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We investigate the first-order threshold moving-average model. We obtain a sufficient condition for a

unique strictly stationary and ergodic solution of the model without the need to check irreducibility.

We also establish necessary and sufficient conditions for its invertibility of first-order . Furthermore,

we discuss the extension of the results to the first-order multiple threshold moving-average model and

the higher-order threshold moving-average model.

Keywords: ergodicity; invertibility; strict stationarity; threshold moving-average model

1. Introduction

The threshold autoregressive (TAR) model introduced by Tong (1978) has been extensively

investigated in the literature. Some basic results on the probabilistic structure of this class

of models were given by Chan et al. (1985), Chan and Tong (1985) and Tong (1990).

Further related results can be found in Chen and Tsay (1991), Brockwell et al. (1992), Liu

and Susko (1992), An and Huang (1996), An and Chen (1997), Liu et al. (1997), Ling

(1999), Cline and Pu (1999, 2004), Lanne and Saikkonen (2005), Liebscher (2005) and

others.

This paper considers the first-order threshold moving-average (TMA(1)) model, which

generates the time series fyt : t ¼ 0, �1, . . .g by the following equation:

yt ¼ [�þ łI(yt�1 < r)]� t�1 þ � t, (1)

where � t is a sequence of independent and identically distributed (i.i.d.) random variables,

with mean zero and a density function f (x). Ling and Tong (2005) proposed a likelihood

ratio test for a linear moving-average model against TMA models. However, the basic

structure of the TMA model remains unclear.

Brockwell et al. (1992) studied a threshold autoregressive moving-average (ARMA)

model and obtained a strictly stationary and ergodic solution for it. However, their result

only covers the case when the moving-average part does not have any threshold component,

and hence their threshold ARMA model does not include the TMA model as a special case.

Liu and Susko (1992) proved that for the TMA model there always exists a strictly

stationary solution without any restriction on the coefficients of the model. A similar result

is obtained by Ling (1999) for the threshold ARMA model but under much stronger

conditions. Thus, conditions under which the solution of the TMA model is unique and
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ergodic remain an open problem. Ling and Tong (2005) obtained a sufficient condition for

the invertibility of a general TMA model. However, their condition is far from being

necessary when compared with that for a linear moving-average model.

In this paper, we provide a sufficient condition for the ergodicity of the TMA(1) model in

Section 2. In Section 3 we give the necessary and sufficient conditions for the invertibility

of the TMA(1) model. Extension to the general threshold moving-average models is

discussed in Section 4.

2. Ergodicity of TMA(1) models

A standard method in studying ergodicity of a nonlinear time series model is to put the

model into the form of a Markov chain and then check the criterion given in Tweedie

(1983); see also Tj�stheim (1990) and Tweedie (2001). This method comprises two parts.

The first part is to check the ł-irreducibility of the Markov chain. The second part is to

check the so-called drift criterion. Once we have the irreducibility, the second part is more

or less algebraic.

The challenge is irreducibility. Under certain conditions, Feigin and Tweedie (1985)

showed that the Markov chain from the random coefficient autoregressive model is

irreducible. Chan and Tong (1985) showed the irreduciblity of a class of Markov chains in

terms of a suitable measure. When we put the TMA(1) model into a Markov chain (see

Ling 1999), it is not hard to see that it neither fits into the Chan and Tong (1985)

framework nor satisfies the condition given in Feigin and Tweedie (1985). Thus, it seems

decidedly difficult to establish irreducibility. However, as we shall see, it is not necessary

for us to check the irreducibility defined in Feigin and Tweedie (1985).

Let the time series f(yt, � t)g be defined on the probability space (�, F , P). We now

develop an alternative way to study ergodicity. First, define a random sequence

Sn(t) ¼
� t, if n ¼ 0,

f�þ łI(Sn�1(t � 1) < r)g� t�1 þ � t, if n > 1:

�

Lemma 1. If jłjsupxjxf (x)j , 1 and Ej� tj , 1, then the limit of Sn(t) exists almost surely

(a.s.) as n ! 1 for each t.

