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The connection between Hausdorff–Besicovitch dimension of graphs of trajectories and various

Blumenthal–Getoor indices is well known for Æ-stable Lévy processes as well as for some stationary

Gaussian processes possessing Orey index. We show that the same relationship holds for several

classes of Lévy processes that are popular in financial mathematics models – in particular, the Carr–

Geman–Madan–Yor, normal inverse Gaussian, generalized hyperbolic, generalized z and Meixner

processes.
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1. Introduction

Recent advances in the theory and applications of Lévy processes have strengthened their

appeal as replacements for Brownian motion, advocated in the famous papers by Black and

Scholes (1973) and Merton (1973), as well as for the pure jump processes of Cox and Ross

(1976) and the jump diffusions of Merton (1976), to model returns of financial assets.

Among the most popular examples are the variance-gamma (VG) process developed by

Madan and Seneta (1990) and later treated by Madan et al. (1998), the Carr–Geman–

Madan–Yor (CGMY) process (a generalization of VG) introduced by Carr et al. (2002), the

hyperbolic model (HM) considered by Eberlein et al. (1998), the normal inverse Gaussian

(NIG) model suggested by Barndorff-Nielsen (1997, 1998), and the generalized hyperbolic

(GH) Lévy motion introduced to model wind-blown sand grain size by Barndorff-Nielsen

and Halgreen (1977) and applied to finance by Eberlein (2001). An alternative direction is

taken by Grigelionis (2001) who introduced the generalized

the Meixner process studied by Schoutens and the z-process of Prentice (1975). Yet another

fruitful direction is to use non-Gaussian Ornstein–Uhlenbeck type models for stochastic

volatility of financial markets, as proposed by Barndorff-Nielsen and Shephard (2001).

The CGMY process – or, even more broadly, the generalized tempered stable process

(GTSP) considered by Cont and Tankov (2004) – generalizes the Æ-stable Lévy motion and

is defined by specifying its Lévy measure, and not the closed form of the characteristic

function as is the case with the NIG, VG, HM, GZ and Meixner models. The closed form

of the CGMY characteristic function is known – see Carr et al. (2002) for the case Y , 0,
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Miyahara (2002) for all cases and Zhou et al. (2005) for the GTSP – but should be

understood in the limiting sense if Y ¼ 0, 1 (see (3.1)). So numerical stability, rate of

convergence and error issues should be addressed if Y is near 0 or 1. The financial data

analysis provided by (Carr et al. 2002), seems to ignore this altogether. An alternative

would be to use the exact form of the characteristic function whenever ar Y ¼ 0, 1, but this

requires prior knowledge of Y . So we propose estimating Y from the Hausdorff–Besicovitch

dimension of the graph of the CGMY process.

In this paper we show how the parameter Y can be computed for the CGMY process

whenever Y 2 [1, 2). If Y 2 [1
2
, 1), one can recover Y by using subordination to Brownian

motion (Manstavičius 2005).

More generally, we show how the Hausdorff–Besicovitch dimension of the graph of a

real-valued Lévy process X can be quickly computed, provided the upper index � as well as

the least lower Blumenthal and Getoor (1961) index � 0 are equal. This result is well known

for many processes, among them Brownian motion (Taylor 1955), Æ-stable processes

(Blumenthal and Getoor 1962; Jain and Pruitt 1968; Pruitt and Taylor 1969) and stationary

Gaussian processes with Orey index (Orey 1970). In many cases, such as Æ-stable

processes, even the correct Hausdorff measure is known (Jain and Pruitt 1968; Pruitt and

Taylor 1969). But for general Lévy processes on Rd there are still some unanswered

questions (for details, see Pruitt and Taylor 1996).

If � > 1, then � is also equal to the p-variation index v(X ) of the process X (for details,

see Norvaiša and Salopek 2002) and can be used for statistical inference as described by

Dudley and Norvaiša (1999). For example, in the case of the CGMY process with

Y 2 [1, 2), the reciprocal 1=Y becomes the oscillation �-summing index and can be

estimated statistically using oscillation �-summing estimators, as described in Norvaiša and

Salopek (2002).

