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Let (M,), (N,) be two Hilbert-space-valued martingales adapted to some filtration (F,), with
corresponding difference sequences (d,), (e,), respectively. We assume that (N,) weakly dominates
(M), that is, for any convex non-decreasing function ¢ : R, — R, and any n =1, 2, ... we have,
almost surely, E(¢(|d )| Fu-1) < E(¢(Jen|)|Fn—1). We apply the Burkholder method to show that for a
convex non-decreasing function ®: R, — R, satisfying some extra conditions we have, for any
n=12,..., |[Myo < Col|/N,|®, where || - | denotes an Orlicz norm with respect to ® and Cq
is a constant which depends only on ®. This approach unifies and extends the classical Burkholder
inequalities for subordinated martingales and the inequalities for tangent martingales. The method
leads to moment inequalities for Rosenthal-type dominated martingales and variance-dominated
Gaussian martingales. All the constants obtained in the moment inequalities are of optimal order.

Keywords: martingales; Orlicz space; subordinated martingales

1. Introduction and notation

Let (Q, F, (Fn), P) be a probability space equipped with a discrete filtration (we will
assume that Fy = {J, Q}). Suppose that (M), (N,) are Hilbert-space-valued martingales
with difference sequences (d,), (e,), respectively, and My = Ny = 0 almost surely (a.s.).
Burkholder’s famous result (see Burkholder 1988, 1989) states that if (M) is differentially
subordinated by (NV,), that is, with probability 1,

|dal < len],
then we have the following inequalities: for all # > 0 and all natural n,
tP(|M,| = 1) < 2E|N,| (1)
(the so-called weak-type inequality) and, for any 1 < p < oo and any natural 7,
(E[M,|")P < (p* = DE|N,|")? @

(the strong-type inequality), where p* = max{p, p/(p — 1)}.

It is worth mentioning that these results were obtained by a method, invented by
Burkholder, which reduces the problem of proving a martingale inequality to one of finding
a function of two variables having special convex-type properties.

These results have many extensions; the subordination principle may be replaced by
various conditions (called dominations). For examples of such extensions we refer to
Kwapien and Woyczynski (1992) and references therein.

The aim of this paper is to give another generalization of these results. First we fix some
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notation. Throughout the paper, H is a Hilbert space, with inner product denoted by (-, -)
and norm denoted by | -|. The symbol I, stands for the indicator function of a set A, and
the complement of any set 4 is denoted by A¢ (M,), (N,) are two (F,)-adapted
martingales taking values in 7. Their difference sequences are denoted by (d,), (e,),
respectively. All the random variables considered in this paper are assumed to take values in
some separable Hilbert space. For any convex function ®: R, — R, such that
®(0) = ®'(0) =0, we define an H-Orlicz space Lg as a set of such H-valued random
variables X, such that for some & > 0,

ED(e| X|) < co.

The set LY is a Banach space with a norm

X
X1 =inf{c >0: E@(u> < 1},
C

We now introduce the following essential idea.

Definition 1. We say that a martingale (M ,,)) is weakly dominated by a martingale (N,,) if, for
any non-decreasing convex function ¢ : Ry — Ry and any n =1, we have, almost surely,

E(¢(|dn|)‘-7:nfl) = E(¢(‘en|)|fnfl)~ (3)
We will write M <¢ N.

Such domination generalizes the subordination as well as tangency of martingales and leads
to other interesting (and much weaker) dominations, as we will see. The weak domination
was investigated by Stephen Montgomery-Smith and Shih-Chi Shen (n.d.), where the strong-
type inequality in this setting was proved. We will generalize this result to the inequality
between Orlicz norms of weakly dominated martingales and, in particular, obtain that the
strong-type inequality holds with a constant C, of order p as p — oo and 1/(p —1) as
p — 171, which is optimal, since it is already optimal in the case of subordinated martingales.
Moreover, we prove weak-type inequality and give further extensions and applications. Our
paper refines the results given by Kwapien and Woyczynski (1989, 1992), as the weak
domination generalizes the conditions on martingales investigated in these papers. For other
related results concerning tail probabilities, see, for example, de la Pefia (1993).

The paper is organized as follows. The next section is devoted to the inequality between
Orlicz norms of weakly dominated martingales; Burkholder’s method turns out to be very
useful in this setting. In particular, we obtain the strong-type inequality and, as a by-
product, the weak-type inequality. In Section 3 we show that the assumption of weak
domination may be replaced by much weaker conditions.

We then present some applications: we obtain that, for p = 2, the strong-type inequality
(2) holds for martingales (M), (N,) satysfying the following condition: for any positive
integer n, with probability 1,

E(|dn|2|.7:n71) = E(‘en‘2|~7:n71)a E(|dn|P|]:n71) = E(|en|p|~7:n71)-

The constant in the inequality is of optimal order O(p).



56 A. Osgkowski

As a second application, we prove that for Gaussian martingales the weak and strong
(1 < p <o) type inequalities (1), (2) hold if we assume that for any positive integer
n = 1, almost surely,

E(|d "1 Fn1) < E(|eq*|Fao1).

The constant in the strong-type inequality is of optimal order O(p) as p — oo and
O(1/(p—1)) as p— 1.

In the final section we present some remarks concerning best constant in the weak-type
inequality and present some arguments which lead to the special functions u<,, u>;, defined
below.