Proof. Let un(t) ¼ [�þ łI(Sn(t) < r)]� t and b ¼ jłjsupxjxf (x)j. We have

An(t) � jłjE[jI(Sn(t) < r)� I(Sn�1(t) < r)j j� tj]

¼ jłjE[jI(� t < r � un�1(t � 1))� I(� t < r � un�2(t � 1))j j� tj]

¼ jłjEj
ð r�un�1( t�1)

r�un�2( t�1)

jxj f (x) dxj

< jłjsup
x

jxf (x)jEjun�1(t � 1)� un�2(t � 1)j ¼ bAn�1(t � 1): (2)
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Since A1(t � nþ 1) < jłjEj� tj � c, it follows that

An(t) < bAn�1(t � 1) < . . . < bn�1A1(t � nþ 1) < cbn�1: (3)

Thus, we have EjSn(t þ 1)� Sn�1(t þ 1)j ¼ An(t) < cbn�1. Using this and Cauchy’s

criterion, we can show that limn!1 Sn(t) exists a.s. for each t. h

We can state our first main result as follows.

Theorem 1. Under the assumption of Lemma 1, fX tg defined by X t ¼ limn!1 Sn(t) is the

unique strictly stationary and ergodic solution of model (1).

Proof. Since f� tg is strictly stationary and ergodic, without loss of generality we assume that

T is a measure-preserving and ergodic mapping from � to � such that � t(ø) ¼ �0(T tø).
Thus X t(ø) ¼ limn!1 Sn(t, ø) ¼ limn!1 Sn(0, T

tø) ¼ X 0(T
tø), and hence fX tg is strictly

stationary and ergodic. Note that I(xn < r) ! I (x < r) if x 6¼ r for any sequence fxng such

that xn ! x as n ! 1. Thus, I(Sn(t) < r) 6! I(X t < r) as n ! 1 only if X t ¼ r. Since � t
has a density function, P(X t ¼ r) ¼ 0. We can claim that fX tg is a solution of model (1). To

prove uniqueness, we assume that there exists another solution fX tg of model (1). Similar to

(2), we have

EjX t � X 9tj ¼ jłjE[jI(X t�1 < r)� I(X 9t�1 < r)j j� t�1j]

< bEj[�þ łI(X t�2 < r)]� t�2 � [�þ łI(X 9t�2 < r)]� t�2j

¼ bEjX t�1 � X 9t�1j < . . . < bnEjX t�n � X 9t�nj < cbn,

where c ¼ jłjEj� tj. Thus, EjX t � X tj ¼ limn!1 bnc ¼ 0 and hence X t ¼ X t a.s. h

It is interesting to see that the ergodicity of model (1) depends on ł, � being irrelevant.

When � t � N (0, � 2), we have supxjxf (x)j ¼ (
ffiffiffiffiffiffiffiffi
2�e

p
)�1. When � t � tn, we have

sup
x

jxf (x)j ¼ (1þ n�1)�(nþ1)=2ˆ
nþ 1

2

� �� ffiffiffiffiffiffi
n�

p
ˆ

n

2

� �h i
:

When � t follows a double exponential distribution with parameter º . 0, we have

supxjxf (x)j ¼ (2e)�1. In these cases, ł admits quite a large range. When ł ¼ 0, model (1)

reduces to the linear MA(1) model and the result reduces to the standard one.

3. Invertibility of TMA(1) models

It is well known that the stationarity condition of an AR( p) model and the invertibility

condition of an MA( p) model have the same restriction on the corresponding parameters.

Under the same kind of restriction on the parameters for the stationarity of a TAR( p)

model as given in Chan and Tong (1985), Ling and Tong (2005) showed that the TMA( p)

model is invertible. Now, for the ergodicity of a TAR(1), Petruccelli and Woolford (1984)
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and Chan et al. (1985) have established much sharper results, indeed the sharpest to date. It

is therefore interesting to see if similar conditions suffice for the invertibility of a TMA(1)

model.