Following our discussion of the CGMY process, we also include a short exposition (see

Sections 3.2–3.4) on the NIG, GH, GZ and Meixner processes. Their upper Blumenthal–

Getoor index as well as their p-variation index is equal to 1 almost surely, which

distinguishes them from the CGMY model with Y 2 (1, 2). So variational properties of data

can also be used to narrow down the choice of a particular model. In fact, variational

properties of Lévy processes have recently become very popular; see, for example,

Barndorff-Nielsen and Shephard (2003).

Section 4 contains the proof of Theorem 2.1 followed by a discussion of some open

problems in the case � 0X , �X .

2. Preliminaries and results

Throughout we will assume that X ¼ fX t, t 2 [0, 1]g is a Lévy process, that is, a process

with stationary and independent increments, which starts at the origin at t ¼ 0 and has

almost all trajectories cadlag. By now standard references for the theory of Lévy processes

are Bertoin (1996) and Sato (2000). For more on Lévy processes in finance, see also the

recent books by Applebaum (2004), Cont and Tankov (2004), Schoutens (2003) and

Bingham and Kiesel (2004).
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We will denote by u � v the standard scalar product of vectors u and v in Rd and by

kuk the Euclidean norm of u. The notation f (x) � g(x) as x ! a will mean

limx!a f (x)=g(x) ¼ 1.

Furthermore, let �(�) be the characteristic exponent of X , that is, the function satisfying

E exp(i� � X t) ¼ exp(�t�(�)) for � 2 Rd and t > 0. The famous Lévy–Khinchine formula

(Sato 2000: Theorem 8.1) provides the exact expression for the function �(�), which is

characterized by a triplet (b, A, L), where b 2 Rd , A is a symmetric non-negative definite

d 3 d matrix, and L is the Lévy measure, a � -finite Borel measure such thatð
Rdnf0g

(kxk2 ^ 1)L(dx) , 1:

Then the Lévy–Khinchine formula states that

�(�) ¼ �ib � �þ 1

2
(A�) � ��

ð
Rdnf0g

eiy�� � 1 � iy � �1fkyk<1g(y))L(dy):
�

(2:1)

We also let GrX ¼ GrX (ø) ¼ f(t, X t(ø)), t 2 [0, 1]g � Rdþ1 be the graph of a random

trajectory of the process X .

Now recall the definitions of Hausdorff measures and Hausdorff–Besicovitch dimension

(Mattila 1995; Rogers, 1998). Given s > 0, � . 0 and a subset A � Rdþ1, we set

Hs
�(A) ¼ inf

X
j

diam(Bj)
� �s

: A �
[
j

B j, diam(Bj) < �, Bj � Rdþ1

( )
:

It is well known (Mattila 1995: 54) that the limit lim�!0Hs
�(A) exists. This limit is called the

s-Hausdorff measure of A and denoted Hs(A). Furthermore, by Mattila (1995: Theorem 4.4)

it is enough to consider only open (or closed, or even convex) covers of A in the definition of

Hs
�(A) above. The common value

inffs . 0 : Hs(A) ¼ 0g ¼ supfs > 0 : Hs(A) ¼ þ1g

is called the Hausdorff–Besicovitch dimension of A and denoted by dimHBA.

We will also use several indices related to the Lévy process X . The first is the upper

index � of Blumenthal and Getoor (1961) defined as

� ¼ inf r . 0 :

ð
0,k yk<1

kykr L(dy) , þ1
( )

, (2:2)

which can also be computed as (Blumenthal and Getoor 1961: Theorem 2.1)

� ¼ inf r . 0 : t r L(fy : kyk . tg) ! 0, as t ! 0f g: (2:3)

If the process X is assumed to have no Gaussian component and no drift then, by Blumenthal

and Getoor (1961: Theorem 3.2),

� ¼ inf r > 0 : k k�rj�(�)j ! 0, as k�k ! 1f g

¼ inffr > 0 : k k�r
R�(�) ! 0, as k�k ! 1g: (2:4)

�

�
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We will also require a pair of lower indices of Blumenthal and Getoor (1961). The

smaller of these is

� 0 ¼ sup r > 0 : k�k�rR�(�) ! 1, as k�k ! 1f g, (2:5)

and will be used to control the rate of growth of R�(�), as k�k ! 1. The larger is

�9 ¼ sup r > 0 :

ð
Rd

k�kr�d 1 � e�R�(�)

R�(�)
d� , 1

� �
: (2:6)

By Blumenthal and Getoor (1961: Theorem 5.1), 0 < � 0 < �9 < � < 2.

