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This paper considers the estimation of the density of an absolutely continuous distribution with respect
to an unknown baseline distribution F, and the estimation of F, from censored observations. For
parametric and nonparametric densities, an n'/2-consistent estimator of F is defined from the two
samples and the asymptotic distribution of the estimators is studied. The efficient score functions and
the minimal variances of the estimators are established.
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1. Introduction

Semi-parametric stratified models for censored variables are usually chosen when studying
populations stratified into homogeneous groups, as in case—control studies when the
assumption of a proportional hazards model is not satisfied. Here the model is a set of
absolutely continuous distributions. In the simplest case, there are two samples of positive
random variables in Ry, Xj,..., X, with distribution function Fj, in a set F, and
Xum+1, -+, X, with distribution function F,, absolutely continuous with respect to Fy, with
a density ¢o. The function @, belongs either to a parametric family {¢g; 6 € ©}, where the
parameter space © is a subset of R”, or to a nonparametric space of continuous functions
®. The model extends to K homogeneous groups, each having a distribution absolutely
continuous with respect to the unknown nonparametric distribution of one of them. The
general distribution is a mixture of several distributions ) ;a;F,, where the distribution
functions F,, are absolutely continuous with respect to F, the distribution of the first
sample, and the other ones have mixture distributions with parametric or nonparametric
derivatives a,@y, with ¢ = dF,,/dF, 1 <k < K. In the following, K =2 but all the
results obviously extend in an obvious way to larger values.

The wvariables X, ..., X, may be right-censored by independent and identically
distributed variables Ci, ..., C,, respectively, with distribution G, independent of
X1, ..., X, and non-informative for a, ¢ and F. The observed variables are the censored
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Censored variables in two-sample models 93

variables 7; = X; A C;, the censoring indicator 0; = l;y,<c,} and a group indicator. The
problem is to estimate the parameter 6y or ¢¢ and the distribution function F, from the
censored variables in the semi-parametric model Prg ={(F,60); FcF,0¢c0O,
Jo @odF =1} or in the nonparametric model Pro ={(F,¢); F€F, pcd,
Jo. @dF = 1}. The distribution function G and the probabilities o and 1 — a are nuisance
parameters which are estimated independently of the parameters of interest since C is
independent of 7 and each individual belongs to a known subpopulation.

Estimation of the distributions of stratified populations, without censoring, has already
been studied, in particular by Anderson (1979) with a specific parametric form for ¢g, by
Gill et al. (1988) in biased sampling models with group distributions Jo wi dF, where the
weight functions are known, by Gilbert (2000) in biased sampling models with parametric
weight functions, and by Cheng and Chu (2004) with the Lebesgue measure and kernel
density estimators. Here, the uncensored problem may also be viewed as a special case of
the semi-parametric biased sampling model with W (0, F) = [ ¢@g, dF = 1. This integral
may also be considered as a real parameter without link to 6 and F, and all these models
are different parametrizations of similar problems.

Section 2 introduces notation and conditions. In Section 3, n!/2-consistent estimators of 6
and F are defined by an iterative procedure where the distribution function F is estimated
from the two samples, and their asymptotic distribution is studied. Similar results are
established in Section 4 for the nonparametric model Pr ¢, with the same approach as for
the nonparametric regression kernel estimators. Efficient estimators are defined in Section 5.

2. Notation and conditions

Let @o = g, be the true value of the density in models Prg or Pre. The observations
are the counting processes N(f) =0l(7<,, indicator of an uncensored variable X
before 7, Y() = 7=y, risk indicator at ¢, for =0, and p the sample indicator defined by
p =1 for individuals of the first sample and p = 0 for individuals of the second sample.
The density of a distribution function F is denoted by f, and the related survival function is
F =1~ F. The endpoints of the supports of the distributions F, G and H = 1 — FG are
denoted by tp, 76 and 7Ty respectively, and fo'(de has the same support as F. Let
n =mn(n) and ny = ny(n)=n—n; increasing with », such that lim,n 'n;(n) =
a=Pr(p=1)<1 in ]0,1[. For each sample, the maximum observed variable is
D = max;<;<, p;0;X; and ™ = max;<;<,(1 — p;)0,X;, and 7, = D A T,
The log-likelihood of the variables under both models is defined by

U, F)T, 0, p) = p{dlog f(T) + (1 — O)log F(T)} + {0 log G(T) + (1 — O)log g(T)}
+ (1 = p)o{log o(T) +log f(T)} + (1 — d)log F(T)], 2.1
with ¢ in @ or ¢ = @y, 6 in O.

