1 can be extended to expansions of arbitrary order and for

intermediate sequences k n such that ºn remains bounded but does not necessarily converge to

zero; see Cuntz et al. (2003: Theorem 2). However, the statement and proof of this result are

rather intricate. We believe that the statistically relevant expansions, at least for asymptotic

bias zero, are already covered by Theorems 3.1 and 4.1.

5. Proof of Theorem 3.1

Let Y1, . . . , Yn be independent, standard Pareto distributed random variables, that is,

Pr[Yi < t] ¼ 1� 1=t for t > 1. The corresponding order statistics are Y1:n < . . . < Yn:n. By

the probability integral transform, the vectors fX i:ngn
i¼1 and fV (Yi:n)gn

i¼1 have the same

joint distribution. Writing R(y, t) ¼ log V (ty)� log V (t)� ª log(y), for y > 1, t > 1, we

arrive after some algebra at the distributional representation

k1=2
ĤHn(k)� ª

ª
¼d 1

k1=2

Xk

i¼1

log
Yn�kþi:n

Yn�k:n

� �
� 1

� �

þ 1

k1=2

Xk

i¼1

ª�1R
Yn�kþi:n

Yn�k:n

, Yn�k:n

� �
: (5:1)

By the Markov property of order statistics, the joint distribution of fYn�kþi:ngk
i¼1

conditionally on Yn�k:n ¼ t is the same as the joint distribution of ftYi:kgk
i¼1. Hence, from

(5.1),

Pr Hn < x½ � ¼ E f k n
Yn�k n:nð Þ½ �, (5:2)

where f k(t) ¼ Pr[Zk þ Rk(t) < x], Zk ¼ k�1=2
Pk

i¼1flog(Yi)� 1g and Rk(t) ¼ k�1=2Pk
i¼1

3

ª�1R(Yi, t).

Since (k n)n is an intermediate sequence, the order statistic Yn�k n:n is with large

probability contained in the interval

I n ¼ nk�1
n 1� k�1=2

n log k n

� �
, nk�1

n 1þ k�1=2
n log k n

� �h i
:

More precisely, exponential bounds on tail probabilities of binomial random variables

(inequalities (4) and (6) in Shorack and Wellner 1986: 440) imply that for every p,

Pr Yn�k n:n =2 I n½ � ¼ O(k� p
n ), as n ! 1: (5:3)

Since j f k(t)j < 1 for every positive integer k and all t > 1, the bound in (5.3) combined with

(5.2) implies, for every p, uniformly in x 2 R,
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Pr Hn < x½ � ¼ E f k n
Yn�k n:nð ÞjYn�k n:n 2 I n½ � þ O(k� p

n ), as n ! 1: (5:4)

The idea of the proof now is to show that the random variables Rk n
(t), t 2 I n, are

sufficiently close to �n. More precisely, suppose that we can find a sequence (cn)n of

positive numbers such that, for every p,

cn ¼ o k1=2n a
n

k n

� �� �
and sup

t2 I n

Pr[jRk n
(t)� �nj . cn] ¼ O(k� p

n ), (5:5)

as n ! 1. Then also

sup
t2 I n

jPr[Zk n
< x� Rk n

(t)]� Pr[Zk n
< x� �n]j

< Pr[jZk n
� (x� �n)j < cn]þ O(k� p

n ), as n ! 1: (5:6)

By the Edgeworth expansion (3.2) for the standard exponential random variables log(Yi),

i ¼ 1, . . . , k n, we have, as n ! 1,

Pr[jZk n
� (x� �n)j < cn] ¼ �(x� �n þ cn)��(x� �n � cn)

þ
Xm
j¼1

fPjj(x� �n þ cn)� Pjj(x� �n � cn)gk� j=2
n þ O(k�(mþ1)=2

n ):