If X has no Gaussian component, but has a linear drift term (this is often the case in

financial models; see Sections 3.2–3.4), then we will use the first equality in (2.4) as the

definition for �. This is essentially the same as taking � ¼ 1 _ �X 9, where �X 9 is the upper

index of the process X 9 obtained from X by subtracting its linear drift. If a Gaussian

component is present, then we use (2.4) to define � and obtain � ¼ �9 ¼ � 0 ¼ 2. Also it is

well known (Blumenthal and Getoor 1961) that for an Æ-stable Lévy process (with drift

removed if Æ , 1) we have � ¼ �9 ¼ � 0 ¼ Æ.

Pruitt (1969) introduced another index ª given by

ª ¼ sup r > 0 : lim sup
a!0

a�r

ð1

0

P(kX (t)k < )dt , þ1
� �

and showed that the Hausdorff–Besicovitch dimension of the range X [0, 1] is equal to ª
almost surely. If, in addition, R�(�) > 2 logk�k for all large k�k, then from Pruitt (1969:

Theorem 5) we have

ª ¼ sup r , d :

ð
Rd

k�kr�r
R

1 � e��(�)

�(�)

� �
d� , þ1

� �
:

Recently Khoshnevisan et al. (2003) established the following equality which holds under no

restrictions on the growth of R�(�)

ª ¼ sup r , d :

ð
k�k.1

k�kr�dR
1

1 þ �(�)

� �
d� , þ1

( )
: (2:7)

We will use (2.7) to investigate the Hausdorff–Besicovitch dimension of the graph GrX ;

I am very grateful to a referee for pointing out that this can be viewed as the range of a

new Lévy process Gt ¼ (t, X t), t 2 [0, 1]. The characteristic exponent of G is easily seen

to be �G(�1, �2) ¼ �i�1 þ �X (�2), where �1 2 R and �2 2 Rd . Also the Lévy measure of G

is given by LG(dx, dy) ¼ �0(dx)LX (dy), where �0 is the point mass at x ¼ 0. To

discriminate between various indices of X and G we will use subscripts, for example �X ,

ªG.

Our main result is the following.

Theorem 2.1. Let X be a real-valued Lévy process with Blumenthal–Getoor indices �X and

� 0X defined in (2.2) and (2.5), respectively. If t ¼ (t, X t), t 2 [0, 1], then the following

statements hold:

a

G
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(i) If 1 , � 0X ¼ �X < 2, then ªG ¼ 2 � ��1
X .

(ii) If �X < 1, then ªG ¼ 1.

Remark 2.1. It is worth mentioning that if X is a Lévy process in Rd with d > 2, then the

condition � 0X ¼ �X is very restrictive and automatically implies ªG ¼ �X . This follows easily

from Pruitt (1969: Theorem 5), Blumenthal and Getoor (1961: Theorem 3.1) and (2.6), that

is,

� 0X ¼ �9X ¼ d ^ �9X ¼ �9G < ªG < �G ¼ 1 _ �X ¼ �X ;

here �G is defined using the first equality in (2.4). On the other hand, if d ¼ 1, then the above

inequalities only yield 1 < ªG < 1 _ �X .

Remark 2.2. Only the inequality ªG > 2 � ��1
X needs to be established in part (i) of the

above theorem. By Norvaiša and Salopek (2002: Proposition 1), ªG < 2 � ��1
X < �X ,

whenever �X > 1.

Remark 2.3. Part (ii) of the theorem is not new, and is only included for completeness.

It follows most easily from the fact that ªG > 1 almost surely (projection of onto the

t-axis does not increase the Hausdorff–Besicovitch dimension) and the inequality

ªG < �G ¼ 1 _ �X ¼ 1 mentioned in Remark 2.1.

For many Lévy processes used in financial mathematics computation of the indices � and

� 0 is relatively easy, so the above theorem provides a quick way of computing the

Hausdorff–Besicovitch dimension of the graphs. We illustrate this in Section 3 by first

considering the CMGY process, as defined in Carr et al. (2002), and obtain the following

result.

Corollary 2.2. Let X be the CGMY process with parameter Y 2 [1, 2). Then �X ¼ � 0X ¼ Y

and ªX ¼ 2 � 1=Y .

