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E-mail: antonio.cosma@uni.ul
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We introduce a new approach to shape-preserving estimation of cumulative distribution functions and

probability density functions using the wavelet methodology for multivariate dependent data. Our

estimators preserve shape constraints such as monotonicity, positivity and integration to one, and allow

for low spatial regularity of the underlying functions. We discuss conditional quantile estimation for

financial time series data as an application. Our methodology can be implemented with B-splines. We

show by means of Monte Carlo simulations that it performs well in finite samples and for a data-

driven choice of the resolution level.
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1. Introduction

The construction of shape-preserving estimators of probabilistic functions, such as

probability density functions (pdfs) and cumulative distribution functions (cdfs), has

attracted recent interest; see, for instance, Cheng et al. (1999). When estimating a pdf f (x),

we expect an estimator which satisfies nonnegativity and integration to one. When

estimating a cdf F(x), we expect an estimator which satisfies monotonicity and right-

continuity. ‘Shape preserving’ means building functional estimators f̂f (x) or F̂F(x) which

display such properties. In contrast to most nonparametric approaches, we aim to deal with

probabilistic functions with low spatial regularity, that is, with occasional jumps or other

discontinuities. In this set-up wavelet methods are known to be of relevance (Vidakovic

1999; Ogden 1997), but meeting shape constraints is not clear in wavelet estimation.

In this paper we study shape-preserving wavelet estimation of pdfs and cdfs. We model

the observed data as serially dependent. We do not need post-processors to implement the

shape constraints. Our construction is shape-preserving but not shape-imposing. We can also

deal with non-monotone or non-positive functions. We start from the construction of

Dechevsky and Penev (1997, 1998). Their analysis of the estimation of a univariate

probabilistic function with low spatial regularity with non-orthogonal wavelets is a purely
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theoretical one and for an identically and independently distributed (i.i.d.) model of the

data. Dechevsky and Penev do not suggest an algorithm to bring their method to the data.

Our goal is to estimate a multivariate function under less stringent conditions than the usual

ones in nonparametric approaches. Each component of the multivariate function can be

either of a pdf type or a cdf type. Note that a direct transfer of the Dechevsky–Penev

construction to a multivariate framework is not possible. One of the main motivations for

this extension is conditional quantile estimation, for dependent data in financial time series.

There we need a general methodology which can estimate a d-dimensional function which

is a cdf in one component, and a multivariate pdf in the remaining d � 1 components.

To summarize, the three main contributions of this paper are: the definition of appropriate

norms of convergence for an estimator of a multivariate function which is a cdf in one of

its components; the generalization of the univariate results of Dechevsky and Penev for an

i.i.d. model to the case of multivariate time series data subject to mixing conditions; and the

design of fast algorithms to implement our method.

Doukhan (1988) and Doukhan and Léon (1990) provide early work on wavelet density

estimation with univariate independent data. Masry provides a generalization to dependent

data using orthonormal bases in the univariate setting (Masry 1994) and in the multivariate

setting (Masry 1997), but the latter analysis is limited to the case of uniform convergence

on compact sets. Kerkyacharian and Picard (1992) are the first authors to derive optimality

results for linear wavelet density estimation in function spaces, such as Besov spaces.

Tribouley (1995) studies linear wavelet methods for multivariate density estimation.

Nonlinear wavelet methodologies are applied to univariate density estimation in Donoho et

al. (1996) and Kerkyacharian et al. (1996), and in Tribouley and Viennet (1998) for �-
mixing data. In nonlinear methods, orthogonality or bi-orthogonality of the underlying

wavelet bases has to be imposed. Other recent studies on density estimation with wavelets

aim to deal with shape-preserving properties; see, for instance, Penev and Dechevsky (1997)

and Pinheiro and Vidakovic (1997). These approaches use devices such as pre- or post-

processing.

Choosing the Dechevsky–Penev shape-preserving wavelets not only overcomes the need

for pre- or post-processors but also yields the following advantages. First, since

orthogonality has to be given up, we rely on a simple construction using B-splines. This

allows us to have analytic expressions for our basis functions in the time domain. This is

essential for deriving the reconstruction of a cdf by integration. Second, the proof technique

applies simultaneously to the pdf case and the cdf case. Third, our approach gives general

results for linear wavelet density estimation without a restriction to the Besov space

framework of Kerkyacharian and Picard (1992).

Shape-preserving estimation of probabilistic functions turns out to be interesting for a

variety of nonparametric estimation problems. To give only a few examples beyond

multivariate density estimation, we state hazard rate estimation (Hall and Van Keilegom

2005), and logistic regression; see, for instance, McFadden and Train (2000) for an

application to mixed multinomial logit models (MMNL). In his Nobel Prize lecture

McFadden (2003) states explicitly that an appropriate multivariate extension of the

Dechevsky–Penev set-up is required in an MMNL framework. This ensures that

the multivariate indirect utility functions determining the choice probabilities display the
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required shape restrictions. Shape-preserving estimators have also been designed for

functional estimation in the context of diffusion processes (Chen et al. 1998). Another

application is quantile regression. This provides robust estimators such as median

estimators, and allows one to characterize the heterogeneous impact of variables at

different points of a distribution. It has important applications in finance and insurance

(quantiles of loss distributions), and in labour economics (measures of income inequality).

We briefly discuss quantile regression when we develop our main application,

nonparametric estimation of conditional quantiles for time series, the conditioning

information being the past observations of the time series. As pointed out by Hall et al.

(1999) and Cai (2002), the shape-preserving property of a cdf estimator is particularly

important for quantile estimation. In our approach we benefit greatly from a direct wavelet

estimate which is monotone and constrained to lie between 0 and 1. This is in contrast to

other popular methods for quantile regression; see, for instance, the modified local linear

quantile estimators of Yu and Jones (1998). Our time series framework calls for particular

care in proving the consistency of our estimator. We provide such a result under less

stringent assumptions on the smoothness of the conditional and marginal distribution

functions of the random process.

Our paper is organized as follows. Section 2 gives an introduction to shape-preserving

wavelets and estimation of univariate probabilistic functions developed by Dechevsky and

Penev. We present the relevant terminology and concepts such as moduli of smoothness,

seminorms, as well as appropriate risk definitions. In Section 3 we briefly recall the main

results of Dechevsky and Penev which are essential for our work. For details summarizing

their work we refer to Appendix A in Cosma et al. (2005). Section 4 presents our

theoretical contributions: Theorem 1 states the most general result of this paper. It is an

extension of the univariate results of Section 3 to higher dimensions and the case of time

series data. In Section 5 we examine quantile regression and, in particular, conditional

quantile estimation for financial time series data. We discuss numerical implementation via

B-splines, and present a simulation study. A data-driven choice of the resolution level is

investigated numerically. In a short conclusion we discuss some ideas for future research.

Detailed proofs can be found in Cosma et al. (2005).

2. Preliminaries on shape-preserving wavelets

We start this section by introducing the concept of multiresolution analysis (MRA). Let

L2(R) be the space of square integrable functions defined on the real line, that is,

L2(R) ¼ f f : R ! Rj
Ðþ1
�1 dx f (x)2 , 1g. An MRA is a sequence of closed subspaces

V j � L2(R), j 2 Z, with the following properties (Meyer 1992): V j � V jþ1, \V j ¼ f0g,
[V j ¼ L2(R), and for all v(x) 2 L2(R) and j, k 2 Z, v(x) 2 V j , v(2x) 2 V jþ1 and

v(x) 2 V0 , v(x � k) 2 V0. Moreover, a scaling function j 2 V0 exists such that

fj(x � l)jl 2 Zg is a Riesz basis of V0. It follows that in general j(2 jx) 2 V j, and

fj jk(x)gk2Z ¼� f2 j=2j(2 jx � k) j k 2 Zg is a Riesz basis in V j.

Orthogonal projection was the first idea exploited in wavelet analysis. It leads to a

construction of orthonormal bases of scaling functions, such that
Ðþ1
�1 j(x � l)j(x �
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k)dx ¼ �kl. However, orthogonality poses a number of constraints on the construction of the

scaling functions. For instance, it is not possible to construct fj(� � l)g l2Z that are at the

same time continuous, orthogonal, nonnegative and symmetric. Moreover, we want to build

shape-preserving operators, that is, projection operators that map non-negative functions to

non-negative functions and monotone functions to monotone functions. To achieve this, we

need extra freedom in building the proper scaling functions. Hence we introduce a non-

orthogonal projection operator starting from two different families of scaling functions

fj(2 jx � k)gk2Z and f ~jj(2 jx � k)gk2Z. The projector on the space V j is given by

A j( f )(x) ¼
X
k2Z

2 jh f , ~jj(2 j � �k)ij(2 jx � k): (2:1)

The two families of functions are called the primal basis and the dual basis. The primal basis

is generated from the scaling function j, and the dual basis is generated from the scaling

function ~jj. We require that the two families display the following properties. Let j be such

that

j(x) > 0, x 2 R; (2:2)

j(x) is bounded, right-continuous; (2:3)

suppj � [�a, a), a > 1=2; (2:4)

X1
k¼�1

j(x � k) � 1 on R; (2:5)

there exists b 2 (�a, a) such that j is non-decreasing for x < b and non-increasing for x > b:

(2:6)

Then let the dual scaling function be such that:

~jj satisfies (2:2), (2:4), ~jj 2 L1, and

ðþ1

�1
dt ~jj(t) ¼ 1: (2:7)

As for the primal basis, we define the scaled versions of ~jj such that

f ~jj jk(x)gk2Z ¼
� f2 j=2 ~jj(2 jx � k) j k 2 Zg.