2. The inequality between Orlicz norms

2.1. Two basis functions

We start by defining two important functions. Let
9y =9I, if (x, y) € D,

u<2(xs J/) = 2 .
2yl = 14 8|y I =<1y + (16|y] = 8)I(|yy>13s if (x, y) ¢ D, @
0, if (x, y) € E,

u>2(x5 y) = { 5 2 5 .
Oyl* = (Ix] = 1) = 8(|x| = * I {jy=13,  if (x, ») ¢ E,
where
D={(, y) eH* |y +3k[ <1},  E={(x y)eH 3]y +x<1}.
It is straightforward to verify the following remarkable identity:
u=2(x, ¥) = 9(|y* = x?) + u<a(y, ), (x, y) € H. ®)
We now prove the fundamental property of these functions.
Lemma 1. If (M), (N,) are two H-valued martingales such that M <¢ N, then for any
n=1,2,...,
Eu<2(Mn7 Nn) = 09 Eu>2(Mn: N}’l) = 0. (6)
Proof. Let u = u< or u = u=p. We will prove that u has the following crucial property: for

any (x, y) € H?, there exist operators 4, vs By € H* and a convex non-decreasing function
¢ = ¢x,: R. — R such that, for any 4, k € H, we have the inequality

u(x, y) + Axyh + Beyk + ¢(|k]) — ¢(|A]) < u(x + h, y + ). (7

First, we consider the case u = u<,. Assume that (x, y) € D UJD. Let us introduce the
function @: H? — R defined by
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(x, y) = 2|y| = 1+ 8|y Ljyery + (16]y] = 8) 1y
If y =0, then inequality (7) holds with A,, = B,, =0, ¢ = ¢, = 0; indeed, we have
u(x + h, k) = —1 = u(x, 0). Suppose, then, that y # 0 and take
ol o
Ax,y:a(xs y)> Bx,y:(?_y(xa y)a ¢:¢x,y50~

The function # is obviously convex and it is easy to check that u = #, with equality on the
set D U OD. Therefore, we have

ou onu
u(x, y) + Axyh + Bryk = i, y) + 2 (6 b+ 20 (x )k
X Y
<dx+h y+k)<ulx+h y+ k).
Assume, then, that (x, y) belongs to D. We will prove that (7) holds with

Ou ou
Axy =5 (6 ) = —18(x, ), By, = a—y(x» y) = 18(y, ),

52, ifs<1-1y,

9
P(s) := Prp(s) = { 5 , ®)
(L —|yhs =9 — [y if s >1—1yl.

The function s — 9s% — ¢(s) is non-decreasing; in particular, we have ¢(s) < 9s°.
Suppose that (x + &, y+ k) € D. We must prove that

Oy + kP> = 9x + h> = 9|y — 9|x|> + 18(y, k) — 18(x, h) + p(|k[) — p(| h|)
or, equivalently,
k> — ¢(|k|) = 9|h|* — p(| A]). ©9)

If || <1 — ||, the right-hand side is equal to 0 and the left-hand side is non-negative. For
|h| > 1 — |y|, we have

(k[ = [y = |y + k[ = [y[+ 3]+ h| = 1= [y[+ 3| = 3]x[ -1
= |l + ([h] = 1+ [y)) + (] = 3[x) > [A[ + 0+ (1 = [y] = 3]x[) = [A]

and (9) holds: the function s — 9s2 — ¢(s) is non-decreasing.
Now let (x+h, y+ k)¢ D. If |y + k| = 1, then we must show that

18]y + k| = 9 = 9|y[* + 18(y, k) + (| k]) — 9|x|* — 18(x, k) — (| hl)
=91y + k> + p(K) — k> — 91x|* = 18(x, h) — (|l
But |k| = [y + k| — |y|, so
Oy + kI + p(|kl) = 9k < 9|y + kI + ¢(|y + k| — |y)) = |y + & — |y])’
= 18|y + k| —9.
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Hence, it suffices to show that 0 = —9|x|> — 18(x, &) — ¢(|h|) or
9lx + A* = 9|h|* — p(|hl). (10)

If |A] <1 —|y|, then the inequality holds true. Suppose, conversely, that || > 1 —|y|. Fix
|x + h| and x. The right-hand side is a non-decreasing function of |4|; hence, it is maximal
for |h| = |x + h| + |x| and then

Olx|? — 18]x|[4] = —18(1 — [¥])| 4] +9(1 — [y])?
or, after simplifications,
(1 =[x = [yD@lAl = 1 = |x[ + |y} = 0.

This inequality holds: for (x, )€ D we have 1 —|x|—|y|=0 and 2|h| —1 — |x|
+ Dl=2(h+ = D+1-|x[ [y =0.
The only remaining case is (x+ h, y + k)¢ D, |y + k| < 1. We must prove that

81y + k[* 2]y + k[ — 1= 9ly[* + 18y, k) + p(|k]) — 9[x|* — 18(x, h) — (| ]).
If |h] < 1 —|y|, then ¢(|h]) = 9|A|?, ¢(|k|) < 9|k|> and we may write

8y + kP +2|y+ k| —1=9y+ k> — (1 — |y + k|)> = 9|y + k> — 9]x + hf? o
= 9|y + 18(y, k) + ¢(|k]) — 9|x|* — 18(x, h) — (| h)).

Suppose, then, that |4| > 1 — |y| and consider a vector

1—y|
n = h.
| ]

We may use (11) for &', because |h'| =1 — |y|:
8l + kI* + 21y + k| = 1= 9]y + 18(y, k) + p(|k[) = IIxl* — 18(x, &) — p(|A"])
= 9|y + 18(y, k) + p(k]) — 9xI” — 18(x, 1) — p(|h]) + 18Cx, h — ') + p(|h]) — p(| 1))
and we have
18(x, h = 1) + (k) — p(|A']) = —18|x|[h — '] +- 18(1 — | (| A] — |1"])
= 18(|A| = 1+ [y(=[x[+ 1= [y} = 0.