Since the derivatives of � and Pjj are uniformly bounded over R, we obtain

Pr[jZk n
� (x� �n)j < cn] ¼ o k1=2n a

n

k n

� �� �
þ O(k�(mþ1)=2

n ), (5:7)

uniformly in x 2 R, as n ! 1. Combine (5.7) with (5.4) and the bound in (5.6) to obtain,

uniformly in x 2 R, as n ! 1,

Pr Hn < x½ � ¼ Pr Zk n
< x� �n½ � þ O(k�(mþ1)=2

n )þ o k1=2n a
n

k n

� �� �
:

Applying (3.2) again gives, uniformly in x 2 R and as n ! 1,

Pr Zk n
< x� �n½ � ¼ �(x� �n)þ

Xm
j¼1

Pjj(x� �n)k
� j=2
n þ O(k�(mþ1)=2

n )

¼ �(x)� �nj(x)þ
Xm
j¼1

Pj(x)j(x)k� j=2
n þ O(k�(mþ1)=2

n )þ o(j�nj),

once more by the uniform boundedness of the derivatives of the functions Pjj. Combining

the last two displays then yields the desired conclusion.

Hence it remains to show that we can find a positive sequence (cn)n satisfying (5.5). We

claim that the sequence

cn ¼ 2max k1=4n a
n

k n

� �
, sup
t2 I n

jE[Rk n
(t)]� �nj

� �

meets the requirements. First of all, since E[hr(Y1)] ¼ (1� r)�1,
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E Rk n
(t)½ � � �n ¼ ª�1k1=2n E R(Y1, t)½ � � �n

¼ ª�1k1=2n a
n

k n

� �
a(t)

a(n=k n)
E

R(Y1, t)

a(t)

	 

� cE[hr(Y1)]

� �
:

The uniform convergence theorem for regularly varying functions (Bingham et al. 1987:

Theorem 1.5.2) implies

sup
t2 I n

 a(t)

a(n=k n)
� 1

 ! 0, as n ! 1:

Moreover, for every � . 0 we can find C� . 0 and t� > 1 such that R(y, t)a(t)

 < C� y
�, for all y > 1, t > t�, (5:8)

(see Bingham et al. 1987: Theorem 3.1.3). Since R(y, t)=a(t) ! chr(y) as t ! 1, by the

dominated convergence theorem E[R(Y1, t)=a(t)] ! cE[hr(Y1)] as t ! 1. Hence, cn ¼
ofk1=2n a(n=k n)g, which is the first part of (5.5).

To prove the second part of (5.5), observe that by definition of cn,

Pr[jRk n
(t)� �nj . cn] < Pr jRk n

(t)� E Rk n
(t)½ �j . k1=4n a

n

k n

� �	 

:

Fix an arbitrary p > 2. Choose 0 , � , 1=p and let t� and C� be as in (5.8). For n large

enough, we have I n � [t�, 1) and sup t2 I n a(t)=a(n=k n) < 2. Applying Lemma A.1 in the

Appendix yields for such large n a constant c p depending only on p such that, for all t 2 I n,

Pr jRk n
(t)� E[Rk n

(t)]j . k1=4n a
n

k n

� �	 


< c p

2

a(t)ª

� � p

E[jR(Y1, t)j p]k� p=4
n < c p

2

ª

� � p
C p

�

1� �p
k� p=4
n :

Since p can be chosen arbitrarily large, the last display now implies the second part of (5.5),

as required. This completes the proof of Theorem 3.1.

6. Proof of Theorem 4.1

The proof of Theorem 4.1 starts in the same way as the proof of Theorem 3.1 in Section 5

up to and including equation (5.4). Define

B(y, t) ¼ 1

b(t)

R(y, t)

a(t)
� chr(y)

� �
, for all t > 1, y > 1,

with R(y, t) as in Section 5 and the other ingredients as in Assumption 4. Then we can

decompose the term Rk(t) as Rk(t) ¼ Sk(t)þ Tk(t), where
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Sk(t) ¼ cª�1k�1=2a(t)
Xk

i¼1

hr(Yi), (6:1)