For many other interesting processes X mentioned at the beginning of this paper — NIG,

GH, GZ and Meixner processes – their index �X ¼ 1, so their graphs have Hausdorff–

Besicovitch dimension equal to 1 almost surely. For more details, see Sections 3.2–3.4.

3. Applications

3.1. The CGMY process

To model financial asset returns Carr et al. (2002) introduced the CGMY process which

generalized the variance-gamma (VG) model developed by Madan and Seneta (1990) and

later extended by Madan and Milne (1991) and Madan et al. (1998). The CGMY process is

G
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defined as a real-valued Lévy process with the characteristic triplet (b, 0, L), where the

Lévy measure L has density kCGMY(x) with respect to Lebesgue measure on R given by

kCGMY(x) ¼ C

jxj1þY
exp �M þ G

2
jxj þ G � M

2
x

� �
,

with C . 0, G > 0, M > 0 and Y , 2. If Y < 0, then G ^ M . 0 is assumed. As a special

case, when Y ¼ 0, the function kCGMY is the Lévy density of the VG process.

By Carr et al., (2002: Theorem 1), Miyahara (2002: Section 7.1) or Zhou et al. (2005:

Proposition 2.1), setting ł(�) ¼ (�(�) þ ib1�)=C, we have

ł(�) ¼
ˆ(�Y )[(M � i�)Y � MY þ (G þ i�)Y � GY ], if Y 6¼ 0, 1,

log(1 þ i�=G) þ log(1 � i�=M), if Y ¼ 0,

(G þ i�)log(1 þ i�=G) þ (M � i�)log(1 � i�=M), if Y ¼ 1,

8<
: (3:1)

where b1 ¼ bþ
Ð
jxj.1

xL(dx) and tb1 is the mean of the process.

It is easy to see thatð
0,jxj<1

jxj p kCGMY(x)dx , 1 if and only if p . Y :

So �X ¼ Y _ 0. To show that � 0X ¼ �X , and hence prove Corollary 2.2, we only need to

establish � 0X > Y . But this easily follows from the following lemma.

Lemma 3.1. Let X be the CGMY process with characteristic exponent �(�). There exists a

finite constant K ¼ K(C, c, G, M , Y ) . 0 such that R�(�) > Kj�jY for all j�j > c . 0.

Proof. If � 2 Rnf0g, then formula (2.1) yields

R�(�) ¼
ð
Rnf0g

(1 � cos(y�))kCGMY(y)dy

¼ C

ð1
0

(1 � cos(y�))
e�My þ e�Gy

y1þY
dy

¼ Cj�jY
ð1

0

(1 � cos(z))
e�Mz=j�j þ e�Gz=j�j

z1þY
dz:

Now if j�j > c . 0, we obtain

R�(�) > Cj�jY
ð1

0

(1 � cos(z))
e�Mz=c þ e�Gz=c

z1þY
dz ¼ Kj�jY ,

where K ¼ K(C, c, M , G, Y ) . 0. h

3.2. The NIG process

The normal inverse Gaussian distributions and the corresponding Lévy processes have also

proved to be well suited to modelling financial asset returns, as seen in Barndorff-Nielsen
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(1997, 1998) and references therein. There are several definitions of the NIG(Æ, �, �, �)

distribution and the corresponding process. One can first define the density

gNIG(x; Æ, �, �, �) of the NIG distribution with respect to the Lebesgue measure

gNIG(x; Æ, �, �, �) ¼ c(Æ, �, �, �)q
x� �

�

� ��1

C1 Æ�q
x� �

�

� �� �
e�x, x 2 R,

where

q(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p
,

c(Æ, �, �, �) ¼ Æ

�
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p
� ��

n o
and the function K1 denotes the modified Bessel function of the third order of index 1. The

parameters Æ, �, � and � satisfy 0 < j�j , Æ, � 2 R and � . 0. It is then shown that the NIG

distribution is infinitely divisible and yields a Lévy process (Barndorff-Nielsen 1997).

The second approach is to start with the inverse Gaussian IG(�, ª) distribution by

specifying its density (Barndorff-Nielsen 1997: equation (2.5))

d(z; �, ª) ¼ �e�ªffiffiffiffiffiffi
2�

p
z3=2

exp � 1

2

�2

z
þ ª2z

� �� �
, z . 0:

Then NIG(Æ, �, �, �) is the variance–mean mixture of a normal with the IG as the mixing

distribution, that is, it can be described as the marginal distribution of x for a pair of random

variables (x, z), where z has IG(�,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p
) distribution while, conditionally on z, the

distribution of x is N (�þ �z, z2).