Hence the proof for u = u~, is complete.
The case u = u~, follows easily from the preceding case due to formula (5). Let us write

(7) for (y, x), (k, h):
u(y+k x4+ h) = ux(y, x)+ Ay ck+ Byh + ¢(|h]) — ¢(| k).
Adding the equality
Oy + k> = 9x + > = 9|y* — 9|x|* + 18(», k) — 18(x, k) — 9|h[* + 9| k|?

yields the desired result. Note that in this case the function ¢ = ¢, , is given by
G y(s) =952 if (x, y) ¢ E and



Inequalities for dominated martingales 59

0, if s <1— x|,

N = 12
Pe5) {%r%+hw, if s=1— || (12

for (x, y) € E. These functions are convex.
We now turn to inequalities (6). Fix n=1, put in (7)) x=M,_,y= N,_1,
h=d,, k=e, and take conditional expectations with respect to F,_;; we obtain

E(M(M,,, Nn)lfnfl) = u(Mnfls anl) +E(¢(|en|)|}—n71) - E(¢(|dn|)|-7:n71) (13)
= M(M,,,,l, anl):

hence, taking expectations, Eu(M,, N,) = Eu(M,_, N,—1), which yields Eu(M,, N,) =
Eu(My, Ny) = 0. The proof is complete. U

Remark 1. In the proof we use the condition (3) only for special functions ¢ defined by (8) or
(12); therefore the inequality Eu<(M,, N,) = 0 (or Eu=,(M,, N,) = 0) holds if we assume
that (3) holds for the ¢s defined by (8) (or (12)). This will be taken up in Section 3.

As a corollary we will prove the weak-type inequality.

Theorem 1. For all martingales (M), (N,) taking values in the Hilbert space H, such that
M <¢ N, and any t > 0, we have

(P(|M,| = 1) <6E|N,, n=012....
Proof: We will show that
u(x, y) :=18|y| = Ijy=1/3 = u<a(x, »). (14)
If (x, y) € D, then |x| <1, [y| <1, hence
—9|x> + Ty=13 <0< 18]y| - 9yI%,
which is (14). If (x, y)¢ D and |y| < 1, then we must prove that
18[y] = Ijy=173 = 2|y — 1 + 8|y,

which reduces to a trivial inequality 16[y| + 1 — I|y=/3 = 8| y|?. The only remaining case is
(x, »)¢ D and |y| > 1. Then the inequality (14) takes form 18|y| — I|y=1/3 = 18|y[ -9,
which again is trivial.

Suppose now that (M), (N,) are two martingales such that M <+ N, and fix > 0.
Then the martingale (M, /3¢) is weakly dominated by the martingale (N, /3¢). Therefore, by
(14) and Lemma 1,

M, N M, N,
6E|N,| — tP(|M,| = 1) = tEU( 3:,3—;) = tBu<, (— —) =0,

which is the claim. O
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2.2. The main result

In this subsection we will compare the Orlicz norms of two weakly dominated martingales.
Let ®&: R, — R, be a convex, twice continuously differentiable function such that
D(0) = P'(0) =0. Let ¥: R, — R, be the function given by the differential equation
@'(s)
s

W) =

,8>0,W(0)=¥.(0)=0.

Our main result is the following.

Theorem 2. Suppose that the function ® satisfies one of the following conditions:
(A) W" <0, lim,_®"(t) =0, and there exists C > 0 such that

W(Cs) + 8W((C — 1)s) = W'(Cs)s, for all s > 0. (15)
B) P">0, ©"(0)=0 and there exists C > 0 such that

W(Cs) + 8W((C — 1)s) = W'(Cs)s,  forall s > 0. (16)

Then for all martingales (M,), (N,) taking values in the Hilbert space H, such that
M < ¢ N, the following inequality holds true:

[Mallo < Co|[Nullo, n=0,1,2,...,
where

C[1/BC=1), if (A) holds,
3 -1, if (B) holds.

Remark 2. Conditions (A) and (B) appear complicated and it is difficult to verify inequalities
(15), (16). The following easier conditions imply (A) and (B), respectively.

(A" lim,; ., P"(#) =0 and there exists C > 0 such that

9(C — 1)D'(s) < sD"(s) < D'(s), for all s > 0. 17)
(B’) ®"(0) =0 and there exists C > 0 such that

(C=1DD'(s) = sD"(s) > D'(s), for all s > 0. (18)

Proof of Remark 2. Suppose that (A") holds and C satisfies (17). We have

s®"(s) — D'(s) <o.

qjm(s) — S2

We will prove that
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8C —
p’
9C -8 (s +50—% 9C —

which is stronger than (15), because W' is non-decreasing. It suffices to show that for all
s >0 we have

W(Cs) + 8W((C — 1)s) < 11! (C = Ds)s,

£8) = B(5) — 5 Ws)s =0
But
£ = W(s) - (s)s — W) =
. Vg
6= 5o ().

Hence f(0) = f'(0) =0 and f is concave. Therefore it is non-positive.
Assume now that (B’) holds and C satisfies (18). We have

sP"(s) — D'(s) -0

IPI//(S) — 5

s
Let f(s) = W(Cs) + 8W(C — 1)s) — W'(Cs)s. It can be computed that

P’ (Cs) L, ®(C=s) _
(C—1)s :

[ =C|(C—-1) —®"(Cs)| +8(C—-1)

hence f is convex. In addition, f(0) = f'(0) =0, so f is non-negative and the proof is
complete. l

We now are ready to define an important class of functions. If @ satisfies (A), then we
take

Wt )= -]

PU (s (f, X) d.
0 1t

If @ satisfies (B), then we define
wat 3= | P o (5. 2) dr
0 tt

These functions will henceforth be called Burkholder functions (with respect to ®). In the
lemma below we derive the formulae for we.

Lemma 2. If ® satisfies (A), then

wa(x, y) = =2W' Qx| + [y)3[x[ + 16W(|y]) + 2W3|x[ + |y]).
Otherwise, if (B) holds, then

wo(x, y) = 2W'(|Ix[ + 3[y)3|y| — 16W(|x[) — 2¥(|x| + 3|y]).
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Proof. We only prove the formula for when (A) holds; the calculations for when (B) holds
are analogous. By the definition of u<,,

loe]
X
Wwalx, ¥) = _L AU (s (;, {) dr

3+ | | 3+
= —J PP (== dt + J £W"(1)dt
0

3t 2 o
—SJ 2‘P”’(t)|y| dt — 16J tzlp'"(t)|—f| d
1] 0

1] 00
+ SJ P (1) de — J (1)
0

9y* — 9IXI2
3[al+y] r?