Tk(t) ¼ ª�1k�1=2a(t)b(t)
Xk

i¼1

B(Yi, t): (6:2)

First, we treat the term Sk(t) in (6.1). Note that

Sk(t) ¼ cª�1k�1=2a
n

k

� � t

n=k

� �rXk

i¼1

hr(Yi)þ Sn,k(t),

where

Sn,k(t) ¼ cª�1k�1=2 a(t)� a
n

k

� � t

n=k

� �r� �Xk

i¼1

hr(Yi):

Recall that ºn ¼ k1=2n a(n=k n). Since the convergence in (4.3) is necessarily locally uniform in

0 , y , 1 (Bingham et al. 1987: Theorem 3.1.16) and since 0 < hr(y) < log(y) for all

y > 1, we find that there exists a positive sequence ˜S
n such that ˜S

n ¼ o ºnb(n=k n)f g and

Pr sup
t2 I n

jSn,k n
(t)j > ˜S

n

	 

¼ o(k�1

n ), as n ! 1: (6:3)

Secondly, we treat Tk(t) in (6.2). Note that B0 ¼ E[B(Y1)]. We have

Tk(t) ¼ ª�1k1=2a
n

k

� �
b

n

k

� �
B0 þ

X3
‘¼1

T
(‘)
n,k(t),

with

T
(‘)
n,k(t) ¼

ª�1k1=2 a(t)b(t)� a
n

k

� �
b

n

k

� �n o
B0, if ‘ ¼ 1,

ª�1k1=2a(t)b(t) E[B(Y1, t)]� B0f g, if ‘ ¼ 2,

ª�1k1=2a(t)b(t) k�1
Xk

i¼1

B(Yi, t)� E[B(Y1, t)] , if ‘ ¼ 3:

8>>>>>><
>>>>>>:

By the uniform convergence theorem for regularly varying functions and the Potter bound for

B(y, t) in Lemma A.2 below at � ¼ 1=2, we have

sup
t2 I n

jT (‘)
n,k n

(t)j ¼ o ºnb
n

k n

� �� �
, as n ! 1,

for ‘ ¼ 1, 2. Further, by Lemma A.1 with � ¼ 1=4 and p ¼ 5, there exists a positive

constant c5 such that

Pr

 1k
Xk

i¼1

B(Yi, t)� E[B(Y1, t)]

 > k�1=4

" #
< c5E[jB(Y1, t)j5]k�5=4

� �
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for all t > 1 and all integers k . 0. Apply Lemma A.2 with � ¼ 1=6 to deduce that

Pr sup
t2 In

jT (3)
n,k n

(t)j . 2ª�1k�1=4
n ºnb

n

k n

� �	 

¼ o(k�1

n ),

All in all, we find that there exists a positive sequence ˜T
n such that ˜T

n ¼ o ºnb(n=k n)f g

Pr sup
t2 I n

jTk n
(t)� ª�1ºnb

n

k n

� �
B0j > ˜T

n

	 

¼ o(k�1

n ): (6:4)

Combining (6.3) and (6.4) for Sk(t) and Tk(t), respectively, we find that

Pr sup
t2 In

jRk n
(t)� ~RRn,k n

(t)j > ˜n

� �
¼ o(k�1

n ), as n ! 1,

with

~RRn,k(t) ¼ cª�1k�1=2a
n

k

� � t

n=k

� �rXk

i¼1

hr(Yi)þ ª�1k1=2a
n

k

� �
b

n

k

� �
B0,

while ˜n ¼ ˜S
n þ ˜T

n ¼ o ºnb(n=k n)f g as n ! 1. With Zk as introduced in Section 5, we

obtain, uniformly in t 2 I n and x 2 R, and as n ! 1,

Pr Zk n
þ ~RRn,k n

(t) < x� ˜n

� �
þ o(k�1

n ) (6:5)

< Pr Zk n
þ Rk n

(t) < x½ � < Pr Zk n
þ ~RRn,k n

(t) < xþ ˜n

� �
þ o(k�1

n ):

We can write the random variable Zk þ ~RRn,k(t) as

1

k1=2

Xk

i¼1

�i t,
n

k

� �
þ c

ª(1� r)
k1=2a

n

k

� � t

n=k

� �r

þ ª�1k1=2a
n

k

� �
b

n

k

� �
B0,

where

�i(t, u) ¼ log(Yi)� 1þ cª�1a(u)
t

u

� �r
fhr(Yi)� (1� r)�1g, for i ¼ 1, . . . , k:

Note that E[�1(t, u)] ¼ 0.