The conditions given on ~jj are weaker than those on j. The condition
P1

�1j(x � k) ¼ 1

implies
Ðþ1
�1 dtj(x) ¼ 1 (for a proof, see Anastassiou and Yu 1992). In particular, this

means that both j(x) and ~jj(x) are normalized in the L1 norm.

The following notation is also used:

�j, ~jj(t)¼�
ðþ1

�1
d� � ~jj(�)�

Xþ1

k¼�1
(t � k)j(t � k): (2:8)

Let us examine why these assumptions guarantee a shape-preserving approximation (2.1)

of a pdf or a cdf. Assumption (2.2) on j and ~jj ensures that the reconstruction (2.1) of a

pdf and a cdf is non-negative. If assumption (2.5) is also satisfied by ~jj, then the
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approximation of a pdf integrates to 1. Assumptions (2.3) and (2.6) are specific to shape-

preserving approximation of a cdf. Assumption (2.3) guarantees that the reconstruction has

the minimum regularity conditions of a cdf (boundedness and right-continuity), while

assumption (2.6), jointly with the non-negativity of ~jj, guarantees the monotonicity of the

reconstruction.

Assumption (2.4) is a standard compact support assumption. It boils down to the use of

finite-length filters in the implementation of the discrete wavelet transform and implies that

�a ¼ #fj jk j x 2 Supp(j jk)g is independent of scale j and location k. Assumptions (2.5)

and (2.8) together with the condition �j, ~jj ¼ 0 almost everywhere are equivalent to the usual

moment conditions in wavelet approximation theory. Define the moments of the dual scaling

function: ~MM0 ¼
Ðþ1
�1 dt ~jj(t), ~MM1 ¼

Ðþ1
�1 dt t ~jj(t). Then (2.5) and the condition �j, ~jj ¼ 0

can be rewritten in the following way:

Xþ1

k¼�1
(t � k) pj(t � k) ¼ ~MM p, p ¼ 0, 1: (2:9)

These two conditions ensure that the MRA V j reproduces exactly polynomials of degree less

than or equal to 1. We say that the MRA satisfies a Strang-Fix condition of order 1.

We finish this section by recalling the useful concept of modulus of smoothness. This

concept is used later on to derive the approximation properties of the projection operator

(2.1) in general function spaces, such as Sobolev and Besov spaces (see Nikol’ski�ıı 1975).
For functions defined on a region � 2 Rd , we introduce the increment of the function f in

the direction i and the corresponding modulus of smoothness. Let ˜1
i t f (x) ¼ f (x þ it)

� f (x), ˜�
i t f (x) ¼ ˜1(˜��1

i t f (x)); then, for h . 0, � 2 N and 1 < p < 1, the integral

p-modulus of smoothness in the i direction is given by

ø�
i ( f , h) p ¼ sup

0, t<h

k˜�
i t f (x)k p, (2:10)

with the usual convention of the supx norm for p ¼ 1, which is the classical modulus of

continuity.

3. Shape-preserving estimation of univariate probabilistic
functions

First we briefly summarize the main concepts of Dechevsky and Penev in the i.i.d. case for

the estimation of univariate probabilistic functions (pdfs and cdfs) by means of shape-

preserving wavelets. We recall these results since they have inspired our own work for

multivariate time series data. Note that we need to define an estimation risk in a function

norm which is appropriate for treating simultaneously the error when estimating a pdf or a

cdf nonparametrically; see (3.5) below. In the two cases the inner products in (2.1) can be

estimated from the observed data (X1, . . . , X n) in the following way:
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h df , ~jj jkf , ~jj jki ¼ h f , ~jj jk(X )i ¼ 1

n

Xn

i¼1

~jj jk(X i), if f is a pdf ,

h dF, ~jj jkF, ~jj jki ¼ hF, ~jj jk(X )i ¼ 1

n

Xn

i¼1

2� j=2f1� ~��(2 j X i � k)g, if F is a cdf ,

(3:1)

(3:2)

with ~��(x) ¼
Ð x

�1 ~jj(t)dt. Since f is a pdf, h f , ~jji ¼ E[ ~jj]. Then (3.1) is an estimator of the

expected value of ~jj jk . In a similar way we can obtain (3.2) by integration by parts,

hF, ~jj jki ¼ 2 j=2 � 2 j=2E[�(2 jX� k)],

using the boundedness of the support and the normalization properties of ~jj jk . It then follows

that the estimators for a univariate pdf and a univariate cdf are given by:

f̂f (x) ¼ ÂA
(n)
j ( f )(x) ¼ 1

n

X
k2Z

Xn

i¼1

~jj jk(X i)j jk(x), if f is a pdf ;

F̂F(x) ¼ ÂA
(n)
j (F)(x) ¼ 1

n

X
k2Z

Xn

i¼1

2� j=2f1� ~��(2 j X i � k)gj jk(x), if F is a cdf :

(3:3)

(3:4)

Lemma 1. Let f be either a pdf or a cdf. Let j satisfy assumptions (2.2)–(2.6) and ~jj satisfy

(2.7). If f is a pdf, let ~jj also satisfy (2.5). Then the estimator ÂA
(n)
j ( f ) derived from the

operator (2.1) using (3.3) or (3.4) is shape-preserving.

By ‘shape-preserving’ we mean that if f is a pdf, then ÂA
(n)
j ( f ) is a non-negative function

that integrates to 1, and if F is a cdf, then ÂA
(n)
j (F) is a monotone, right-continuous function

and limx!�1 ÂA
(n)
j (F)(x) ¼ 0, 1. For the proofs we refer to Lemma 2.2.1 in Dechevsky and

Penev (1997) for the pdf case, and to Lemma 2.1.1 in Dechevsky and Penev (1997) and

Lemma 3 in Anastassiou and Yu (1992) for the cdf case. The shape-preserving properties of

estimators (3.3) and (3.4) come from the approximation results derived in Dechevsky and

Penev (1997).

To assess the behaviour of the estimators we define a risk using the following quasi-norm

for a function g(x) defined on R, whose random values depend on the realization of

(X1, . . . , X n):

kgjL p(Lq)k ¼
ðþ1

�1
dx(Ejg(x)jq) p=q

� �1= p

,

with 0 , p, q < 1. Recall that for a quasi-norm the triangular inequality holds with

kg þ hkA < cA(kgkA þ khkA), cA > 1. In order to be able to work with the usual triangular

inequality (i.e. cA ¼ 1), we move to the space L p(Lq)
r with an appropriate choice of r . 0

(see the definition and discussion in Appendix D).

In the L p(Lq) quasi-norm the p parameter takes into account the smoothness of the

function via (2.10), while the q parameter gives an additional degree of freedom to ensure

that the estimation risk stays finite through a control of the tails. In the original work of

Dechevsky and Penev (1998) the notation of the two parameters is inverted; in our setting
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we prefer to call p the ‘smoothness’ parameter, as is done for Besov spaces. Note that in

contrast to the usual Besov spaces, q is connected here to the stochastic dimension of the

problem. Our change is notational only and does not alter the essence of the quasi-norm

used in the original reference. For p ¼ q, we get the usual L p-risk, Ek � k p. The notation

k � k p remains associated with the usual L p(R
d)-norm.

From now on let f̂f be an estimator for a pdf or a cdf. Then,

k f̂f � f j L p(Lq)kr ¼ k f̂f � E( f̂f )þ E( f̂f )� f j L p(Lq)kr

< c( p, q, r) k f̂f � E( f̂f ) j L p(Lq)kr þ kE( f̂f )� f j L p(Lq)kr
n o

: (3:5)

Henceforth we restrict ourselves to the ranges 1 < p < 1, 0 , q < 2, and we always work

with a choice of r such that c( p, q, r) ¼ 1.

We can see that the estimators (3.1) and (3.2) are unbiased estimators of the inner

products h f , ~jji, and that ÂA j is also an unbiased estimator of A j. The triangular inequality

(3.5) can thus be rewritten as:

k f̂f � f j L p(Lq)kr < kA j( f )(�)� f (�)krp þ kÂA
(n)
j ( f )(�)� A j( f )(�) j L p(Lq)kr

n o
: (3:6)

The first result (Dechevsky and Penev 1997: Theorem 2.1.1) concerns the first part of

(3.6), that is, the bias term:

kA j( f )(�)� f (�)k p < c1k�j, ~jjk1 � ø1( f , 21� ja) p þ c2k ~jjk p9 � kjk1 � ø2( f , 21� ja) p, (3:7)

where p9 2 [1, 1] is such that 1=p þ 1=p9 ¼ 1, a is the length of the support of the scaling

functions, and c1 . 0 and c2 . 0 are absolute constants that do not depend on the resolution

level j.