Integrating by parts, using W(0) = W'(0) = lim,_,,,W"(s) = 0, we obtain
wo(x, y) = =2|y[[W"Glx] + |yDG x| + [y)) — ¥’ Glx| + |¥D]
+WGIx| + [yDGIx] + [y = 29 Gla| + [yDGlx] + |y +2¥G x| + [v])
+ 8[yPI=WGlx] + [y)) + (| yD] — 16|y (yhlyl — W' (|¥)]
+ 8 (YD = 2% (|yDIy] + 2P y]) + 9y = X)W Glx| + [y
= 2W'Gx[ + [yD3]x] + 16W(|y]) + 2P G x| + |¥]).

O

Proof of Theorem 2. Suppose that (A) holds and C satisfies (15). We will prove that for all
(x, ¥) € H? we have

C C?
@ (mb’) — PGC]) = - walx, y). (19)

As Ewgp(M,, N,) = 0 (which follows from the definition of the function wg and Lemma 1),
this will prove that

C
E® <m |Nn> = E®QBC|M,),

which yields the inequality from the theorem. Fix y and let s = 3|x|. We must show that the
function f given by

C
719 = B(C5) = @S 151 ) = CRV s+ s = 81— G+ o)

is non-positive. But

11(5) = CP'(Cs) — CPW(s + |y|)s = C2[W"(Cs) — W(s + | ]).
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The function W" is decreasing, hence f has maximum in § such that Cs = s+ |y|. This
maximal value is equal to

£(5) = CY[—W'(C5)s + 8W((C — 1)s) + W(C3)],

which is non-positive due to (15).
We will skip the proof of the case where (B) holds as it is tedious and very similar to
that of (A). We wish only to mention that in this case the ‘dual’ inequality to (19) is

C c?
D) - @ () = G vt . 0)
U

As an application, we will use Theorem 2 to obtain the inequality between pth
moments of weakly dominated martingales. Let p € (1, o0), p # 2 and set ®(¢) = t”. Then
W(f) = (p— 1)"'t” and inequalities (15), (16) take form

CP 4+8(C —1)? < pCcr!, CP +8(C—1)? = pCcrt.
Hence in both cases 1 < p <2, 2 < p < oo the best constant C we can get from our proof
is defined by the equation

CP +8(C - 1) = pCcP'. (21)

Theorem 2 yields the strong-type inequality with C, = (3(C—1))"! for 1 < p <2 and
C, =3(C—1) for p > 2; before we state this as a theorem, let us study the asymptotics of
C,. Let

1

so=C"', Ad,=C—-1=—-1.
S0
Equation (21) can be rewritten in the form
8(1 — s0)? = pso — 1. (22)
Hence, so € (1/p, 1).
Lemma 3. Let K be a positive real number such that
(K —1ek =38 (23)

(i.e. K =~ 2.04). The asymptotics of A, is as follows: A,/(p — 1), considered as a function of
variable p, is increasing, and
A4, 1 4, 1

li = I S
19 ST K

Proof. If we take the logarithm of both sides of (22), we get
log 8 + plog(1 — s9) = log(pso — 1).

Now differentiate over p; after some simplifications we obtain
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50

_ 1 <(1 — so)log(1 — s9) pso— 1) — (1 — S0)>.
pp—1) 50

Let us investigate the function

Ay 1
f(p)'_p—l (p—Dsy p-1

p>1.
We have

Sf'(p) = —(p — 1)st + ).

R
(p—1ps3 °

But /" is non-negative:

—1 /(1 = s9)log(1 — -1
5o+ (p— 1)sh = PSop <( so)log(1 — so) el s So)

S0 pso— 1
1 1 — sg)log(1 —
_ (So——) (( so)log( SO)+1>+S_0_S(2)+S%
p S0 p
1 1 — sp)log(1 —
= s(z) + (so - —> <( so)log(l = o) +1- s0>
V4 N

1\ 1-
= sg + (so — —) . %0 (log(1 — s59) + 50) = s(z).
p S0

Hence f is non-decreasing; it is also non-negative, therefore there exists a finite limit

. . — S0 . 1 — 80
= lim =Ilm-——=lim ——,
g pﬁﬁf(p) B |

because so — 1 when p — 17. Dividing both sides of (22) by (p — 1)?~!(1 — s¢) gives

8<1—So>p b (P —Dso _ 1
p=1) (p-Dr1-s) (p—1r"

24

(25)

and if p — 17, we see that g must satisfy the equation 8 = 1/g — 1, hence g = % and f = %.
On the other hand, sy > 1/p, hence f is bounded from above by 1 and there exists the

finite limit g = lim,_ f(p). Moreover, so — 0 as p — oo. Therefore,
. . 1
lim (p — 1)sp = lim psy = —
p—00 p—00 g
and letting p — oo in (22) implies that K = 1/g. Hence f < 1 /K.

Thus we have proved the following:

Theorem 3. Let (M), (N,) be two martingales as in Theorem 2. Then for any n =1, we

have



Inequalities for dominated martingales 65

(E|M, |7 < CHE|N,|")"/7,
where
1 3
<

37 ﬁ, f0r1<p<2,
P

C,=
3
3AP<E(p—1)%1.48(p—1), for 2 < p < oo.