Under censoring, the likelihood of the sample is conveniently and equivalently written
using the hazard functions related to the distribution functions F and Fp,
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=22 = 7‘/’0%)({ )(’) .

F(1’
Denoting by A(?) = J"Ot A(y)dy the cumulative hazard function for F is equivalent to defining
A from F or F from A by the relationship F(¢) = exp{—A(#)} and Fq(t) = exp{—Ag(1)}
with Ag(1) = [; 2a(»)dy.

Let (F,) =, be the filtration defined by the o-algebras F, = 0{61{T§S}, lir<g,0 s s < t}.
Then the processes M(f) = N(¢) — fot YdA and My(t) = N(¢) — fot Y dAy are local square-
integrable martingales adapted to (F,),=9 under the probabilities associated with the
distribution functions F' and Fj, respectively. Let Ag and Ag, be the cumulative hazard
functions related to the true distribution functions Fy and Fj,.

From the observations write, for the first sample,

NOW® =" pidilr=y and YOO =Y pilir=y
i=1 i=1

the number of uncensored variables observed before ¢ and the number of individuals at risk
at time ¢ respectively, and, for the second sample,

n

NP®) =" (1= p)dil(r=y.

i=1

YR = (1= p)l(z=y
i=1

N0 =" (1= p)(1 = 8=y
i=1

Lemma 1.

n N — aJ GdFy| 2, 0, |0 YD — aFyG)| 2, 0,
0

PN — (1 - a)J 0oGdFy| L, 0, |01 Y® — (1 — @)F,, G| 2, 0,
0

nING — (1 —a)J Fo, dG| 2, 0.
0
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In the semi-parametric model, densities with respect to F satisfy the condition
J 9o dF =1 and multiplicative constants of ¢y are identified; conversely, if a multiplicative
constant is omitted from the expression of the density, it is deduced from the dominating
distribution F by this condition. Let

(o.¢]

w0, F)T, 8, p) = (1 — p)|dlog pe(T) + (1 — 6)logJ 00 dFO] 2.2)

T

The following conditions are assumed to be satisfied:

(C1) The parameter 6y belongs to the interior of a compact and convex set ® and its
closure does not contain the constants.

(Cy)  For, every F in F, _tge_2 integrals J"F;OZC_;’I dFo,  [(¢a,0q) > G dFy,,
J(Fo,Fy, )*2Fg,dG and [ F,"F,G 'dF, are finite, for every 6 in ©.

(C3) The function @g is twice continuously differentiable with respect to 6, with
derivatives ¢y and @y, which satisfy

J sup{log(¢e)G dFy, + log(Fp) Fy, dG}* < oo,
0 0O

and the matrix

®2

T ] TN T
S0) = (1 —a) J{(—B> ——"}GdFeoJrJ - . Fy, dG
o o 0 J Qg dFy J Qg dFy

is finite and positive definite.

Remark. Let ug = log pg, o = ugpe and Qg = tigpe + u(z,(pg and the conditions are easily
written in exponential models. In the model where the log-likelihood is written 0, + 0, r with
r a known function and exp{—6;} = [ exp{6,r}dF,, the derivatives of ug = 6,r —
log J"OC e®” dF, with respect to 6, are

ﬂg =r — Eel"(X), iig = —vargr(X).

The matrix
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00 ®2 00
o J g dFg J (iip + 1) dFy

(@) = ( ) , o wt 7 7 o

=(1—-a) -Vargr(X)Pgo(é =1+ J:C {Ea(r(X)|X > x) — Egr(X)}* Fg,(x) dG(x)

—JOQ {Eg(rZ(X)|X > x) — 2Eg(r(X)|X > x)Egr(X) + Egl”z(X)}Fgo(x) dG(x)
0

= (1 — a)Eg,[0 vargr(X) — (1 — O)varg(r(X)| X > C)]

is finite if Eg{r(7T)}* <oo and positive definite under the condition that
Eg,0 vargr(X) > Eg,{(1 — d)varg(r(X)|X > C)}. The other condition of (C3) is satisfied if
Eg, suppco{r(X)}? < cc.

In the nonparametric model, we assume that the following conditions are satisfied instead
of (Cy):

(C1) The space of functions @ does not contain 1.

(C3) The kernel K is a positive, continuous and symmetric function on [—1, 1] such
that [ K(f)dr =1 and [|dK(7)] < oo, [K'(f)dt < oo for r =0, the bandwidth
h, tends to 0 with nh’> — oo and nh> — 0.