Note that, in contrast to pdfs, cdfs are not in L p with 1 < p , 1, but only in L1. Yet

by (3.7) the L p distance between A j(F) and F is bounded. This means that the

approximation properties of A j(F) can be studied in an appropriately chosen L p norm.

It is possible to obtain how the bias depends explicitly on the resolution level j. To this

end we would need to specify the function space to which f belongs and exploit the

properties of the modulus of smoothness in this specific function space. For now, we

confine ourselves to giving a qualitative characterization of this dependence. Since

ø�( f , 21� ja) p is increasing in its second argument by definition, the bias can be bounded

by a decreasing function of j, so that (3.7) can be rewritten as

kA j( f )(�)� f (�)k p < B( j), (3:8)

where B( j) is a decreasing function of j.

For the second term of (3.5), which is rewritten as

kÂA
(n)
j ( f )(�)� E(ÂA

(n)
j ( f )(�)) j L p(Lq)k ¼

ðþ1

�1
dx(EjÂA(n)

j ( f )(x)� E(ÂA
(n)
j ( f )(x)jq) p=q

� �1= p

,

(3:9)

we have two different behaviours depending on whether f is a cdf or a pdf.

Multivariate wavelet-based shape-preserving estimation 307



In the cdf case (Dechevsky and Penev 1998: Theorem 2.1.1), the variance term (3.9) has

a parametric decay O((1=n)r=2) to zero. In this case the bias rate can be adapted by

appropriately choosing the increasing function j� ¼ j�(n) such that B( j�) ¼ O(n�r=2). The

total risk (3.6) then decays at a parametric rate:

kÂA
(n)
j (F)(�)� F(�) j L p(Lq)kr ¼ O

1

n

� �r=2
 !

, n ! 1: (3:10)

It can easily be seen that the above convergence rate can be achieved by choosing

j > ( p=2) log2n.

In the pdf case (Dechevsky and Penev 1998: Theorem 2.2.1), the variance term is an

increasing function of j, that is, (3.9) is bounded by a function V (2 j=n) ((2 j=n)r). When

choosing the function j� ¼ j�(n), we face the typical nonparametric trade-off between the

competing behaviours of B and V as functions of j. In particular, j� ¼ j�(n) has to be an

increasing function such that V (2 j�=n) ¼ O(B( j�)). The convergence rate for the estimator

of a pdf is of order

kÂA
(n)
j ( f )(�)� F(�) j L p(Lq)kr ¼ O(2� j�(n)r), n ! 1: (3:11)

which is typically slower than the parametric one. These findings are the same as in classical

wavelet estimation (Härdle et al. 1998; Kerkyacharian and Picard 1992). For detailed results,

we refer to Cosma et al. (2005: Appendix A, Corollaries 10–14).

4. Shape-preserving estimation of multivariate probabilistic
functions

In this, the main section of our paper, we provide a multivariate extension of the results of

Dechevsky and Penev for time series data. Our work is motivated by an application to

quantile estimation (see Section 5). We analyse a multivariate function F 2 Rd which is a

cdf in the last argument and a pdf in the d � 1 remaining arguments, that is,

FY (x, y) ¼
ð y

�1
dt f (x, t): (4:1)

However, our set-up allows for the construction of estimators of multivariate densities

f (x) 2 Rd as well. For ease of notation we present only the bivariate case. From now on the

argument y will always denote the variable with respect to which FY (x, y) is cumulated, and

x the argument with respect to which FY (x, y) is a density. The extension of the results to a

bivariate pdf can be obtained with minor changes that will be given below.

Our constructions are based on tensor product wavelets. The primal and dual wavelet

bases j, ~jj introduced in equations (2.2)–(2.7) are functions defined from R to R so that

functions f : R ! R can be approximated. It is straightforward to construct scaling

functions defined on Rd , so that multivariate functions can be approximated by wavelet

series, using tensor product wavelets. It is known (see Meyer 1992: Section 3.3) that, if

fV jg j2Z is an MRA of L2(R), then

¼ O
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L2(R
2) ¼

[1
j1, j2¼0

V j1 � V j2 :

We now define j ¼ ( j1, j2) and Vj ¼ V j1 � V j2, from which we can derive the two-

dimensional basis for each approximation space Vj:

fjjk(x, y)gk2R2 ¼ fj j1 k1 (x)gk12Z � fj j2 k2 (y)gk22Z: (4:2)

This construction can obviously be extended to any dimension d . 2. The use of independent

scales ji, i ¼ 1, . . . , d, for each dimension allows for adaptation to possibly different

regularity (over the different dimensions) of the d-dimensional function (see Neumann and

von Sachs 1997). Hence the cdf part can benefit from a higher j2 than the j1 of the pdf part.

In what follows we provide approximation and estimation results of bivariate probability

functions, treating both the i.i.d. case and the serially dependent case. To emphasize the

latter, we suppose that we have real-valued bivariate time series observations (Y1, X 1),

. . . , (YT , X T ), generated from a stationary stochastic process f(Yt, X t)g t2Z. Its dependence

structure is controlled via mixing conditions. In particular, we could have that Yt ¼ Z t and

X t ¼ Z t�1, where fZ tg t2Z is a univariate stationary process. Let F k
i be the sigma-field of

events generated by the random variables f(Yt, X t), i < t < kg. The stationary process

f(Yt, X t)g t2Z is called strongly or Æ-mixing if

sup
A2F 0

�1
B2F1

p

jP[AB]� P[A]P[B]j ¼ Æ(p) �!
p!1

0:

Below, unless stated otherwise, let f (�) be the ‘design’ density f X t
(x), which is the marginal

distribution of the stationary process in the univariate time series case. Our results are then

derived under the following assumptions on the stochastic process.

Assumption 1. For every integer s . 0 the joint distribution F(X0,Y0),(X s,Ys) exists and there is

a positive constant M such that, for every bounded zero-mean random variable T (X t, Yt),

E[jT (X 0, Y0)T (X s, Ys)j] < ME[jT (X0, Y0)j]E[jT (X s, Ys)j]: (4:3)

Assumption 2. The process f(X t, Yt)g is Æ-mixing and the coefficients Æ(p) are such thatX1
p¼N

[Æ( p)]1�2=r ¼ O(N�1), (4:4)

for r . 2.

Many processes satisfy the condition given on the mixing coefficients, among them

Gaussian processes, non-Gaussian autoregressive moving average processes (see Pham and

Tran 1980), many nonlinear functionals of these processes, and various GARCH and

stochastic volatility models (see Carrasco and Chen 2002).

We construct our estimators by mimicking the univariate constructions (3.3) and (3.4).

We use the shape-preserving scaling functions j and ~jj that satisfy assumptions (2.2)–(2.7).
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Recall that j ¼ ( j1, j2). Let fjjk(x, y)gk2R2 , f ~jjjk(x, y)gk2R2 be the bivariate primal and

dual bases (see (4.2)); then the estimators of FY (x, y) and f (x, y) are given by

ÂA
(T)
j ( f )(x, y) ¼

X
k2Z2

1

T

XT

t¼1

~jj j1 k1 (X t) ~jj j2 k2 (Yt)

( )
jjk(x, y), (x, y) 2 R2, (4:5)

ÂA
(T)
j (F)(x, y) ¼

X
k2Z2

XT

t¼1

2� j2=2
~jj j1 k1 (X t)

T
� ~jj j1 k1 (X t) ~��(2 j2 Yt � k2)

T

 !
jjk(x, y), (x, y) 2 R2:

(4:6)

Let us further introduce the multivariate approximator of the probabilistic function f :

Aj( f )(x, y) ¼
X
k2Zd

h f , ~jjjkijjk(x, y): (4:7)

Note that the properties of the functions and the projectors Aj( f )(x, y) that allow us to

approximate the cdf of one variable, cannot play the same role when we move to a

multivariate analysis. In particular, (3.7) does not continue to hold in the multivariate L p

norm because it is not possible to bound the modulus of smoothness of a function which is in

L1 in the y-argument. We could use an L1 norm, but this would require continuity of the

density part of FY (x, y). Instead we take advantage of the different convergence rates for a

pdf and a cdf as discussed in Section 3, and we work with the following risk:

df f̂f (x, y), ĝg(x, y)g p ¼ sup
y2R

k f̂f (�, y)� ĝg(�, y)jL p(Lq)k: (4:8)

In order to use this norm, we have to assume continuity of FY (x, y) as a function of y.

We will see that the results on the approximation and estimation of the bivariate FY (x, y)

look like the usual results on estimation of a univariate pdf. No additional effort is needed

to interpret them. Moreover, these results can be adapted with minor changes to a bivariate

pdf, where the norm (4.8) becomes the usual L p(R
2) norm. Then we do not need to make a

continuity assumption on the bivariate pdf. Further details on the changes needed to adapt

the pdf–cdf results to the pure pdf case will be given at the end of each of the following

subsections.