3. Weakening the assumptions in Theorems 1-3

The crucial part of the proofs of all the theorems is Lemma 1. Following Remark 1,
Theorem 2 holds true if for any n =1, t > 0, (x, y) € H?, we have

||
t

lex]
t

E(¢x,y( >|-7:n1) < E(¢x,y< >|.7-',,1) a.s.,

where ¢, , is defined by (8) or (12), depending on whether (A) or (B) holds. Moreover, this
assumption may be further relaxed; in the proof of the Theorem 2 we integrate the functions
U<y, U=, with the kernel s — |s*W"(s)|; hence, we also integrate the inequalities (13) to
obtain

EWa(M,, N)|Fn-1) = wo(Mu—1, Nyo1) = E(Yom, v, (l€n))| Fn-1)
—Eoum, N, (| daDIF 1), (26)

where

T = Tansl) = | WO 10 (5) . @)

Therefore, the following inequality for ‘integrated’ ¢ is sufficient: for all x, y,

E(Y o y(|du)|Fn-1) < E(Yox, ([eq)|Fu-1) as., n=1 2 ... (28)
We now turn to Theorem 3, where we may derive the formulae for the function Y. For
@(f) =t we write T, := Yo, ,. Note that 2W"(t) = p(p —2)tP~".
Lemmad4. If 1 < p <2, then
9p3lx| + |y))P~2s?, if s < 3|x],

Tp,x,y(s) = (29)

18
OPBI| + D775+ @p(s =3, i 5 =3,

where
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®p(s) = ®p,x,y(s) = (s+ 3|x| + |y|)p - (3|x| + |y|)p

— o0+ s~ LD G 1y
If p>2, then
9p(|x| + 3| y[)? 2%, if s <3|y,
B B T A
where

®p(s) = ®p,x,y(s) =(s+ |x| + 3|y|)p - (‘x| + 3|y|)p

D(

_ p—1 _
— p(Ix[ +3|yp?P s — f(IXI + 3|7 257

Proof. The following equation can easily be verified: for a, b > 0, p > 1, we have

a+b
J tP3(a+b— 1) dt

a

2
C (P D(p-2)
Let 1 < p <2.1If t <3x[+|y|, then (x/¢, y/t) ¢ D and ¢/, = 0, so

tp71¢x/t,y/t<;) dz.

-1
[(a + b)Y’ —a? — paP~'b— m%)ap_zbz} .

{o.¢]

T ps(s) = p2 p)Lley

If ¢ = 3|x| + |y| (or (x/t, y/t) € D), then we have
s\ 9s? s Iv[\*
Peronie(;) 79<; )

If s < 3|x|, then for ¢ = 3|x| + |y| we have

E_l_;’_MQM_
t t t

1=<0

and

00

2
1S _
T pu)(s) =9p(2 — p) J o 172 dt = 9p(3x| + |y))P2s>.

3|+
If, conversely, s > 3|x|, then for ¢ < s+ |y| we have
Sy llayg
t t

and

30

)

€2))
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00 2 s+ ] _ 2
Tp’x’y(s) = 9p(2 — p) [J tpflj_z dt _ J tp*l w dt‘| s

2
3fl+y] 3Jxl+y] !

which, by (31), used with a = 3|x| + |y| and b = s — 3|x|, is equal to

18
%eu+ww22+;—{@mwsm+ww Gl + 1y

p(p

— PG| + [y (s = 3lx]) — mn+ﬂv%w4ﬂﬂ

as required. Again we skip the remaining part (for p > 2), which can be proved in the same
manner. O

We will formulate the weakened conditions in terms of the following functions:

52, if s<r,
P, (s) = (32)
2rs — r2, if s>r,
0, if s<r,
P=2,(s) == (33)
(s — 72, if s >r.
Moreover, for 1 < p < oo, a € [0, 1], let
pip—1 pip—1)
Mu(s) = 2= ¢ {(1 +—a) —1-ps—ay —EE 6 —al | G4

The function %. , has the following property: for A > 0, s > 0, we have
2P (s = ., (As). (35)
Theorem 4. In Theorem 2 it suffices to assume that, for all n =1 and any r € R, we have
E@ <, (|daD|Fn-1) < E(<a(len)|Fn-1) as., if (A) holds,

E(>2,(|da)|Fn-1) < E(Ws2,(|en)| Fuor) @, if (B) holds.
Moreover, Theorem 3 holds if, for any n =1, a € [0, 1] and B € Ry, we have
E(ITa(BldaD|Fn-1) < EQ po(Blen))| Fu-1) as. (36)
Theorem 1 holds if, for all n =1 and any r € Ry, we have
E@W < (|duD|Fn-1) < E@W<a.l|enD| Fu-r) as.

Proof. Suppose @ satisfies (A). It is enough to show that, for any (x, y) € D, n =1 and

t > 0, we have
|d | - |e,,|
(px/ty/t |~7:n 1 E ¢x/t v/t |-7:n—1 a.s. (37)
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If (x/t, y/t) ¢ D, then ¢/, ,/, =0 and the inequality holds. If (x/¢, y/) € D, then t = |y|
and, as one can easily verify, we have the identity

N

9
¢x/t,y/r (;) = t_21/)<2,t—\y|(s)a

which yields (37) and also implies the weak-type inequality. When (B) holds, the proof is
similar.

We will now deal with the second statement. It suffices to show that, for any (x, y) € H?
and n =1, we have

E(Tp,x,yqdn')‘]:nfl) = E(Tp,x,y(|en|)|f’n71) a.s. (38)

For 1 < p <2 it is an immediate consequence of the equation

18
T () = F(3|X| + [YDP I pu(Bs),

where
3|x] 1
a=———¢€]0, 1], f=——"->0.
3|x[ + [ 3|x[ + [
For p > 2 we use the fact
18
Tp,x,y(s) = P 1 (‘x| + 3|y|)pHp,a(ﬁS)’ (39)
for
3|yl 1
=———¢€][0, 1], f=———>0. (40)
X[ + 3|y |x[ + 3|y
O

3.1. Burkholder—Rosenthal-type inequality

Burkholder (1973) proved the following inequality: for p = 2, any positive integer n and
any real-valued martingale (M ,) with difference sequence (d,),

" p/2 /P " 1/p
! E(Z E(|dk|2|}'k1)> +<EZ |dk|1’> < (E|M,|")"»
k=1

k=1

n r/2 tp n 1/p
<G, E(Z E<|dk|2|fk_1>> + (EZ |dk|P> : (41)
k=1

k=1

The best order of the constants ¢, and C, as p — oo is O(p) and O(p/In p) (see Hitczenko
1990). For extensions of this inequality see de la Pefia ef al. (2003) and references therein.
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Therefore, in order to compare the pth moments of two martingales, p = 2, it suffices to
compare the second and pth conditional moments of corresponding difference sequences; this
motivates a domination introduced in the following theorem.