The third way is to define the NIG process by subordination as follows:

XNIG(t) ¼ �t þ W Ztð Þ,
where W is the Brownian motion with drift � and diffusion coefficient 1, and where Z t is the

IG(�,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p
) process, independent of W . The process Z t can also be thought of as the

first passage time to level �t of a Brownian motion with drift
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p
and diffusion

coefficient 1. This is where the name NIG comes from.

But for us it is most convenient to define the NIG(Æ, �, �, �) process as in Barndorff-

Nielsen (1998: 47) by specifying its Lévy triplet (b, 0, L):

b ¼ �þ 2�Æ

�

ð1

0

sinh(�x)K1(Æx) dx,

dL

dy
¼ f (y; Æ, �, �) ¼ �Æ

�jyj e� yK1(Æjyj), y 2 Rnf0g:

It is well known (Olver 1970: equation (9.6.9)) that, as y#0, the function K1(y) � 1=y,

and so

f (y; Æ, �, �) � �

�
y�2, as y#0:

Therefore,
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ð
0,j yj<1

jyj p f (y; Æ, �, �) dy , 1 if and only if p . 1:

So �X ¼ 1 for the NIG process.

3.3. The GH process

The generalized hyperbolic (GH) distributions form an even larger class of infinitely

divisible distributions popular in financial models (see Bingham and Kiesel 2001). They

include the hyperbolic as well as the NIG distributions as subclasses, and even allow

representation of the VG distributions as limiting cases. Just as with the NIG distributions,

we first define the density gGH(x; º, Æ, �, �, �) of the NIG distribution (Barndorff-Nielsen

1997: equation (4.3)) with respect to the Lebesgue measure on R as

gGH(x; º, Æ, �, �, �) ¼ c(º, Æ, �, �, �)q
x� �

�

� �º�1=2

Kº�1=2 Æ�q
x� �

�

� �� �
e�x,

where

q(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p
,

c(º, Æ, �, �, �) ¼ Æ1=2�ºffiffiffiffiffiffiffiffiffi
2��

p (Æ2 � �2)º=2 Kº �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p� �� ��1

e���,

and the function K	 denotes the modified Bessel function of the third order of index 	. The

parameters Æ, �, º, � and � satisfy 0 < j�j , Æ, º, � 2 R and � . 0.

The cases º ¼ �1
2

and º ¼ 1 correspond to the NIG(Æ, �, �, �) and hyperbolic

distributions, respectively. The other two cases of interest are º ¼ 0 (the hyperboloid

distribution) and º ¼ 1
2
. Moreover, letting � ! 0 yields the VG(º, Æ, �, �) distribution. See

Raible (2000) for details, as well as more properties of the GH distributions.

Yet only the expression for the Lévy density of the GH process and its behaviour near

the origin are of interest to us. The results of Prause (1999: Theorem 1.43) (for the case

º > 0) and Wiesendorfer Zahn (1999: Anhang C) (for general º) give the density of the

Lévy measure L as

dL

dx
¼ e�x

jxj

ð1
0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yþ Æ2

p
jxj

n o
�2 y J 2

jºj(�
ffiffiffiffiffiffi
2y

p
) þ Y 2

jºj(�
ffiffiffiffiffiffi
2y

p
)

� � dyþ ºe�Æjxj1fº>0g

8<
:

9=
;,

where J	 and Y	 are, respectively, the Bessel functions of the first and second kind of order 	
(for the definitions and properties, see Olver 1970). Furthermore, Raible (2000: Proposition

2.18) gives the asymptotics of this density:

dL

dy
¼ 1

y2

�

�
þ ºþ 1=2

2
jyj þ ��

�
yþ o(jyj)

� �
, as y ! 0:

This implies that
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ð
0,j yj<1

jyj p dL

dy

� �
dy , 1, if and only if p . 1,

and so, as for the NIG process, we have �X ¼ 1.