4.1. Bias in multivariate cdf–pdf approximation

Here we bound the deterministic bias made by approximating FY (x, y). A sketch of the

proof can be found in Appendix A. The proof technique is largely inspired by that in

Dechevsky and Penev (1997), but with changes requested by the use of the norm (4.8). The

proof is based on approximations by Steklov means. This allows us to relate the

approximation error to the modulus of smoothness. We refer to Appendix C for a definition

and relevant properties of Steklov means. Recall the definitions of �j ~jj in (2.8), and let ex

and e y be the unit vectors in the x and y directions, respectively.
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Lemma 2. Let assumptions (2.2)–(2.7) hold. Let F(x, y) be, for a fixed x, a continuous

function in y. Then, for 1 < p < 1:

sup
y

kAj(F)(�, y)� F(�, y)k p

< c1 sup
y

ø1
ex
(F(�, y), 21� j1 a) p þ c2sup

y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p (4:9)

þ c3 sup
y

ø2
ex
(F(�, y), 21� j1 a) p þ c4 sup

y

sup
0,�,1

k˜2
e y�(21� j2 a)F(�, y)k p:

The constants c1 and c2 include the value of the norms k�j ~jj(2
j1 x)k1 and k�j ~jj(2

j2 y)k1. If

the latter two L1 norms are 0, then the constants c1 and c2 will be smaller but they cannot

be equal to 0.

The first-order terms, those in which the constants c1 and c2 appear, apparently do not

vanish in (4.9) even if the conditions k�j ~jj(2
j1 x)k1 ¼ 0 and k�j ~jj(2

j2 y)k1 ¼ 0 are satisfied.

This differs from equation (3.7) for the univariate setting. It is related to the proof

technique and not to any fundamental cause.

Remark 1. For a bivariate pdf, we do not need to assume continuity of f (x, y) with respect to

y in Lemma 2. In (3.7) the L p norm is taken with respect to both arguments, and the bound

is given by the usual moduli of smoothness in the two directions. This amounts to the

bivariate equivalent of (3.7).

4.2. Estimation of multivariate cdf–pdf from dependent data

We come now to our main results where we study the estimation of the bivariate FY (x, y)

from time series observations f(X 1, Y1), . . . , (X T , YT )g generated under Assumptions 1 and

2. The i.i.d. case is a subcase of this one.

Again we make use of the triangular inequality to split the risk into a stochastic term and

a bias term:

sup
y2R

kÂA
(T )
j (F)(�, y)� F(�, y)jL p(Lq)kr

< sup
y

kAj(F)(�, y)� F(�, y)krp þ sup
y

kÂA
(T )
j (F)(�, y)� Aj(F)(�, y)jL p(Lq)kr

( )
:

The bias part is bounded in Lemma 2. We now give a bound for the stochastic part.

Lemma 3. Let j, ~jj be as in (2.2)–(2.7). Let f(X t, Yt)g t¼0,...,T be realizations of a stationary

process satisfying Assumptions 1 and 2. Let p > 1, 0 , q < 2 and r ¼ minf2, pg. Assume,

for fixed y, that FY (x, y) 2 L p=2 \ L1 \ L p=r for r . 2. Let j2 > (p=2) log2 T. Then
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sup
y

kÂA
(T )
j (F)(�, y)� E[ÂA

(T)
j (F)(�, y)]jL p(Lq)kr < V0 þ V1, (4:10)

where

V0 ¼
2 j1

T

� �r=2

d1 max sup
y

kF(�, y)k1, sup
y

kF(�, y)k p=2

( )r=2
24

þ d2(a) max sup
y

ø1
ex
(F(�, y), 21� j1 a)1, sup

y

ø1
ex
(F(�, y), 21� j1 a) p=2

( )r=2
35 (4:11)

þ O(T �r=2)

and

V1

V0

! 0, as T ! 1: (4:12)

Moreover, we have

max sup
y

ø1(F(�, y), 21� j1 a)1, sup
y

ø1(F(�, y), 21� j1 a) p=2

( )
¼ o(1), j1 ! 1,

if 2 < p , 1, or if p ¼ 1 and F is also continuous with respect to the argument x, or if

1 , p , 2 and

sup
y

sup
0< t<h

ðþ1

�1
dx

ð1
0

dÆF(x þ Æt, y)

� � p=2

, 1:

Here d1 and d2(a) are absolute constants that do not depend on the resolution levels

j ¼ ( j1, j2), and a is the support of j, ~jj. As can be seen from (4.10), the stochastic

component of the risk has two contributions V0 and V1. We refer to the proof for an explicit

form of the latter. V0 is the only variance term if F̂FY (x, y) is estimated under an i.i.d. model.

In Cosma et al. (2005: Appendix F), we provide a slightly more general expression for

the variance term in the i.i.d. set-up with a parameter range 0 , q , 1.

A close inspection of (4.11) indicates that only the resolution parameter j1 appears.

Formally, the variance term obtained in Lemma 3 is equivalent to the one we would obtain

for a univariate pdf; see Appendix A in Cosma et al. (2005). This is because, as remarked

in the discussion following equations (3.10) and (3.11), the cdf-like component of the

variance has a faster convergence, and with the choice j2 > (p=2) log2 T the convergence of

the entire y component of the stochastic error is taken into account by the O(T �r=2) term.

We can finally put together the results of Lemmas 2 and 3 to obtain the convergence rates

of ÂA
(T)
j .

Theorem 1. Let the assumptions of Lemmas 2 and 3 hold. Then the total risk of the estimator

ÂA
(T)
j of FY (x, y) is
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sup
y2R

kÂA
(T )
j (F)(�, y)� F(�, y)jL p(Lq)kr

< c1 sup
y

ø1
ex
(F(�, y), 21� j1 a)rp þ c3 sup

y

ø2
ex
(F(�, y), 21� j1 a)rp þ

2 j1

T

� �r=2

fC1 þ o(1)g

þ O(T �r=2)þ o(1): (4:13)

The constants c1, c3 and C1 can be made explicit by comparing (4.13) with (4.9) and

(4.11). Again we see that only the j1 parameter appears. The increments k˜i
e y

f k of the

function FY (x, y) in the y-direction that can be found in (4.9) are missing in (4.13), since

they are taken into account in the O(T �r=2) term once we choose j2 to satisfy

j2 > ( p=2) log2 T . The o(1) term takes into account the V1 component of the variance. The

risk given in Theorem 1 is formally equivalent to the risk in estimating a univariate pdf.

Hence the explicit convergence rates of ÂA
(T)
j (F) can be obtained again by choosing a

resolution level j1 in the x direction that balances bias and variance. They are equivalent to

the convergence rates of the estimator of a univariate pdf having the same smoothness as

the pdf part of FY (see Cosma et al. 2005: Appendix A, Corollaries 10–14).

Remark 2. Lemma 3 can be extended to a bivariate pdf. The continuity assumption on the y

variable is no longer required, and we assume that f (x, y) 2 L p=2 \ L1 \ L p=r. Then in (4.11)

a (2 j1þ j2=T ) factor appears instead of (2 j1=T ), and the O(T �r=2) term disappears.

Lemma 3 and the proofs deal with the bivariate distribution function FY (x, y), but a

closer look at the proof reveals that the results can immediately be extended to a dimension

d > 2. As a multivariate density has a finite L p module of smoothness for p , 1, we can

extend Theorem 1 to functions FY (x, y), by looking at the uniform convergence in y of

sup
y

kÂA
(T )
j ( f )(�, y)� EÂA

(T )
j (F)(�, y)jL p(Lq)k,

where the above L p norm, made explicit in (3.9), is now defined on Rd�1.

Let us briefly comment on the results obtained for the convergence of the distribution

function FY (x, y). We have derived the upper bound and the asymptotic behaviour of the

stochastic term of the risk of the estimator (4.6) when the data come from a weakly

dependent process. The risk is computed in the L p(Lq) norm. The advantage of separating

the pointwise expectation from the global norm is probably more evident here than in other

contexts. This can be seen by comparing our results with those in Masry (1994). First of

all, Masry computes the risk in the Sobolev Ws
2 norm. We, however, start from the L p(Lq)-

risk and can specify the risk in a variety of different norms, especially in the norm of the

Besov spaces built from L p. But the main difference concerns the conditions that have to be

imposed on the tails of the density for the risk not to explode. While we simply need to

impose that f 2 L p=r, r . 2, in Masry (1994) the decay of the density tails has to be

related to the smoothness s of the density, requiring a decay of order x��, with � . 0:5þ s.
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5. Statistical applications: quantile regression and estimation of
conditional quantiles of financial data

We address the estimation of conditional quantiles as an important application of our

methodology. Let us consider the stationary process f(X t, Yt)g introduced in Section 4. We

wish to estimate the conditional distribution function FY (yjx) ¼ P(Yt < y j X t ¼ x)

and, from this, the pth conditional quantile, that is, the value Q(p, x) ¼
inffy 2 R j F(y j x) > pg, for a probability level 0 , p , 1. The conditional median

Q( p ¼ 0:5, x) has often been the main object of interest. It is used as an alternative to the

conditional mean to deliver a robust estimate of the effect of the variable X on the response

variable Y . In general, we can build confidence intervals for Y from a collection of

conditional quantiles. In the case of a stationary process fZ tg t2Z, when Yt ¼ Z t and

X t ¼ Z t�1, it is possible to construct prediction intervals for Z t having observed Z t�1. The

estimation of conditional quantiles of financial time series motivates this work to a large

extent. Conditional quantiles are used as measures of risk, and are known as

in the financial literature

conditional

value-at-risk .