Let At�1 ¼ �[�þ łI(yt�1 < r)]. We have

� t ¼ yt þ At�1� t�1 ¼ yt þ
XJ
j¼1

Yj
i¼1

At�i

 !
yt� j þ

YJþ1

i¼1

At�i

 !
� t�J�1: (4)

When fytg is strictly stationary and ergodic, we have by the ergodic theorem

1

J

XJ
t¼1

lnjAtj þ lnjyt�J j
" #

! E lnjAtj a:s:,

as J ! 1 if Ejlnjytk , 1. When E lnjAtj , 0, we have

lim
J!1

YJ
i¼1

jAt�ij jyt�J j
 !1=J

¼ eE lnjAt j , 1 a:s:

For any ø 2 � such that the previous inequality holds, there exists a N (ø) such that

(
QJ

i¼1 jAt�ikyt� jj)1=J (ø) < r(ø) , 1. Thus, [
PJ

j¼1 (
Q j

i¼1 At�i)yt� j](ø) converges, and

hence

XJ
j¼1

Yj
i¼1

At�i

 !
yt� j !

X1
j¼1

Yj
i¼1

At�i

 !
yt� j a:s:, (5)

when E lnjAtj , 0. Similarly, we can show that the second term in (4) converges to zero a.s.

when E lnjAtj , 0. In this case, we have

� t ¼ yt þ
X1
j¼1

Yj
i¼1

At�i

 !
yt� j a:s:, (6)

and call model (1) invertible. If (6) does not hold, then we say that model (1) is not

invertible.

When E lnjAtj . 0, we can show that (5) converges to infinity a.s. by using a similar

method and hence model (1) is not invertible. It is not hard to see that

E lnjAtj ¼ ln[j�j1�Fy(r)j�þ łjFy(r)], where Fy(x) is the distribution of yt. Thus, we can

summarize the result as follows.

Theorem 2. Let fytg be the unique strictly stationary and ergodic solution of model (1) with

Ejlnjytk , 1. Then model (1) is invertible if j�j1�Fy(r)j�þ łjFy(r) , 1 and is not invertible

if j�j1�Fy(r)j�þ łjFy(r) . 1.

It is not clear if the TMA(1) model is invertible when j�j1�Fy(r)j�þ łjFy(r) ¼ 1. We

conjecture that it is not. The above condition is much weaker than the invertibility condition

in Ling and Tong (2005), which is jłj , 1 and j�þ łj , 1. When r ¼ �1 or þ1, the
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sufficient condition is the same as that for the invertibility of a linear MA(1) model. It is

not hard to show that Ejlnjytk , 1 if Ejytj , 1 and supx f (x) , 1.

4. Extension to general TMA models

We first consider the multiple threshold MA(1, k) model:

yt ¼ �0 þ
Xk
j¼1

ł j I(r j�1 , yt�1 < r j)

( )
� t�1 þ � t, (7)

where �1 ¼ r0 , r1 , . . . , rk ¼ 1. This is a special case of the self-exciting threshold

autoregressive moving-average model introduced by Tong (1983). We will extend Theorems 1

and 2 to model (7).

First, define un(t) ¼ f�0 þ
Pk

j¼1 ł j I(r j�1 , Sn(t) < r j)g� t and

Sn(t) ¼
� t, if n ¼ 0,

un�1(t � 1)þ � t, if n > 1:

�

When un�3(t � 2) > un�2(t � 2), we have the following decomposition:

Xk
j¼1

ł jfI(r j�1 , Sn�1(t � 1) < r j)� I(r j�1 , Sn�2(t � 1) < r j)g

¼
Xk
j¼1

ł jfI(r j�1 � un�2(t � 2) , � t�1 < r j � un�2(t � 2))

� I(r j�1 � un�3(t � 2) , � t�1 < r j � un�3(t � 2))g

¼
Xk
j¼1

ł jfI(r j � un�3(t � 2) , � t�1 < r j � un�2(t � 2))

� I(r j�1 � un�3(t � 2) , � t�1 < r j�1 � un�2(t � 2))g

¼
Xk�1

j¼1

(ł j � ł jþ1)I(r j � un�3(t � 2) , � t�1 < r j � un�2(t � 2)):

A similar identity holds when un�3(t � 2) < un�2(t � 2). Thus, we can show that

EjSn(t)� Sn�1(t)j < bEjun�2(t � 2)� un�3(t � 2)j

¼ bEjSn�1(t � 1)� Sn�2(t � 1)j,

where b ¼
Pk�1

j¼1 jł j � ł jþ1jsupxjxj f (x). Similarly to the arguments in Section 2, we can

prove that Sn(t) converges a.s. for each t as n ! 1. Let X t ¼ limn!1 Sn(t). Similarly to
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Theorem 1, we can show that fX tg is the unique strictly stationary and ergodic solution of

model (7). We have therefore proved the following theorem.