3.4. The GZ processes

The generalized z-processes defined by Grigelionis (2001) provide an alternative class of

processes well suited to modelling financial data. They generalize z-processes considered by

Prentice (1975) and include the Meixner process investigated by Schoutens (2002).

A generalized z-distribution GZD(Æ, �1, �2, �, �) on R is specified by its characteristic

function

Eei�X1 ¼ B �1 þ iÆ=(2�), �2 � iÆ=(2�)ð Þ
B �1, �2ð Þ

� �2�

ei��, � 2 R, � . 0,

where Æ . 0, �1 . 0, �2 . 0, � 2 R, and B(�1, �2) denotes the Euler beta function. In

particular, if � ¼ 1
2
, we have a z-distribution ZD(Æ, �1, �2, �), and if �1 ¼ 1=2 þ �=(2�),

�2 ¼ 1=2 � �=(2�) with � 2 (��, �), then such a GZD distribution is a Meixner distribution

MD(Æ, �, �, �) (Grigelionis 2001: Proposition 4). Furthermore, the characteristic triplet of a

GZD distribution is (b, 0, L), where, by Grigelionis (2001: Proposition 1),

b ¼ �þ Æ�

�

ð2�=Æ

0

e��2x � e��1x

1 � e�x
dx,

and the Lévy measure L has a density with respect to the Lebesgue measure on Rnf0g given

by

dL

dx
¼ 2�

jxj 1 � e�2�jxj=Æð Þ exp � 2�

Æ

�2 þ �1

2
jxj þ �2 � �1

2
x

� �� �
:

The latter formula immediately yields

dL

dx
� �Æ

�
jxj�2, as x ! 0,

and so, as with the GH and NIG processes, the upper index �X ¼ 1.

4. Proof of Theorem 2.1

Due to Remark 2.2, we only need to establish ªG > 2 � 1=�X whenever � 0X ¼ �X . 1.

Since �G(�1, �2) ¼ �i�1 þ �X (�2), we can write

H(�1, �2) :¼ R
1

1 þ �Y (�1, �2)

� �
¼ 1 þR�X (�2)

1 þR�X (�2)ð Þ2þ �1 � I�X (�2)ð Þ2
:
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Using (2.7), it is enough to show that

I(r) :¼
ð
�2

1þ�2
2>1

H(�1, �2)

(�2
1 þ �2

2)1�r=2
d�1 d�2 , þ1, (4:1)

for any 1 , r , 2 � 1=�X. For such r we can always find an � 2 (0, �X � 1) so that

r , 1 þ (q� 1)= p ¼ (2�X � 1)=(�X þ �) , 2 � 1=�X , where p ¼ �X þ � and q ¼ �X � �.

From Blumenthal and Getoor (1961: Lemma 3.1) we obtain

R�X (�2) < C1(1 _ j�2j p) and jI�X (�2)j < C1(1 _ j�2j p), (4:2)

for some constant C1 ¼ C1(p) . 0. Without loss of generality, we can assume that C1 > 1.

The definition of � 0 in (2.5) yields the existence of some constant C2 ¼ C2(q) . 0 such

that

R�X (�2) > C2j�2jq, for all j�2j > 1:

Now split the compliment of the unit disc in R2 into four disjoint sets as follows:

R2nfkuk < 1g ¼ A1 [ A2 [ A3 [ A4,

where, using C1 from (4.2) we set (see Figure 1)

A1 ¼ f(u1, u2) : ju1j > 2C1(1 _ ju2j p)g,

A2 ¼ f(u1, u2) : ju2j > 1, ju1j , 2C1ju2jg,

A3 ¼ f(u1, u2) : ju2j . 1, 2C1ju2j < ju1j , 2C1ju2j pg,

A4 ¼ (R2nfkuk < 1g)n(A1 [ A2 [ A3):

On the set A1 we have j�1j � jI�X (�2)j > j�1j=2, so

H(�1, �2) < 4
1 þR�X (�2)

�2
1

< 8C1

1 _ j�2j p

�2
1

, and (�2
1 þ �2

2)r=2�1 < j�1jr�2:

On A2 we will use

Figure 1. Subdivision of integration plane.
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H(�1, �2) <
1

1 þR�X (�2)
<

1

C2j�2jq
, and (�2

1 þ �2
2)r=2�1 < j�2jr�2:

On A3 2 for H(�1, �2) and the bound used on the set A1

for (�2
1 þ �2

2)r=2�1. Finally, on A4 the function H(�1, �2)(�2
1 þ �2

2)r=2�1 is bounded and

continuous, so the integral of this function over A4 will be a finite constant no matter what r

is chosen.