In this section we start by linking the problem of the estimation of conditional quantiles

to that of the estimation of the bivariate FY (x, y) studied in the previous sections. In order

to achieve this, we show that a modification of the norm (4.8) is needed. We then provide a

couple of scaling functions j, ~jj satisfying assumptions (2.2)–(2.7) and (2.9), and we

explicitly construct shape-preserving estimators. Hence we deliver an algorithm for the

implementation of the shape-preserving set-up. Finally, we carry out a Monte Carlo

experiment to check our methodology.

5.1. Set-up and conditional quantiles

We keep the same assumptions on the stochastic process as in Section 4. In particular, we

consider observations fY1, . . . , YTg of a stationary process fYtg t2Z such that the couples

f(Yt, X t ¼ Yt�1)g t2Z form a Markovian process of order 1 satisftying Assumption 1 and the

mixing conditions of Assumption 2. Moreover, we assume that the conditional distributions

FYt
(yjx) and f Yt

(yjx) of Yt given X t ¼ x exist. Here we are interested in the pth

conditional quantile, which is assumed to be unique. We define the estimator Q̂Q( x,p ) to be

such that

Q̂Q( p, x) ¼ inff f 2 RjF̂F(yjx) > pg: (5:1)

The solution of (5.1) always exists since F̂F(yjx) is monotone and bounded between 0 and 1.

Now, since we have assumed the existence of the conditional pdf f (yjx), and since

F(yjx) is its integral by definition, we can write a Taylor expansion with integral remainder:

F(Q̂Q( p, x)jx)� F(Q( p, x)jx)

¼ (Q̂Q( p, x)� Q( p, x))

ð1
0

dŁ f (Q( p, x)þ Ł(Q̂Q( p, x)� Q(p, x))jx): (5:2)
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Write ~ff Q̂Q,Q(x)¼
� Ð 1

0
dŁ f (Q( p, x)þ Ł(Q̂Q( p, x)� Q(p, x))jx).

In order to invert (5.2) we assume a local lower bound on the conditional densities,

namely the existence of a positive c such that f (yjx) > c . 0, for all y 2 y�
Q( p, x) , �� . Here �� is chosen as a function of the convergence of F̂F to F (see

Theorem 1). For T sufficiently large, this implies that F̂F(Q̂Q( p, x)jx) is in a �-neighbourhood
of F(Q̂Q(p, x)jx), and, by a (uniform) continuity argument, Q̂Q( p, x) is in a ��-neighbourhood
of Q( p, x).

Since F(yjx) ¼ FY (x, y)= f (x), and F̂F(Q̂Q( p, x)jx) ¼ p ¼ F(Q( p, x)jx) by definition, we

can write

Q̂Q( p, x)� Q( p, x) ¼ 1

~ff Q̂Q,Q(x)

FY (x, Q̂Q( p, x))

f (x)
� F̂FY (x, Q̂Q( p, x))

f̂f (x)

( )
: (5:3)

It is not possible to evaluate the right-hand side of (5.3) with the norm (4.8), since the

densities in the denominator pose a measurability problem upon integration with respect to

the x variable. We limit the analysis of the convergence of the conditional quantile to a

neighbourhood of the conditioning value X ¼ x. It remains to determine how big the

neighbourhood of x should be. We know that the bound on the bias of FY (x, y) is given by

ø�
ex
(F(�, y), 21� j1 a) p from Lemma 2. This is a measure of the variation of FY in a set of

radius 21� j1 a. Hence we compute the convergence of Q̂Q( p, x) to Q(p, x) in a neighbourhood

of x of radius 21� j1 a. Indeed, no improvement in the estimation error could be made by

restricting ourselves to a smaller set containing x. The following theorem gives the

consistency result, proved in Appendix B.

Theorem 2. Let the assumptions of Lemmas 2 and 3 hold with f(Yt, X t ¼ Yt�1)g, fYtg t2Z
being a stationary stochastic process. Furthermore, let the marginal density f X t

(x) of the

stationary process be bounded away from 0 for x 2 jx � �j , 21� j1 a, where X t ¼ � is a value

taken by the conditioning variable. Then

kQ̂Q( p, �)� Q(p, �)jL p(Lq)kr[jx��j,21� j1 a]

< ~CC(�) � sup
y

kÂA
(T )
j (F)(�, y)� F(�, y)jL p(Lq)kr[jx��j,21� j1 a]

< ~CC(�) � sup
y

kÂA
(T )
j (F)(�, y)� F(�, y)jL p(Lq)kr, (5:4)

where ~CC depends on the value of the conditioning value �. The bound and convergence rate

of the right-hand side of (5.4) are given in Theorem 1.

5.2. Implementation and Monte Carlo experiments

We now implement our method on simulated time series, and compare it with a kernel-

based conditional quantile estimator. We depart from the usual dyadic definition of the

resolution level. We allow the resolution level j to be chosen in a continuum instead of

f
gj

j
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being constrained to be a power of 2. As shown by Hall and Penev (2001), there are

marked improvements in applications by choosing the resolution level in a continuum. This

is especially true for a data-driven choice of the smoothing parameter. Opting for a

continuum has no impact on the theoretical results since we never take advantage of the

dyadic nature of the scaling factor 2 j in the proofs. This requires notational changes only.

We start by choosing a pair of primal and dual bases fj(� � k)gk2Z, f ~jj(� � k)gk2Z
satisfying properties (2.2)–(2.7). We use translates of B-splines for the primal basis. For

more details on B-splines we refer to Chui (1992). We consider a B-spline function of order

N , Nj(x), translated so that its nodes correspond to integer values, regardless of whether N

is even or odd.

To construct the dual basis we use the translates of the indicator function of the support

of the generator of the primal basis. That is, if Nj(x) is the B-spline that lives on

[b�N=2þ 1c, bN=2þ 1c), btc being the largest integer not greater than t, then

N ~jj(x) ¼ N�1I([b�N=2þ 1c, bN=2þ 1c)).
Consider the density estimator of equation (4.5). The coefficients of the scaling functions

Nj jk are then given by:

1

T

XT

t¼1

N ~jj jk(X t) ¼
1

T
� fnumber of X t in the support of Nj jkg:

Hence, the estimation procedure boils down to counting the number of points that fall within

the support of the scaling functions. We could think of the operator (4.5) as a special version

of a smoothed histogram, even though we are actually dealing with overlapping supports.

Such a density estimator is interesting because it is fast. Indeed, suppose you want to estimate

the density of a random variable on a grid of M points. Since the reconstructing functions

j jk are known beforehand, you know the �a 3 M matrix of values taken on the grid by the

j jks, where �a is the number of overlapping basis functions on each grid point. Then the

estimation involves counting the number of data falling in the support of every j jk,

multiplying element by element with the former �a 3 M matrix, and finally summing over

the columns to get density estimates at the M selected points. Such an algorithm is simple

and quick, and there are no constraints on the number of points, unlike in fast Fourier

transform based algorithms. The simulations (for which codes are available on request) are

carried out with the free programming software Ox; see Doornik (2002).

The design of the Monte Carlo experiments is as follows. We consider a centred

stationary autoregressive process of order 1, whose root is equal to 0.6. The innovations are

chosen to be either symmetric or asymmetric. For the symmetric case, we draw from a

Gaussian distribution with zero mean and unit variance. For the asymmetric case, we draw

from a skewed histogram. This histogram is plotted in Figure 1. The sample size is equal to

2000, while the number of Monte Carlo replications is equal to 1000. The kernel estimator

relies on a product quartic kernel. Our estimators require the choice of four smoothing

parameters, two in the pdf-like direction, hx and jx, and two in the cdf-like direction, h y

and j y. As discussed after equations (3.10) and (3.11), the crucial choice is that of the

smoothing parameters in the x direction. The choice of the smoothing parameters in the y

direction is not as critical since there is no bias–variance trade-off for this component. The

A. Cosma, O. Scaillet and R. von Sachs316



smoothing parameters in the y direction will be chosen to be smaller than all the possible

choices of the parameters in the x direction.

First we opt for a ‘best case’ framework in the sense that we select the bandwidth or

resolution level which minimizes a given loss function for each Monte Carlo run. Some

preliminary simulations have been made to determine suitable grids. We have chosen to

select the bandwidth hx in the grid f0:15, 0:30, . . . , 2:4g for the symmetric case, namely 16

values, and f0:05, 0:1, . . . , 1:2g for the asymmetric case, namely 24 values. The resolution

level jx is selected among 17 values f0, 0:25, . . . , 4g for the symmetric case and among 11

values f1, 1:5, . . . , 6g for the asymmetric case. We have checked in both the kernel case

and the wavelet case that the smoothing parameter minimizing the given loss function lies

within the selected range. The smoothing parameters in the y direction are chosen to be

h y ¼ 0:08 and j y ¼ 6. We use two different loss functions, namely an integrated absolute

deviation and an integrated square error. We integrate over the probability interval [0, 1],

and we condition with respect to the simulated 2000th value in predicting the conditional

quantile associated with the next observation. The deviation or error is computed with

respect to the true conditional quantile. Loss function values are then averaged through all

runs to give a mean integrated absolute deviation (MIAD) and a mean integrated square

error (MISE). The results of the simulations are reported in Table 1.