The distribution function of the standardized sum of the random variables �i(t, u) can be

expanded by a special case of Petrov (1975: Theorem VI.3.1), for the reader’s convenience

stated explicitly as Theorem A.3 below. In order to apply Theorem A.3, we need to

compute some characteristics of the distribution of �1(t, u). The variance of �1(t, u) equals

� 2(t, u) ¼ 1þ 2cª�1(1� r)�2a(u)
t

u

� �r
þO a(u)2

� �
, as u ! 1, (6:6)

uniformly in t 2 [u=2, 2u]. Further, since the distribution of log(Y1) is standard exponential,

the cumulants km(t, u) of �1(t, u) satisfy

km(t, u) ¼ (m� 1)!þ O a(u)f g, as u ! 1,

uniformly in t 2 [u=2, 2u] for positive integer m. Also, E[j�1(t, u)j p] ! E[jlog(Y1)� 1j p] for
positive p as u ! 1 and uniformly in t 2 [u=2, 2u]. Finally, if u and t are such that

as n ! 1.

and, ,as n ! 1
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�(u, t) ¼ cª�1a(u)(t=u)r is larger than �1, then the probability density of �1(t, u) is

uniformly bounded by max[1, f1þ �(u, t)g�1]. By an inequality due to Statulevic̆ius (1965)

and cited in Petrov (1975: 21–22, supplement I.5.22), this bound on the density of �1(u, t)
implies that for z 6¼ 0 the characteristic function of �1(u, t) is bounded by

jE[eiz�1(u, t)]j < exp �min[1, f1þ �(u, t)g2]
96f2� (u, t)þ �=jzjg2

� �
:

The calculations in the previous paragraph served to demonstrate that we may apply Petrov’s

Theorem A.3 to derive that, as n ! 1,

Pr
1

� (t, n=k n)k
1=2
n

Xk n

i¼1

�i t,
n

kn

� �
< x

" #
¼ �(x)þ

X2
j¼1

(Pjj)(x)k� j=2
n þ o k�1

n

� �

uniformly in t 2 I n and x 2 R, with P1 and P2 as in (3.3). Here we used the asymptotic

relation k�1=2
n a(n=k n) ¼ k�1

n ºn ¼ o(k�1
n ) as n ! 1 as well as the fact that x 7! xmj(x) is

uniformly bounded in x for positive m. Writing

vn(x, t) ¼ � �1 t,
n

k n

� �
x� �n

t

n=k n

r

�ª�1ºnb
n

k n

� �
B0

� �
, (6:7)

we obtain, as n ! 1 and uniformly in t 2 I n and x 2 R,

Pr Zk n
þ ~RRn,k n

(t) < x
� �

¼ � vn x, tð Þf g þ
X2
j¼1

(Pjj) vn(x, t)f gk� j=2
n þ o(k�1

n ): (6:8)

Combine (6.6) and (6.7) to find, as n ! 1, uniformly in t 2 I n and x 2 R,

vn(x, t) ¼ x� 1

1� r
t

n=k n

� �r

xk�1=2
n �n � �n

t

n=k n

� �r

� ª�1ºnb
n

k n

� �
B0 þ o(�2n)þ o ºnb

n

k n

� �� �
: (6:9)