Theorem 5. Let p = 2. Assume that (M), (N,) are H-valued martingales, such that, for
k=0,1,2,..., we have, with probability 1,

E(|di[*|Fi-1) < E(lex*|Fiz1),  E(di|?|Fr-1) < B(lex|?|Fi-1).

Then
(E|M,|))/P < K ,(E|N,|P)!/?, n=0,1,2,...,
where
-3\ /P
9C—(p—1)r
Ky, = 2(0; + Ccr-2 ’

C is defined by equation (21) and C, comes from Theorem 3.
Remark 3. 1t is easy to check that K, is of order O(p) as p — oo; in fact, K, <3p.

Remark 4. As noted by Zinn (1985), inequality (41), used twice, immediately yields the
theorem, however, with the constant K, of order O(p?/In p) as p — oo.

First we prove an additional fact.

Lemma S. Let 'H be a Hilbert space. For any x, y € H, we have

<[] 772

2 [{\x|$2\y|} + (x| = |J’\)p1{|x\>2|y\}-

et 1?1917 = Pl 0 =
Proof. We have
_ p - p p -
et 17 = pI7 = P20 ¥ = e 7 = S e P = P S+ S
Fix |y| and |x|; we will minimize the expression above. Consider a function g: R, — R
given by g(t) = t” — 1 p|y|? "2+ Then g'(#) = pt(t"~2 — |y|P7?), so g has global minimum
in |y| and for z > |y it is increasing.
Therefore, if |x| < 2|y|, then g = g(|y|):
_ p _ p Py o
e 217 = 117 = plylP 72 0 = 1P = S P = 1P+ S 17+ S P2
— P22
5 I

If x| > 2|y|, then |x + y[ = [x] — [y| > |y and g = g(|x| — |¥]):
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_ p _ p
et 317 = 17 = ply P72 ) = (] = D7 = Sl = Il = 17+ S 11
P22
+ 21y 2y

= (Ix] = D? = 17 + ply|~ ] = (x| = )7

O
Lemma 6. Let p = 2. Then, for s = 0 and any y € [0, 1], we have
(1+97 = 1= ps=Z(p— D+ (p— D/ 257
p(p—1) [y
< T(2s)2 +(p— 1P T(2s)21{25g2y} + (25 — )P 100y |-
Proof. To prove the first inequality, consider the function
e
£ =5(p = D22+ (p= D' 25" — (1497 + 1+ ps.
Since f(0) = f'(0) = 0, it suffices to prove that f is convex. We have
S's)=e(p =1+ p(p = DI(p = Ds]?7> = p(p — D(1 +5)"2.
If s<1/(p—1), then
1\ 1\
o= 17 pp-n(1e ) = 2fe- (1415) | >0
p—1 p—1
If 1/(p—1)<s<1/(p—2), then
2 L\
S >elp—1 +p(p—1)—p(p—1)(1+p2> : (42)

If p =<3 the right-hand side is greater than
e(p— 1P +p(p—1)—2p(p—1)=(p—Dlple—1)—e] >0.
If p > 3, then the right-hand side of (42) exceeds
e(p— 1Y +p(p—1)—p(p—De=(p—1)(p—e)>0.

The only remaining case is s = 1/(p —2). Then we have 1+4+s<(p—1)s and we
immediately obtain f"(s) > 0.
Let us deal with the second inequality. We have

-1 -1 -1
20 _PP—D 5 p egp(p )

25)>.
7 » 57— (29

€
S(p-1)

Moreover, if s < y, then
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p—2
(p= 1" 2s? < (p— 1) 2y 25 < (p— P29,

as required; if s >y, then s < 2s — y and
-2 -2 S ? -2
(p—DP7sP=(p—-17 (2y> @2s=—y)P<(p-D""2s—y)".
5 —
O

Proof of Theorem 5.Let w, be the Burkholder function with respect to ®(f) = t”.
Unfortunately, inequalities (28) do not hold under the assumptions of Theorem 5. We will
modify the function w,; consider a function w: H? — R given by

W(x, ) = wp(x, )+ 18(p — NP |y|7.
By (20), we have
2 C P 20P2
il I ) TV Y
Wit ) = & b = (S ) | = 25l - i
Therefore w < v, where v: H?> — R is given by

2072 9(C —1P(p—1)r3
u(x, J/)ZWKCZ‘F ( )C!Ef)z ) >|J/|p_|x|p}

Therefore it suffices to prove the inequality Ew(M ,, 2N,) = 0. We have, by (26),
E(W(Mna 2Nn)|~7:n71) - W(Mnfla 2]\',nfl)

= E(Tp,Mn,l,Zanl(2|6n|)|'7:n71) - E(Tp,Mn—l,an—l(|dn|)|‘Fi’l71) (43)
+18(p — 1)?E((12N4|? — |2N,-1]” = p2N,oi|P 722Ny, 2€,) | Fui).

We will show, that for any x, y € H and any centred bounded variables X, Y, taking values
in Hilbert-space H, such that

E|X|> < E|Y], E|X|? < E|Y|?,
we have
EY ,2(|X) S EY pany(12Y]) + 18(p — D E(12y +2Y |7 — [2y]” — pl2y[P %2y, 2Y)).

This will immediately imply that the right-hand side of (43) is non-negative almost surely.
Divide both sides of the inequality above by 18(|x| + 6|¥|)?/(p — 1) and substitute
6y X ¥ 2y
= , Y = . y = .
x| + 6]l x| + 6] y| x| + 6]l

>

Then, by (39) and (40), we obtain the following inequality to prove:
EIN,o(|X]) < EIL,o(|Y]) + (p — DPZE(|ly + 2717 = [y = ply|"72(y, 2Y)).
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But EII,, ,(|.X]) < EII,,(]X]), as for any s = 0 the function a — II,,(s) is non-increasing.
Therefore, by Lemma 6 we have

€ —
EIL,o(|X]) = EL(1+ X7 — 1 = p|X[) = 2(p = D’EIXP + (p — )" *E|X]"

€ -
<5 = DEYP+ (- D" E[T).