As can be seen, the wavelet estimator performs better in the two cases, and the difference

is clearer in the asymmetric case. More specifically, in the asymmetric case the wavelet

Table 1. MIAD and MISE for the kernel and wavelet estimators when choosing the optimal

bandwidth or resolution level within each run

Symmetric case Asymmetric case

Kernel Wavelet Kernel Wavelet

MIAD 5.86 3 10�2 5.60 3 10�2 4.89 3 10�2 3.80 3 10�2

MISE 8.20 3 10�3 7.65 3 10�3 5.69 3 10�3 3.46 3 10�3

Figure 1. Distribution of the innovations for the asymmetric case.
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estimator displays a 29% decrease in the MIAD and a 65% decrease in the MISE with

respect to the kernel estimator, while in the symmetric case we have a 5% decrease in the

MIAD and a 7% decrease in the MISE of the wavelet estimator compared to the kernel

method. In the asymmetric case the better performance of the wavelet estimator could have

been anticipated. It is interesting to see that the wavelet estimator also behaves better in the

symmetric case, even if not as clearly as in the previous case. In particular, in the

symmetric case we benefit greatly from choosing the resolution level jx in a continuum of

values. If we use integer values for jx only, the picture is reversed, and the kernel estimator

wins the competition, but by just a little.

We conclude this section by illustrating a methodology that can be followed in practical

applications to make a data-driven choice of the resolution level jx. As discussed after

Theorem 2, the convergence of the conditional quantile estimator is driven by the

convergence of the estimator of the univariate ‘design’ density f (x) of the conditioning

variable, so that we can try to apply methods developed for univariate densities. We use a

leave-one-out cross-validation methodology. In our set-up, the univariate density f (x) is the

marginal density of the stationary process, and so it is relatively smooth and homogeneous.

Given this characteristic of f (x), we choose to apply the cross-validation method on the

whole support of the density, unlike Tribouley (1995) and Hall and Penev (2001) who split

the support of the density into a number of subregions of relatively homogeneous

smoothness. Applying this methodology to the same 1000 series used previously selects an

average jx of 2:55 for the asymmetric case and of 1:94 for the symmetric case. We compare

these values with those that actually minimize the MISE. In order to do this we repeat the

same forecast exercise as in the ‘best case’ study, but this time we select one resolution

level within a grid of values, and keep it fixed across all 1000 runs. The grid of values for

jx is f0, 0:125, . . . , 6g for both the symmetric and asymmetric cases. The jx that minimizes

the MISE is 2:5 in the asymmetric case, and 1:375 in the symmetric case. On average, the

cross-validation procedure then delivers the exact value of jx in the asymmetric case, and a

jx ¼ 1:94 in the symmetric

case causes an increase of 12% in the value of the MISE with respect to what we obtain if

the correct jx ¼ 1:375 is selected. The relatively small error introduced by the data-driven

choice of jx is positive evidence of both the applicability of the method and the robustness

of the wavelet conditional quantile estimator with respect to the choice of the resolution

level. Unreported results show that in most cases, the plot of the MISE against the

resolution level jx gives a somewhat flatter curve than the one that can be obtained by a

kernel estimator. We think that this robustness feature of the wavelet method can be

explained by the choice of the dual basis function used to construct the estimator; see

equation (4.7). For the kernel estimator there is the classical variance–bias trade-off. The

quartic kernel function becomes narrower and hence more variable as the bandwidth

decreases. The wavelet estimator takes advantage of using non-orthogonal basis functions.

In fact, when increasing the resolution level jx only the primal scaling function j jk(x)

behaves as a kernel of higher order (such as the quartic one). However, the dual scaling

function ~jj jk(x), a boxcar (Haar) function used to construct the coefficients in the

reconstruction (4.7), suffers less from increasing variability on finer levels. A boxcar

function used to construct the local average assigns equal weights to all observations. This

slightly undersmoothed one in the symmetric case. Choosing
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tends to be numerically more stable than a local average provided by a higher-order scaling

function or a kernel of higher order. This is likely to dampen the increase in numerical

variability of the wavelet estimator compared to the kernel estimator.

6. Conclusion

In this paper we have further developed the Dechevsky–Penev approach of constructing

shape-preserving nonparametric estimators of probabilistic functions (cdfs and pdfs). The

wavelet methodology, tailored to reconstruct functions with low spatial regularity, has been

extended to higher dimensions and to serially dependent data. In contrast to existing work,

this approach does not need to use pre- or post-processors applied to traditional wavelet

estimators in order to make them positive and integrating to one for pdf estimation, and

monotone for cdf estimation. We have investigated and defined appropriate norms of

convergence, and we have derived rates of consistency for our estimators in these norms.

We have applied our general methodology to the specific problem of conditional quantile

estimation for dependent data in financial time series analysis. This has required us to treat

the specific situation of the intertwining of a cdf component and a pdf component in a

curve estimation set-up, and to face and solve the technical difficulties of this

nonparametric framework. Last but not least, we have designed tractable algorithms relying

on B-splines in that context.

Our method is still linear, and some words of comparison with both linear kernel

estimation and nonlinear wavelet estimation are in order here. First, our linear wavelet

estimators are performing uniformly not worse than kernel estimators. This means that they

offer advantages for some functions with local structure without losing performance for

smoother functions. Second, they provide a starting point for more flexible constructions.

Indeed, we have more options to adapt the construction of the estimator to the situation at

hand with our non-orthogonal wavelets (scaling functions). We have seen, for instance, that

computing the empirical inner products boils down to counting the number of observations

falling in a given interval. Furthermore, primal and dual bases are not as tightly related as

in a bi-orthogonal set-up. To meet the moment conditions a change in the primal scaling

function to obtain smoother reconstructions only requires a change in the support of the

indicator function used as dual basis. Linear wavelet methods have already shown their

practical interest in empirical analysis. Lee and Hong (2001) find that even linear wavelet

methods capture irregularities in the spectral density better than kernel methods.

We have to acknowledge that the real strength of wavelet estimators shows up when it

comes to nonlinear estimators, that is, threshold estimators. Presently it is not clear how to

design a neat methodology to maintain the shape-preserving property of the resulting

wavelet threshold estimator. Simply deleting the non-significant empirical wavelet coeffi-

cients at ‘arbitrary’ locations destroys this property. We believe that the ‘zero-tree’ wavelet

estimators of Shapiro (1993) could be an interesting avenue for future research in that

respect. This construction keeps a group of empirical wavelet coefficients at a specific

location and scale together with all ‘coarser scale parents’ at the same location over all

coarser scales. This yields a kind of ‘locally linear’ complete reconstruction structure.
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However, how to construct the wavelet functions is not clear in this non-orthogonal set-up.

We think that one possibility is to follow the general device of Cohen (2003) to extend our

work.

To conclude, we again summarize the points of methodological interest:

1. Our method can be applied to probabilistic functions belonging to a large variety

of smoothness classes, and, in particular, to specific classes of non-smooth

functions.

2. The wavelet estimators are shape-preserving (but not shape-imposing). Wavelets

of this type are well suited for applications in many fields of statistics in which a

shape restriction exists on the function to be estimated. The extension of

Dechevsky–Penev set-up (Section 3) to a multivariate setting is therefore of

theoretical interest beyond the application we have investigated in this work.

3. Considerable flexibility is allowed in choosing the wavelet bases, which implies

clear computational advantages.

Appendix A. Proofs for Section 4

Proof of Lemma 2. We will bound from above the quantity

Ej(F)(x, y)¼� Aj(F)(x, y)� F(x, y),

through the use of the intermediate approximation F�,h by Steklov means (see Appendix C).

Then from the linearity of A(F)(x, y) and from Minkowsky inequality we obtain:

sup
y

kEj(F)(�, y)k p ¼ sup
y

kAj(F)(�, y)� F(�, y)k p

¼ sup
y

kAj(F � F�,h)� (F � F�,h)þ Aj(F�,h)� F�,hk p (A:1)

< sup
y

kEj(F � F�,h)k p þ sup
y

kEj(F�,h)k p:

By taking advantage of the properties relating Steklov means to moduli of smoothness, we

bound the two terms of the right-hand side of inequality (A.1) separately. For the first term,

following the details given in Cosma et al. (2005), application of property (C.1) of the

Steklov means to g(x, y)¼� F(x, y)� F�,h(x, y), with � ¼ 2 and h ¼ (21� j1 , 21� j2 ), gives

sup
y

kEj(g(�, y))k p < �2a2
4= pþ2a2= pk ~jjk p9kjk1sup

y

sup
i2R2

sup
0,�,1

k˜2
i�(21� j� a)F(�, y)k p, (A:2)

where j� solves the equation (21� j�)2 ¼ (21� j1 )2 þ (21� j2 )2.