Theorem 3. If
Pk�1

j¼1 jł j � ł jþ1jsupxjxj f (x) , 1, then fX tg defined by X t ¼ limn!1 Sn(t) is

the unique strictly stationary and ergodic solution of model (7).

Let At�1 ¼ �[�0 þ
Pk

j¼1 ł j I(r j�1 , yt�1 < r j)]. We say that model (7) is invertible

if � t ¼ yt þ
P1

j¼1 (
Q j

i¼1 At�i)yt� j a.s., otherwise it is not invertible. Note that

E lnjAtj ¼ ln[
Qk

j¼1 fj�0 þ ł jjFy(r j)�Fy(r j�1)g]. Similar to Theorem 2, we have:

Theorem 4. Let fytg be the unique strictly stationary and ergodic solution of model (7) with

Ejlnjytk , 1. Then model (7) is invertible if
Qk

j¼1 fj�0 þ ł jjFy(r j)�Fy(r j�1)g , 1 and is not

invertible if
Qk

j¼1 fj�0 þ ł jjFy(r j)�Fy(r j�1)g . 1.

When k ¼ 2, model (7) reduces to model (1) with � ¼ �0 þ ł2 and ł ¼ ł1 � ł2 and

the results in Theorems 3 and 4 are the same as those in Theorems 1 and 2. Chan et al.

(1985) showed that stationarity of the multiple threshold AR(1) model only depends on the

coefficients of the AR(1) submodels in the two extreme regimes, independent of all other

AR(1) submodels. In contrast, Theorem 3 shows that the coefficients in AR(1) submodels

other than those in the extreme regimes also play a role in the invertibility of the multiple

threshold MA(1) model.

We next consider the two-regime TMA( p, q) model:

yt ¼
Xp
i¼1

[� j þ ł j I(yt�q < r)]� t�i þ � t, (8)

where q > p. The invertibility of model (8) has been given in Ling and Tong (2005). Here,

we only study its stationarity and ergodicity. We define

Sn(t) ¼
� t, if n ¼ 0,P p

i¼1 [�i þ łi I(Sn�1(t � q) < r)]� t�i þ � t, if n > 1:

�

Let un(t) ¼
P p

i¼1 [�i þ łi I(Sn�1(t � q) < r)]� t�i, b ¼ supxjxf (x)j and c ¼ supxj f (x)j 3
Ej
P p�1

i¼1 łi� t�ij: When p ¼ q, we have

An(t) � E

����X
p

i¼1

łi� t�i

����jI(Sn(t � q) < r)� I(Sn�1(t � q) < r)j
" #

< E

���� X
p�1

i¼1

łi� t�i

 !ð r�un�1( t�q)

r�un�2( t�q)

f (x) dx

����þ jł pjE
����
ð r�un�1( t�q)

r�un�2( t�q)

jxj f (x) dx
����

< (bjł pj þ c)Ejun�1(t � q)� un�2(t � q)j < (bjł pj þ c)An�1(t � q):

When q . p, we can replace the constant factor bjł pj þ c by c. Using a similar method as

for Theorem 1, we have the following result.
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Theorem 5. If jł pjsupxjxf (x)j þ supxj f (x)jEj
P p�1

i¼1 łi� t�ij , 1 when p ¼ q or supxj f (x)j
3 Ej

P p
i¼1 łi� t�ij , 1 when p , q, then fX tg defined by X t ¼ limn!1 Sn(t) is the unique

strictly stationary and ergodic solution of model (8).

However, the ergodicity for model (8) with 1 < q , p remains open.
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