Now we apply the second inequality from Lemma 6 with y = |y|; we may bound the
expression from above by

pp—1) Lo (1P
TE@WD2 +(p—1PE (%(2|Y|)21{2|Y|S2y} +QIY| = YD Lzy=2) )5
which, due to Lemma 6, does not exceed

p(p—1)
2

< EI,.(12Y]) + (p — D?E(ly +2Y]” — [y|” — ply[" (3, 2Y)).

EQ[Y]Y’ 4+ (p — DP?E(ly + 2717 = |y|” = ply|"2(y, 2Y))

3.2. Gaussian martingales

The purpose of this subsection is to prove the strong- and weak-type inequalities for
Gaussian martingales. We start from the definition.

Definition 2. A martingale (M ,,, F,) is Gaussian if for any n = 1 the conditional distribution
of d, with respect to the o-algebra F,_, is Gaussian almost surely.

We now introduce a new domination.

Definition 3. Let (M), (N,) be (F,)-martingales taking values in Hilbert space 'H. We say
that (M) is variance-dominated by (N,) if, for any n =1, we have

E(du*|Fn-1) < E(lenl*| o) as.
First we prove a lemma which enables us to relate the variance domination with the

‘weakened’ domination from Theorem 4.

Lemma 7. Let X, Y be two centred Gaussian random variables with values in the Hilbert
space H, such that E|X|* < E|Y|?. Then, for any r > 0, we have

Ey, (X)) < Ewr<\/§|Y>9 (44)

where Y, = Y« is given by (32).
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Proof. The function s — 1,(1/s) is concave, so by the Jensen inequality we may write

Ey,(1X]) = Ep,(v/|X]?) < ¥, (VVE[X]?).

With no loss of generality we may assume that 7 is finite-dimensional. Let ki, kp, ..., k,,
be its orthonormal basis. The random variables

E|Y
i=Alarv (Y ki
"=\ E wp

are real, centred, Gaussian and have variance E|Y|?. Again by the Jensen inequality,

Ewr<\/§|Y|> _ Ew<\/gT|Z)

_ m E|(Y k)|2 E|Y|2 )
o (\/ 2 EJY[? {E|(Y, B [of ki)|]

i=1

" B|(Y, k) o\ \/a
B;‘W&pr( Sl ) =Ey.((51m1).

Hence, it is enough to show that

T
o, (\[201) = p (VBT
By (35), this inequality is equivalent to
T
SEV(MiDh =y o (v E[W1[%). (45)

We may assume that E[W>*=1. Suppose that r</(2/m). Then
LN (1) =V2mr — 2,2 and (45) takes the form

x 2", 52 \/5 > 5 s? _ T,
2<\/;J0S exp( 2>ds—|— RJ.r (2rs — ro)exp > ds | =V2nr Er. (46)

Integrating by parts, we obtain

2 r 2
\/g<rexp (— %) + 1+ rz)L exp (— %) dS) = Vanr,

hence we must show that

. r 2 },.2 27 _
f(r):= 0exp 73 ds + 2_~_lexp -5 71—|—r2/0'

But we have
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S = ") 1s 2] =0

ry=——-—l|exp| —= | — r-| =0,
2+ 12 [P\ 72

so inequality (46) holds.

On the other hand, if » > \/2/m, then o (n/2)r(l) =1 and the left-hand side of (45) is
increasing (as a function of r). But the inequality is true for » = y/2/m, so the proof is
complete. Ul

Inequality (44) enables us to prove the weak-type inequality and the strong-type
inequality for 1 < p < 2; unfortunately, it fails to hold for ¥, = >, , and in this case we
need a different argument.

Lemma9. Let p > 2. Then, for any o > 0, we have

o0 2 _
\/ij [(1+0s)? —1— psolexp <— S2> ds < y(h})z +2(2po)?.

0

Proof. Consider the function f(x) = [(1 +x)? — 1 — px]/x%. It is increasing for x = 0, as we
have f(x) = p(p — 1) J, (1 — £)(1 + x)?~2dz. Suppose that ¢ < 1/p. Then

2(° (1 +0s)? —1— pso 2
[ e )
_ \/i J:C (1+ (1/p)s)f/;2l —ps(/p) <_ s22> i
00 2
\/%pzjo [exp(s) — 1 — s]exp (— %) ds

2e (! 2 2 ~1
o (F (Do ) e

Suppose now that ¢ > 1/p. Then

\fjw (14057 — 1 - psotesp(~ 5 )d
o s pso lexp 5 |ds
2 1/0 2 2 00 2
< \/;L (14 os)Pexp (— S2> ds + \/;Jl/g (1 +0s)Pexp (— S2> ds
2 (= 52
<274 \/:J (250)Pexp ( —> ds
TT 1/o 2

2 (= 2
< (2po)” + (20)"\/;J sPexp <— %) ds <2-(2po)’.
0

Il
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We are ready to extend the previous results to the Gaussian setting.

Theorem 5. Let (M), (N,) be two Gaussian martingales taking values in the Hilbert space
H, such that N variance-dominates M. Then

(a) For t >0 we have
P(|M,| = t) < 3V2aE|N,|.
(b) For 1 < p<ooand n=0, we have

(EIM | )P < K (B[N, | )7,

T .
\@cp ifl1<p<2,

KP = 1 1 lf P = 2’
18(C — Hyrp\'/7
2<C§+Cp_z(p_1) . r>2

where

C is defined by equation (21) and C, is the constant from Theorem 3.

Remark 5. One can verify that for 1 < p <2 we have K, <3.76/(p — 1) and for p > 2 we
have K, <4p.

Proof of Theorem 6. (a) This is an immediate consequence of the Theorem 4 and the Lemma
7.