Studying the second term of (A.1) – that is, the approximation of the Steklov mean F�,h

– we assume that F�,h has almost everywhere partial and mixed derivatives up to the

second order. Using a second-order Taylor expansion with an integral remainder, properties

(2.5) and (2.7), the Minkowsky (generalized) inequality and property (C.2), we obtain the

upper bound (see Cosma et al. 2005)
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sup
y

kEj(g(�, y))k p

<
c1

2a
k�x(2

j1 �)k1 sup
y

ø1
ex
(F(�, y), 21� j1 a) p þ k� y(2

j2 �)k1sup
y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p

( )

þ a2= p�2a2
4= p�1k ~jjkL p9

kjk12c2

� sup
y

ø1
ex
(F(�, y), 21� j1 a) p þ sup

y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p

( )

þ a2= p�2a2
4= p�1k ~jjkL p9

kjk1c2 � sup
y

ø2
ex
(g(�, y)) p þ sup

y

sup
0,�,1

k˜2
e y��(21� j2 a)F(�, y)k p

( )
,

(A:3)

where c1 and c2 are constants not depending on j ¼ ( j1, j2). For an explicit expression for c1
and c2 see the detail of the proof in Appendix B of Cosma et al. (2005). We can now put

together (A.2) and (A.3) to obtain a final bound for the approximation error:

sup
y

kAj(F)(�, y)� F(�, y)k p

< c91 k�x(2
j1 �)k1 sup

y

ø1
ex
(F(�, y), 21� j1 a) p þ k� y(2

j2 �)k1 sup
y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p

( )

þ c92k ~jjkL p9
kjk1 � sup

y

ø1
ex
(F(�, y), 21� j1 a) p þ sup

y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p

( )

þ c 02 � sup
y

ø2
ex
(F(�, y)) p þ sup

y

sup
0,�,1

k˜2
e y��(21� j2 a)F(�, y)k p

( )

þ c-2k ~jjk p9kjk1 sup
y

sup
i2R2

sup
0,�,1

k˜2
i�(21� j� a)F(�, y)k p,

where the expressions for the constants can easily be made explicit by comparing (A.2), (A.3)

and (A.4). Finally, (A.4) can be further simplified. Simple algebra (i.e. adding and subtracting

F(x þ 2s, y þ t)) leads to the inequality

sup
0,�,1

k˜2
i�(21� j� a)F(�, y)k p < 2 � sup

y

sup
0,�,1

k˜e y�(21� j2 a)F(�, y)k p þ sup
y

ø2
ex
(F(�, y)) p:

h

Proof of Lemma 3. We have to find an upper bound for the quantity

kÂA
(T )
j (F)(�, y)� EÂA

(T )
j (F)(�, y)jL p(Lq)k ¼ k(EjÂA(T )

j (F)(�, y)� Aj(F)(�, y)jq)1=qk p, (A:5)
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and start by expressing the estimator ÂA
(T )
j (F)(x, y) as

ÂA
(T)
j (F)(x, y) ¼

X
k2Z2

h dF, ~jjjkF, ~jjjkijjk(x, y)

¼
X
k2Z2

XT

t¼1

2� j2=2
~jj j1 k1 (X t)

T
� ~jj j1 k1 (X t) ~��(2 j2 Yt � k2)

T

 !
jjk(x, y) (A:6)

¼ 1

T

XT

t¼1

X
k2Z2

h dF, ~jjjkF, ~jjjki tjjk(x, y) ¼ 1

T

XT

t¼1

ÂAj, t(F)(x, y):

Then we determine the pointwise variance for the stochastic variable

Z t(x, y)¼� ÂAj, t( f )(x, y)� Aj(F)(x, y), (A:7)

which satisfies jZj < 2 � 2 j1 since both ÂAj( f ) and Aj(F) are smaller than 2 j1 , and also

EZ ¼ 0. With q < 2, by a stationarity argument and a convexity argument,

EjÂA(T )
j (x, y)� Aj(x, y)jq ¼ E

����X
t

Z t(x, y)

T

����q <
1

T q
E
X

t

Z t(x, y)

 !2
24 35q=2

¼ 1

T q

XT

t¼1

E(Z2
t (x, y))þ 2

XT
¼1

(T � p)E(ZT (x, y)ZT� p(x, y))

" #q=2

:

Taking the L p norm with respect to x and the supremum with respect to y, we obtain

sup
y

kÂA
(T)
j (F)(�, y)� EÂA

(T)
j (F)(�, y)jL p(Lq)kr

< sup
y

1

T r

�����XT

t¼1

E(Z2
t (�, y))

�����
r=2

p=2

þ
�����2T

XT�1

p¼1

1� p

T

� �
E(ZT (�, y)ZT� p(�, y))

�����
r=2

p=2

8<:
9=; (A:8)

¼� V0 þ V1:

The first summand of (A.8), which we refer to as V0, is the only term in the i.i.d. case. V1 is

the additional term obtained by estimating ÂA
(T)
j from serially dependent data. We next give a

sketch of the treatment of both terms V0 and V1; for all the details we refer to Cosma et al.

(2005).

Taking V0 first, we introduce as variance of Z, for a fixed (x, y),

	 2(x, y) ¼ E[ÂA
(T )
j (F)(x, y)]2 � Aj(F)(x, y)2

¼
X
k2Z2

X
l2Z2

[E(h dF, ~jjjkF, ~jjjkih dF, ~jjjlF, ~jjjli)� hF, ~jjjkihF, ~jjjli]jjk(x, y)jjl(x, y): (A:9)

p

�1
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The idea is to control each term in square brackets of the last equation, that is,

˜j;kl ¼
�
E(h dF, ~jjjkF, ~jjjkih dF, ~jjjlF, ~jjjli)� hF, ~jjjkihF, ~jjjli

¼ 2� j2 cov( ~jj j1 k1 (S), ~jj j1 l1 (S))þ cov( ~jj j1 k1 (S), ~jj j1 l1 (S)
~��(2 j2 T � l2))

	
þ cov( ~jj j1 k1 (S)

~��(2 j2 T � k2), ~jj j1 l1 (S))þ cov( ~jj j1 k1 (S)
~��(2 j2 T � k2), ~jj j1 l1 (S)

~��(2 j2 T � l2))


,

(A:10)

where S and T are used to denote two random variables drawn from a bivariate cdf

FS,T (S, T ), corresponding to the empirical inner product of (A.6) formally taken at sample

size T ¼ 1.

Let us study each of the four terms separately. The first term is a one-dimensional term

which has already been studied in Dechevsky and Penev (1998). By using integration by

variance

	 2(x, y) ¼
X
k2Z2

X
l2Z2

˜j;kljjk(x, y)jjl(x, y) < sup
kl

j˜j;klj
X
k2Z2

X
l2Z2

jjk(x, y)jjl(x, y)

¼: 2 j1˜(x, y), (A:11)

where the latter definition will now be used in the following estimate (we refer again to

Cosma et al. 2005 for all the lengthy details):

sup
y

1

T r

�����XT

i¼1

E(Z2
i )

�����
r=2

p=2

< sup
y

T �r=2
ð
R

dx(	 2(x, y)

� � p=2(2= p)�(r=2)
< sup

y

2 j1

T

� �r=2

k˜(�, y)kr=2
p=2:

(A:12)

When taking the L p norm in (A.12), the terms contained in ˜(x, y) will be controlled

by the modulus of smoothness in the x direction of F(x, y). We recall that

ø1
ex
( f , h) p < sup y ø1

ex
(F(�, y), h) p. The terms containing F(x, y)� F(s, t) can be split into

two terms by adding �F(x, t) and we obtain one increment in the x direction and one in the

y direction. The increments in the x direction F(x, t)� F(s, t) are controlled by the modulus

ø1
ex
(F(�, y), h) p, while the increments in the y direction F(x, y)� F(x, t) can be controlled

by k f (�, y)k p through the inequality sup y supj tj,hk˜e y, t F(�, y)k p < h sup yk f (�, y)k p. Sub-

stituting the explicit expression for ˜(x, y) using the Minkowsky generalized inequality and

the properties of the moduli of smoothness gives

1

T r

�����XT

t¼1

E(Z2
i )

�����
r=2

p=2

<
2 j1

T

� �r=2

(d1k f (�, y)kr=2
p=2 þ d2(a)ø

1
ex
( f (�, y), 21� j1 a)

r=2
p=2): (A:13)

To choose the value of r as a function of p and q, we refer to Appendix D. In (A.13) the

parameter q is absent, and the parameter p appears through the L p=2 norm of the quantity

˜(x, y), so that an adequate choice is such that

parts we can rewrite the remaining three in terms of the moduli of smoothness, and thus

bound the
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r�
2

¼ 1

1þ log2(c p)
¼ 1

1þ log2(maxf1, 22= p�1g)

¼ 1

1þ (maxf0, 2=p � 1g) ¼
1

maxf1, 2=pg ¼ minfp=2, 1g,

where c p is constant in the quasi-triangular inequality; see again Appendix D. Since f 2 L1

for any density, we can give a more general expression for (A.13):

sup
y

1

T r�

�����XT

t¼1

E(Z2(�, y))

�����
r�=2

p=2

< sup
y

2 j1

T

� �r�=2
(d1 maxfk f (�, y)k1, k f (�, y)k p=2gr

�=2

þ d2(a) maxfø1
ex
( f (�, y), 21� j1 a)1, ø

1
ex
( f (�, y), 21� j1 a) p=2gr

�=2): (A:14)

The condition, for 1 , p , 2, that

sup
y

sup
0< t<h

ðþ1

�1
dx

ð1
0

dÆ f (x þ Æt, y)

� � p=2

, þ1,

ensures that the modulus øº( f , h) ! h!0 0 even if º , 1. The proof is given by Dechevsky

and Penev (1998).