(C3) For every (F, ¢) in Pro, F and ¢ have continuous derivatives of order 3 and 2,
respectively.

Let k1 = [ K*(1)dt and K, = [ 2 K(t)dt.

3. Estimation for the semi-parametric model

3.1. Definition of the estimators

With censored variables, the likelihood cannot be factorized as in models studied in van der
Vaart (1988), and the parameters 6 and F must be estimated jointly. Due to the integral in
the last term (1 — p)(1 — J)log f;c @odF of the log-likelihood, there is no simple and
explicit expression for their maximum likelihood estimator. Though the observations of the
first sample are not sufficient for an efficient estimation of F, a first estimator of the
unknown distribution function is defined from this sample by the product-limit estimator
FO() =1 —T] r,={1 = 0YD(T))"'} and is introduced in (2.2) for the estimation of 6.
Let

n

Ku(0) = v, FO)T;, 65, pi). (3.1)

i=1
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An estimator 6, of 6 is obtained by maximization of K,, and the normalizing constant

(f 9 dF)~" of the density is estimated by (] ®g, dF(y-1,
If 6 were known, Fy could be estimated from the first sample by

Foolt) = J oo dFD. (3.2)
Let ﬁ;l) =1- F(nl), ﬁn,e =1- ﬁ'n,e and
YO0 = YO Foo(0} ' FV(1),  0<t<1, (3.3)

from the consistency of the Kaplan—Meier estimator F, 71 on [0, 7], 'y 2 )0 converges to
(1 — a)FyG on this interval. A global estimator of Ag based on the two samples is deduced
as

R tdNSD) 4 AN
A, (D) = L ) 3.4
n n,0,
Finally, a product-limit estimator of F| is based on A, given in (3.4),
Fu(t)= [J{1 - dAu(T)} (3.5)

Ti<t

and the probability o is estimated by a, = n‘lzipi.

Remark. The estimators may be numerically improved by iterations of this procedure in the
following way. In step 1, let F,o = F,’ the estimator of Fy from the first sample and
0,0 = 6, that maximizes K,(0, F,0) = K,(0) given by (3. 1); then a second estimator of Fo
is F,y = F,4,, defined from the n-sample by Ane 0Fp = =A, in (34)and by F,; = F,,Ano
with (3.5). In step k, 6, is the estimator that maximizes K,(6, F, s—1) given by (3.1),
A=A is defined by (3.4) and F,; = F,,,AM is defined (3.5).

1,0, k-1, Fn k-1

3.2. Weak convergence of the estimators

The convergence of 6,, A, and F (equatlons (3.1), (3.4) and (3.5) is related to the
behaviour of the estimators Y% np and an given by (3.2) and (3.3). The proof of the
consistency of 6, relies on the umform convergence of n~'K,(6) to a concave function in a
subset of ® containing 6. These convergences are used to study the asymptotic properties
of the Kaplan—Meier estimator. For a function u on Ry, let ||u||, = supseqo,q |u(s)| if t < oo
and ||u|| = sup,cr, |u(s)|. The derivatives of K,(0) are
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) J o dF)
Ka0)=Y(1-p{ o ")9<T>+(1 —0)) : (3.6)
i=1 J cpng(l)
n [ . . ®2
K@= (1-p) 61{@@)— (ﬁ) (T,»)} (3.7
=1 Po Po

and the limits of n 'K, and n~ 'K, are expressed as functions of the limits of n~'Y’ % and
71 i)
n~ K,(0),

Yoty = (1 — FH(()) Fo()G(),

K(G):(l—a){J log(J gongo) C_?ngo—FJ logﬁgfgodG}.
0 : 0

Lemma 2. Under (C;), the variables Supge@Han—F@H <1> and supgeo||n” 1Y() vollz,
converge in probability to zero as n — oco. Moreover, sup9€@||A,19 Aoz converges in
probability to zero for every 0 <1 < Tph.