Combine (6.8) and (6.9) to see that Pr[Zk n
þ ~RRn,k n

(t) < x] is equal to

�(x)� 1

1� r
t

n=k n

� �r

xj(x)k�1=2
n �n �

t

n=k n

� �r

j(x)�n

� 1

2

t

n=k n

� �2r

xj(x)�2n � ª�1j(x)ºnb
n

k n

� �
B0 þ (P1j)(x)k�1=2

n

� t

n=k n

� �r

(P1j)9(x)k�1=2
n �n þ (P2j)(x)k�1

n (6:10)

plus a remainder of the form o(k�1
n )þ o(�2n)þ o ºn (n=k n)f g as n ! 1 and uniformly in

t 2 I n and x 2 R. Because of the inequalities for Pr[Zk n
þ Rn,k n

(t) < x] in (6.5) and the fact

that the term ˜n in (6.5) is of the order o ºnb(n=k n)f g as n ! 1, we must also have that

� �

b
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Pr[Zk n
þ Rn,k n

(t) < x] can be written as in (6.10) plus a remainder term that is again of the

form o(k�1
n )þ o(�2n)þ o ºnb(n=k n)f g as n ! 1 and uniformly in t 2 I n and x 2 R.

In view of the representation of Pr[Hn < x] in equation (5.4), all that is left to do is to

integrate out the variable t in (6.10) with respect to the conditional distribution of Yn�k n:n

given Yn�k n:n 2 I n. First of all, note that for any intermediate sequence k n and any real p,

as n ! 1,

E Y
p
n�k n:n

h i
¼ ˆ(nþ 1)ˆ(k n þ 1� p)

ˆ(nþ 1� p)ˆ(k n þ 1)
¼ n

k n

� � p

1þ p( p� 1)

2

1

k n

þ 1

k n

� �� �
: (6:11)

The first relation follows from elementary calculus, while the second one is a consequence of

the asymptotic expansion of the gamma function. The large-deviation result for Yn�k n:n in

(5.3), together with Chebyshev’s inequality, then implies that the asymptotic expansion in

(6.11) also holds for E[Y
p
n�k n:n

Yn�k n:n 2 I n]. Hence, if in (6.10) we integrate out the variable

t with respect to the conditional distribution of Yn�k n:n given Yn�k n:n 2 I n, the result is the

same expression but with every t replaced by n=k n and up to a remainder term of the order

o(k�1
n ) as n ! 1 uniformly in x 2 R. Finally, collect the terms of the same order to arrive at

the expansion for Pr[Hn < x] stated in Theorem 4.1.

Appendix: Auxiliary results

Lemma A.1. Let (�i)i>1 be a sequence of independent, identically distributed random

variables. If E[j�1j p] , 1 for some p > 2, then there exists a positive constant c p,

depending only on p, such that for every real number � and every positive integer n,

Pr

 1n
Xn

i¼1

�i � E[�1]

 > n�1=2þ�

" #
< c pE[j�1j p]n�� p:

Lemma A.1 is a consequence of Markov’s inequality and the Marcinkiewicz–Zygmund

inequality; see Chung (1951: 348–349). From Theorem 3.1.4 in Bingham et al. (1987) one

can derive the Potter bound used in Section 6; see Lemma 2 in Cuntz et al. (2003) for details.

Lemma A.2. Under Assumption 4, for every � . 0 there exist K� . 0 and t� . 1 such that

for all 1 < y , 1 and t > t�, 1

b(t)

log V (ty)� log V (t)� ª log y

a(t)
� chr(y)

� � < K� y
�:

Recall that the monic Chebyshev–Hermite polynomials are given by

Hm(x) ¼ (�1)m exp(x2=2)
dm

dxm
exp(�x2=2), for m ¼ 1, 2, . . . :

The following theorem is a special case of Petrov (1975: Theorem VI.3.1).