(b) For 1 < p <2 we again apply Theorem 4 and Lemma 7. For p =2 the proof is
trivial. Suppose, then, that p > 2. The proof is similar to that of Theorem 5: we consider
the function w: H? — R given by

_ 36pP
w(x, y) = wy(x, y) + -1 y17,

where w, is the Burkholder function with respect to ®(¢) = ##. Then w < v, where

2002 18(C — 1)P p?
u(x, y) = ———— [(C} +m

- v1? 1.

To prove the theorem, it suffices to show that for any x, y € H and any centred Gaussian
random variables X, Y taking values in H, such that E|.X|> < E|Y|?, we have

36p?
EY(|X]) < EY2[Y]) +H(E|2y+ 2Y[7 = [2y[),
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where T =T, .5, is given by (30). The variable Y is symmetric, hence

1
El2y +2Y|7 = 5E[|2y+2Y|p + 2y =277

1
= SE[(20 + 27 + 2@y, 200" + (29 + 2Y [ = 22y, 2¥))""

= E(12y* + 2YP)P/? = [2|F + E2Y|7.

Therefore it suffices to show that
p
ET(|X]) < EY(2Y]) + ﬂplamp.
p—

Let 02 = E|X|%. It is an easy matter to check that the function s+ Y(,/5) is convex
(because T = f()oo tP~'¢(-/£)dt and all integrated functions have this property). Hence, by
the Jensen inequality,

36
ET(27) +-20 Sor! pERY) = EXY(VRYP) + 22 r’

— E(RY )
36 p p—2 2 36 P

With no loss of generality we may assume that H is finite-dimensional; let A, A,, ..., h,, be
its orthonormal basis. We have

E(h;, X)? E|X|?
X = Z(h;, X)h; = Z (E|’X|2) (\/E(h|, |X)2(h1, X)hz).

The variables
[ E|X|?
W;=|————-—=(h;, X I=1,2, ...
l E(hl, X)z( 17 )7 2 2 b mﬂ

are real, Gaussian and have variance o2. Moreover,

Em: E(h;, X)* |
— EXxpP 7

hence, by the Jensen inequality,

E(h;, X
EY(|X|) = EY(/|X]? —ET<\/Z (E|’)’(|2) |W;|2>

"~ E(h;, X)?
ES ———EY(|W,;|) = EY(|W
12:1 ELX] (4w (),
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therefore we may assume that dimH = 1. Hence it suffices to show that, for X ~ N(0, o),
we have

36
EY(|X]) < 9p(|x| + 6]y 2(20) +ﬁ(2170)p-

If we divide both sides by 18(|x| + 6|y|)?/(p — 1) and substitute

o 6|y X
ogi=—, o=—"— =
x| + 6] ] x| + 6| ] x| + 6]yl
we obtain the following inequality to prove:
— 1)(20)?
EHpa(|X|) < % + 2(2p0-)l’.

But we have

{o.¢]

2
EIT, (| X|) < EIl ,o(|X]) = \/;Jo [(1 +05)” — 1 — psolexp(—s?/2)ds

and the result follows from Lemma 9.

4. Concluding remarks

Remark 6. As we have seen, the function u~, gives a constant 6 in the weak-type inequality.
The function

ey {DE IR b= VA R
’ 22|y =1,  otherwise

yields the weak type inequality with the constant 21/2. The best constant cannot be less than
1 + /2 (an easy example). The details will appear elsewhere.

Remark 7. We will now explain how the functions u<;, u~, were constructed. Let us first
note, that the ‘integration method’, which leads from simple functions to the more
complicated ones, has its origin in the case of differentially subordinated martingales; indeed,
if we define

P =P if x+[y < 1,
U<2('x5 y) -

2ly| -1 otherwise,

v=2(x, ¥) = (|3 = (x| = D)yt
then it is easy to check that if a martingale (M) is subordinated by (N,), then
EU<2(MVI> Nn) = 03 EU>2(MVH Nn) = O

Hence, if we define, for p < 2,
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o] p71 X y 1 p*l
Wy = | o v (5,2 ) di = e pos A (G RNE

0t

and for p > 2,
00 B x B
w3 = [ 710 (5.2 dr = eap = 0l = s+ 15D,

then we have Ew (M ,, N,) = 0. The functions w, are exactly those used by Burkholder to
prove the strong-stype inequalities.

In this paper we modify the functions v<,, v>, so that condition (7) is satisfied. Let us
deal with u—,; the other function can be treated in the same manner. The idea is the
following: first we set H = R and expect the constructed function to be easily extended to
the Hilbert space setting. Then, in order to make the verification of condition (7) simpler,
the function is sought in the class of the continuous functions u : R> — R of the form

C(DE-RE @peD.
U, ) = {f(IyI), (x. )¢ D.

Here D is a certain symmetric subset of R? and f is a certain function, f : R, — R, which
satisfies the following conditions:

(a) it is quadratic for small arguments and linear for large ones;
(b) for (x, y) € D we have |y]> — |x]> = f(p);
(c) for fixed x, the function y — u(x, y), y € R, is convex.

In practice, we take a set D = {(x, ») : a|x| + b|y| = ¢} (we need 9D to be simple, as
we want to integrate u<;) and the function f is determined on a certain interval due to the
continuity of u<;. Then we extend it using conditions (a) and (c), trying to keep the slope
of f (i.e. f'(¢) for large ¢) as small as possible (as it is proportional to the constants in the
theorems).

Now we impose (7); then for (x, y) ¢ D, by (b) and (c), it is automatically satisfied with
¢xy =0 and 4, ,, B, equal to partial derivatives of the function u. The only case which
needs some calculations is (x, y) € D, where again we set 4, ,, B, equal to the partial
derivatives of u (i.e. 4;, = —2x and B, , = 2y). The function ¢, , is sought in the set of
the convex differentiable functions of the form ¢+ 2] =1y T (at+ D) =1).

It turns out that, up to the constant 9, the optimal function (i.e. such that f has the
smallest slope for large arguments) is the one defined by (4).
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