Now we can bound the integral in (4.1) as follows:

I(r) ¼
ð
A1

þ
ð
A2

þ
ð
A3

þ
ð
A4

� �
H(�1, �2)

(�2
1 þ �2

2)r=2�1
d�1 d�2 ¼ I1 þ I2 þ I3 þ I4,

where, using symmetry with respect to �1,

I1 < 16C1

ð1
2C1

d�1

�4�r
1

ð
j�2j p<�1=(2C1)

j�2j p _ 1ð Þd�2

<
32C1

pþ 1

ð1
2C1

pþ �1þ1= p
1

(2C1)1þ1= p

 !
d�1

�4�r
1

, 1,

provided r , 2 � 1=p.

Similarly, if r , q, we obtain

I2 <
4

C2

ð1
1

1

�qþ2�r
2

ð2C1�2

0

d�1

� �
d�2 <

8C1

C2

ð1
1

�r�q�1
2 d�2 , 1:

The third integral is bounded as follows:

I3 <
4

C2

ð1
1

ð2C1�
p

2

2C1�2

d�1

�2�r
1

 !
d�2

�q2
<

4(2C1)r�1

C2(r � 1)

ð1
1

��qþ p(r�1)
2 d�2 , 1,

if 1 , r , 1 þ (q� 1)=p.

Combining the bounds for Ii, i ¼ 1, 2, 3, and recalling that I4 , 1 for any r, we obtain

I(r) , þ1 as long as

r , minfq, 2 � 1=p, 1 þ (q� 1)=pg ¼ 1 þ (q� 1)= p:

This implies that ªG > 1 þ (q� 1)=p. Increasing r to 2 � 1=�X yields the desired inequality

ªG > 2 � 1=�X and completes the proof of Theorem 2.1.

5. Discussion

To complement Theorem 2.1 it is important to look at the case � 0X , �X . If d > 2, then ªG

can be anywhere in the interval [2 � 1=�X , �X ]. Indeed, following Pruitt and Taylor (1969),

consider a Lévy process X with stable components, X ¼ (XÆ1
, XÆ2

), where XÆ1
is a real-

valued Æ1-stable process and XÆ2
is an Æ2-stable Lévy process in Rd�1, independent of XÆ1

.

If we take Æ2 , Æ1 and Æ1 . 1, then it is easy to see that Æ1 ¼ �X , Æ2 ¼ � 0X . Moreover, by

we will use the same bound as on A
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Pruitt and Taylor (1969: Theorem 8.1), ªG ¼ (1 þ Æ2(1 � 1=Æ1)) _ (2 � 1=Æ1). So, varying

Æ2 2 [1, Æ1], we can achieve any value of ªG in [2 � 1=Æ1, Æ1].

On the other hand, if d ¼ 1, then processes with 1 _ � 0X , �X are not hard to find.

Following an idea due to Orey (1968), consider a real-valued Lévy process X with the

triplet (0, 0, L) where the Lévy measure L is defined by

L(dx) ¼
X1
n¼1

a�Æ1

n �an
(dx) þ ��an

(dx)ð Þ þ jxj�1�Æ2 dx,

where 0 , Æ2 , Æ1 , 2, Æ1 . 1, and an ¼ 2�cn for some integer c . 2=(2 � Æ1). Then it is

easy to check that �X ¼ Æ1 and � 0X ¼ Æ2. The latter follows from the fact that if

�X (z) ¼ �1(z) þ CÆ2
jzjÆ2 , where CÆ2

. 0 and

�1(z) ¼ 2
X1
n¼1

(1 � cos(zan))a�Æ1

n ,

then �1(zk) ! 0 along the sequence zk ¼ 2�a�1
k which converges to infinity as k ! 1.

Unfortunately, we were unable to compute ªG for such a process or show that the whole

range [1, 2 � 1=�X ] can be attained by ªG.

Acknowledgements

The author wishes to express his gratitude to Professor Yoshio Miyahara for a copy of

Miyahara (2002), and to both anonymous referees for their extremely helpful suggestions as

well as for many pointers to the vast literature on the subject.

References
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