Theorem A.3. Let (�i)i>1 be a sequence of independent and

o

j

identically  distributed
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random variables with zero mean and finite fifth absolute moment. Write � 2 ¼ E[�21],
k3 ¼ E[�31], and k4 ¼ E[�41]� 3� 2. There exists an absolute positive constant C such that,

for all real x, Pr 1

� k1=2

Xk

i¼1

�i < x

" #
��(x)�

X2
j¼1

f j(x)k
� j=2


< C 2� �5E[j�1j5]k�3=2 þ k10 sup

jzj>�
jE[eiz� ]j þ (2k)�1 k

� �
with � ¼ � 2=f12E[j�1j3]g, and

f 1(x) ¼ � k3
6� 3

H2(x)j(x),

f2(x) ¼ � k4
24� 4

H3(x)þ
k23

72� 6
H5(x)

� �
j(x):

Explicit expressions for the Hermite polynomials appearing in Theorem A.3 are

H2(x) ¼ x2 � 1, H3(x) ¼ x3 � 3x, and H5(x) ¼ x5 � 10x3 þ 15x.

Acknowledgement

This paper was partially written while Erich Haeusler was visiting the Catholic University

Leuven and the University of Tilburg. He is very grateful to Jef Teugels and John Einmahl

for their hospitality. Johan Segers gratefully acknowledges financial support in the form of a

post-doctoral grant by the Fund for Scientific Research, Flanders, and in the form of a

VENI grant by the Netherlands Organisation for Scientific Research (NWO). Both authors

thank Björn Vandewalle for helpful comments.

References

Beirlant, J., Bouquiaux, C. and Werker, B.J.M. (2006) Semiparametric lower bounds for tail index

estimation. J. Statist. Plann. Inference, 136, 705–729.

Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge: Cambridge

University Press.

Cheng, S. and de Haan, L. (2001) Penultimate approximation for Hill’s estimator. Scand. J. Statist., 28,

569–575.

Cheng, S. and Pan, J. (1998) Asymptotic expansions of estimators for the tail index with applications.

Scand. J. Statist., 25, 717–728.

Cheng, S. and Peng, L. (2001) Confidence intervals for the tail index. Bernoulli, 7, 751–760.

Chung, K.L. (1951) The strong law of large numbers. J. Neyman (ed.), Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability, pp. 341–352. Berkeley:

University of California Press.

1

� �

Confidence intervals for the tail index 193



Cuntz, A., Haeusler, E. and Segers, J. (2003) Edgeworth expansions for the distribution function of the

Hill estimator. CentER Discussion Paper 2003-08, Tilburg University. http://center.uvt.nl/pub/dp/.

de Haan, L. and Peng, L. (1998) Comparison of tail index estimators. Statist. Neerlandica, 52, 60–70.

de Haan, L. and Stadtmüller, U. (1996) Generalized regular variation of second order. J. Austral. Math.

Soc. Ser. A, 61, 381–395.

Drees, H. (1998) A general class of estimators of the extreme value index. J. Statist. Plann. Inference,

66, 95–112.

Ferreira, A. (2002) Statistics of Extremes: Estimation and Optimality. PhD dissertation, Tilburg

University.

Ferreira, A. and de Vries, C.G. (2004) Optimal confidence intervals for the tail index and high

quantiles. Discussion Paper 2004-090/2, Tinbergen Institute. http://www.tinbergen.nl.

Gomes, M.I. and Martins, M.J. (2002) ‘Asymptotically unbiased’ estimators of the tail index based on

external estimation of the second order parameter. Extremes, 5, 5–31.

Guillou, A. and Hall, P. (2001) A diagnostic for selecting the threshold in extreme value analysis. J. R.

Statist. Soc. Ser. B, 63, 293–305.

Hall, P. (1982) On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser.

B, 44, 37–42.

Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Statist.,

3, 1163–1174.

Mason, D.M. (1982) Laws of large numbers for sums of extreme values. Ann. Probab., 10, 754–764.

Petrov, V.V. (1975) Sums of Independent Random Variables. Berlin: Springer-Verlag.

Reiss, R.-D. (1989) Approximate Distributions of Order Statistics. New York: Springer-Verlag.
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