Proof. From Gill (1983), the Kaplan—Meier estimator of F is such that ||I§'(nl)(t) — Fo(9)|,0
converge in probability to zero. Let 0 < 7 < 7y, 7 > 0; and & > 0; by the continuity of the
function 6 — @g uniformly on [0, ), the compact closure of ® may be covered by a finite
number K of balls with radius &', ©®; with centres 64, k=1,..., K, such that

suppco, [P0 — @o, |, =< (8K) 'ne and

P(wwﬁw—mu>n)
0cO

=) {PT<SUP 1Fno — Fo — (Fuo, — Fo)ll: > > JrPf(HFn o — Fo.ll- > g)}

k<K 0cO

4K
<7%WM—%M+ZHWM mm—ﬁ,

k<K

where the first sum on the right-hand side is smaller than &/2. For the second term,
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the representation £V — Fy = F, Jo I?’(nl)f(ﬁo YID)y=TdMD, where MV = N — [/ YD dA,,
implies

PO amp O
ek) FO Y(nl) >

t
Fn,ek(o—Fek(t):Fo(’)Jo"’”k Ry Y9

and supgpeo||Fno — Fol|l: converges in probability to zero, for every 7 <7ty As Fp is
bounded, this uniform convergence extends to the convergence of sup(;e@”F o — Fol| . The
convergence to zero of supgeel|ln” IY(nL yoll-, is then a consequence of the uniform
convergence of 7~ Y(2> to (1 — a)Fy, G. The result for A,,g is deduced by the d-method.
O

Proposition 1. Under (C)—(C3), the estimator 6, converges in probability to 0.

Proof. By Lemma 2, n 'K, converges uniformly on © to the function K with derivatives

00
oo - OOJ (pedFO

K(@):(l—a) J @gogo(_;dF()-i-J 'OoiﬁgodG s
0o Po 0 J @0 dF,

K(6) = —X(0).

K6y = (1 — 0(){[0 ¢o,GdF, + Io FgodG} = 0 since FyG is maximal at the true parameter
value 6. Under the integrability conditions, the empirical matrix =, = —n~'K,, converges in
probability to X (defined in (C3)),, uniformly on ®, by the uniform convergence of the
Kaplan—Meier estimator and of F,y to Fy and Fp, (Lemma 2), and by the uniform
convergence of the processes N(nz) and N(,f) (Lemma 1). Since K(6) is a positive definite
matrix, the function K is strictly concave in a subset of ® containing 6y, with a maximum at
6. These results imply the consistency of 6,,. ([

Proposition 2. ||F, — Fy|l;, and |A, — Aq|., for every T < t,, converge in probability to 0,
and j ®g, dF, converges in probability to 1.

Proof. By Proposition 1 and the continuity of ¢y with respect to 6, [|¢g — ¢g, |-, converges
in probability to 0 and, by Lemma 2, ||Y e 1 - a)FoG||;, converges in probability to
0. The con51stency of A, then follows from the weak convergence to zero of
sup,[n(ND() + [; @5t ANP) — [ GdFy|. Since 7, tends to 7, the last result is a con-
sequence of the weak convergence to zero of F,(7,) and [[¢y — ¢gllr,. O

SNt

Let Ko(s, 1) = aFo(s)Fo(t) [;' Fy?G~'dFy be the covariance of the process Wp,, the
limit of W, f, is nl/z(F(l) Fy), and
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00 ®2
.y @2 @g, dFo 2
_ o _ 1—
Vo = (1 - a) J{q’—"} GngO—i—J _ FgOdG—&-%
©o, J 06, dFy ([ @a, dFo)
_ 00 J (/)GodFO _ ooj QbGOdFO
XJ Po,(5)G(s) + J = dG P, (G(1) + (pgo(t)J = dG »dKy(s, 1) |-
’ J ¢g, dFy ! J ¢g, dFo

Proposition 3. nl/z(én — 60y) converges weakly to a centred Gaussian variable Ny with
variance Q = {Z(60)} ' Vo{Z(60)} .

Proof. Let U, = n"'?K,(6y) and Z,(0) = —n 'K, defined in (C3). By the mean value
theorem, the asymptotic normality of n'/ 2(9,, — 6y) is obtained from the weak convergence of
U, and from the convergence in probability of X,(6,) to Z(6y) for a sequence 0, between 6,
and én, converging to 6.

Let W, 5 = n"/2FD — Fy), v,(H)=n""2(NO() — (1 —a) [, GdFy) and v3,(t) =
n 2N - (1 — a) fot Fg,dG). From (3.6), [¢g,GdFy+ [(|” ¢9dFy)dG =0, there-
fore

. | goare . | ouar
U, = nfl/ZJ% dN® + n*‘”J J  4N® = J% dva, + J - dvs,
o o dF() o J o, dF)
00 (PO dﬁv(l) 00
1—a ) ‘ o n
J o, dFo ’ J Pa, dF(n]) ’
0 .