Turning to the covariance part V1 of (A.8), we split the summation into two parts:

sup
y

T �r=2

�����XT
p¼1

1� p

T

� �
EjZT (�, y)ZT� p(�, y)j
� ������

r=2

p=2

< sup
y

1

T r=2

�����XnT

p¼1

1� p

T

� �
(EjZT ZT� pj)

�����
r=2

p=2

þ sup
y

1

T r=2

�����X
p¼ 1

1� p

T

� �
(EjZT ZT� pj)

�����
r=2

p=2

¼� S1 þ S2: (A:15)

Here the explicit dependence of Z(x, y) on (x, y) is omitted for readability.

To gauge S1 we apply Assumption 1 and obtain the bound

jcov(ZT (x, y), ZT� p(x, y))j < M(EjZ t(x, y)j)2:

Elementary calculations to bound EjZ t(x, y)j (see Cosma et al. 2005) lead to

S1 < M
nT

T

� �r=2
sup

y

ø1
ex
( f (�, y), 21� j1 a)rp þ k f (�, y)krpg ¼ O

nT

T

� �r=2
:

�
(A:16)

For the term S2 in (A.15) we use Æ-mixing properties. Davydov’s inequality and stationarity

give, for r . 2,

�1

nTþ

T�1
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���� XT

p¼nTþ1

1� p

T

� �
cov(ZT (x, y), ZT� p(x, y))

���� < XT

p¼nTþ1

2
r

r � 2
(2Æ( p))1�1=r(EjZ t(x, y)jr)2=r:

(A:17)

Since r . 2 and since jZ t(x)j , 2 j1 uniformly in x, EjZjr < 2 j1�(r�2)EZ t(x, y)2, so that the

right-hand side of (A.17) can be bounded by

Cr � 22(r�2)=r j1 (	 2(x, y))2=r
XT

p¼nTþ1

Æ( p)1�1=r ¼ Cr � 22(r�2)=r j122=r j1˜(x, y)2=r
XT

p¼nTþ1

Æ( p)1�1=r

¼� Cr � 22(r�1)=rj1˜(x, y)2=rS9T (nT ):

We eventually find the following bound for S2:

S2 <
~CCr

T �r=2
(22(r�1)=r j1 S9T (nT ))

r=2 sup
y

k˜(�, y)kr=r

p=r
, (A:18)

with ~CCr obtained by collecting all terms not depending on j1 and T .

To conclude the proof of Lemma 3, we compare the asymptotic behaviour of V0 and S2.

S2

(2 j1=T )r=2
¼ ~CC9r

(22(r�1)=r j1 S9T (nT ))
r=2

2 j1�r=2
¼ ~CC9r

22(r�1)=r j1 S9T (nT )

2 j1

� �r=2

¼ 2(r�2)=r j1 S9T (nT )
� �

r=2:

We observe that the ratio will tend to zero if S9T (nT ) ¼ O(2�((r�2)=rþ�) j1 ) with � . 0, so,

since, by (4.4), S9T (nT ) ¼ O(n�1
T ), we need to impose nT ¼ O(2(r�2)=rþ�) j1 ). In order to have

S1=V0 ! 0 as T ! 1, nT is constrained by (A.16) to grow such that nT=2
j1 !T 0, that is,

nT ¼ O(2 j1(1�Ł)), with Ł . 0. Since r . 2, 0 , (r � 2)=r , 1, we can choose a � such that

(r � 2)=r þ � , 1, that is, 0 , � , 2=r , 1, and a Ł ¼ 1� (r � 2)=r � �, that both satisfy

the conditions for S1=V0, S2=V0 ! 0 simultaneously as T ! 1. h

Appendix B. Proof for Section 5

Proof of Theorem 2. As seen in equation (5.3), we can write

Q̂Q( p, �)� Q( p, �) ¼ 1

~ff Q̂Q,Q(�)

F(�, Q̂Q( p, �))

f (�)
� F̂F(�, Q̂Q( p, �))

f̂f (�)

( )

¼ 1

B(�) � ~ff Q̂Q,Q(�)
fF(�, Q̂Q( p, �))

� F̂F(�, Q̂Q( p, �))g � A(�)

B2(�) � ~ff Q̂Q,Q(�)
f f (�)� f̂f (�)g,

where we have used the mean value theorem for the function u=v in the two variables

u ¼ F̂F(�, Q̂Q( p, �)) and v ¼ f̂f (�) with mean values jB(�)� f (�)j < j f (�)� f̂f (�)j and
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jA(�)� F(�, Q̂Q( p, �))j < jF(�, Q̂Q(p, �))� F̂F(�, Q̂Q(p, �))j. The above equality is true for

pointwise deviations f (�)� f̂f (�), F(�, Q̂Q( p, �))� F̂F(�, Q̂Q( p, �)). Taking the Lq expectation

on both sides, we have

EjQ̂Q( p, x)� Q(p, x)jq <
1

~ff Q̂Q,Q(x)
q
E

���� F(x, Q̂Q)� F̂F(x, Q̂Q)

B(x)
� A(x)

B(x)2
( f (x)� f̂f (x))

����q:
Then we take the norm in a neighbourhood J ¼� fxj[�� x] , 21� j1 ag,

kQ̂Q(p, �) � Q( p, )jL p(Lq)krJ ¼ k(EjQ̂Q( p, �)� Q( p, �)jq)1=qkrJ

<
1gf Q̂Q,Q(�)f Q̂Q,Q(�)
gB(�)B(�)

sup
y

kF(�, y)� F̂F(�, y)jL p(Lq)krJ

þ
gA(�)A(�)gf Q̂Q,Q(�)f Q̂Q,Q(�)
gB(�)B(�)2

k f (�)� f̂f (�)jL p(Lq)krJ ,

where A(�) < gA(�)A(�) in J , ~ff Q̂Q,Q(�) >
gf Q̂Q,Q(�)f Q̂Q,Q(�) and B(x) > gB(�)B(�) in J .

The two norms in the last inequality are bounded by expressions identical to the right-

hand side of (5.4), but with ø�( f , 21� j1 a)L p(J ) instead of ø�( f , 21� j1 a)L p(R). The result

of Theorem 2 follows immediately by remarking that ø�( f , 21� j1 a)L p(J ) <

ø�( f , 21� j1 a)L p(R). h

Appendix C. Steklov means

For g 2 L1,loc, � 2 N, 0 , h , 1, the Steklov function (Steklov mean) g�,h of a function

in one variable is defined by:

g�,h(x) ¼ (�h)

ð h

0

� � �
ð h

0

� � �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�

X��1

�¼0

(�1)��1 �
�

� �
g x þ �� �

�

X�
º¼0

Łº

 !" #
dŁ1 � � � dŁ�:

Steklov functions g�,h are related to g, and to the moduli of smoothness ø�(g, t) p, by

kg � g�,hk p < ø�(g, h) p, kg
(�)
�,hk p < c�,�h��ø�(g, h) p, � ¼ 1, 2, . . . , �,

where c�,� are positive constants. There exist explicit estimates from above for these

constants. For more details see, for instance, Petrushev and Popov (1987).

For functions of two variables we can define an analogous function,

�
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g�,h(x, y) ¼ (�hx h y)

ð hx

0

� � �
ð hx

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

ð h y

0

� � �
ð h y

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

dŁx
1 � � � dŁx

� dŁ
y
1 � � � dŁ y

�

X��1

�¼0

(�1)��1 �
�

� �
g x þ �� �

�

X�
º¼1
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with the properties

kg � g�,hk p < sup
i2R2

ø�
i (g, h) p, (C:1)����� @� g�,h

@x�i

����� < c�,�h��ø�
ei
(g, h) p, � ¼ 1, 2, . . . , �: (C:2)

Appendix D. Properties of the space L pðLqÞ
In Section 3 we introduced the space L p(Lq). Recall that the triangular inequality holds

with kg þ hkA < cA(kgkA þ khkA), cA > 1. For 1 < p, q < 1 L p(Lq) is a Banach

space, while for 0 , p , 1 and/or 0 , q , 1 the constant is cA ¼ c pcq ¼
maxf1, 2(1= p)�1g �maxf1, 2(1=q)�1g. If A is a quasi-normed space, then Ar, defined as

fg 2 A, kgkAr ¼ kgkrAg, is a 1-quasi-normed space – that is, cA ¼ 1, with

r ¼ 1=[1þ log2(cA)]. Now, L p(Lq)
r is a Banach space for r such that

1=r ¼ maxf1, 1=p, 1=q, 1=p þ 1=q � 1g. Finally, we note that for p ¼ q, the norm

coincides with the usual L p-risk, that is, Ek � k p.
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at Université de Genève and Université Catholique de Louvain, as well as participants of

the WCES 2005 London conference and the EMS 2005 Oslo conference for helpful

comments.

Multivariate wavelet-based shape-preserving estimation 327



Cosma, A., von Sachs, R. and Scaillet, O. (2005) Multivariate wavelet-based shape preserving

estimation for dependent observations. Discussion Paper 0516, Institut de Statistique, Université
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