. pg, dF (D
[P0, J ?o, n
=|—=dv,+ | dv3,
@6 J P, dﬁ'(nl)

; * > dG
+(1 - a)J{ Wy, (J ®e, dFo) — Wk, (J P, dFO) } N E—
. . J 06 dF(nl)
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with Woar, = 1" (Fug, — Fo) = [y 0o, AW r, and Wrg = {Jo $00 AWy} X
{J}fo @9, dFy}~!. The variable U, converges weakly to a Gaussian variable by the weak
convergence of the independent processes (v,,, v3,) based on the second sample and
{J5(@0,> 90,) AW 5, J;~ ®6, dFo} ! based on the first sample. Therefore it may be written

Gg, dFV
dVSn
P, dF)

=
|
—
=
®
o
<
N
=
_|_
—_—
._g%

. G, dFo
+ (1 — (X)J Wn,Feo — Wﬂ,Feo -

= dG + o,(1)
J g, dFy

. po, dFD

B QDGU J (pe(] n

= |—dvy, + | Fo— dv3,
Pon J ®o, dﬁ‘(nl)

OOJ ¢90dF0

SN} P

4G SdW,m + 0,(1),.
J g, dFy
0

J ®o, dF()

The covariances of (v,,, v3,) are given by

SNt t

N
GdFg — (1 — a)zj GngOJ GdFy,,
0 0

Cals, 1) = cov(van(s), van(D) = (1 — a)J

0

SNt S t
Fg, dG — (1 — a)zj Fa, dGJ Fg, dG,
0 0

Cas, 1) = cov(vsa(s), van(D) = (1 — a)J

0
t

Cas(s, ) = cov(van(s), van(t)) = —(1 — a)2J C_;dFBOJ Fay G,
0 0

therefore
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o0

([) J (pgo dFy 00 -2 _ ®2
cov J ﬂ den, J —_— dV3n = —(1 — a)z{J Do, dF()} {J¢HU GdF()} R
0

@6 J g, dFy
B )
oo

. . ®2
Var(J Po dm) —(1- a)J{%} GdFy — (1 — a) —.
o o J ®o, dFO}

00 00 ®2 . ®2
¢90 dFy J ([)90 dFy {J([)QOGdFo}
var J Te————dvy, | = (1 — a)J T FgdG— (1 —a) —,
J ®a, dFy J P, dFy {J(ngdFo}
00 ®2
$o, dFo

. F . ®2 _ _
Var(J % 4y, — JF—G dV3,,) —(1-a) J{q’—@} GdFy, +J b F,dG
6 b o J ®o, dFo

and W, r, converges weakly to a Gaussian process W, with mean zero and covariance K.
O

Proposition 4. On every finite interval [0, 7] with T <1y, the process n'* (A, — Ag)
converges weakly to a centred Gaussian process given by

t 1 t J ¢00 dFO o
Wa(f) = J == {dMY + ¢ ' dMP} + (1 - a)NOJ s — T A dA(s)
0o FoG 0 0 (ors
g, dFYy

t J Po, d WFl)

Weg
+(1—a)J A LA,
o | Fo Fyg, ’

where MWD and M@ are independent centred Gaussian processes with independent
increments and variances o J"O FoGdAy and (1 — a) fo Fo,GdAg, and they are independent of
Wk, the limit of W, F,.

Proof. Let MV = NV — (FY(DdA, and M@ = N? — [ Y? dAg,. Then
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W) = n' Ay = Ao)(1)

t
1 )
— L ) (M + 0, AP + 05 YD dAg, — T2 AN},
n n0

where

(2) 2
o1 A0 Yo (o6 ) Fo Fo F
6 dAo y(2) @4, F Fou ﬁ.

o0 Fi
= _{J (@9 ©a,) dFo + J 1/ZdW/n,Fo} 7 2

1/2 Wn F() QD(% E

F, Fo,

00 F g F
= (0, — o) <J o, dFo) : —%_—0
. g F nd, (pén FOO

Fo
Fo,F 4

I/WFO

J PR -1/2 dW,.F, +
: n,é,,

with 6, between én and 6y and with

W (t) _ n]/2 Jf ﬁv(nl)(s_)dM(nl)(S)
nf o Fots) Y0(s)

The processes n~ (Y] 4 Y y ). ) and n1YC 2 converge uniformly, in probability, to FoG
and (1 — a)Fy,G, respectlvely n2(MD, M(z)) converges weakly to a centred Gaussian
process (MW, M@) with independent components and variance (a Jo FoGdA,,
1-a) jo Fg,GdAg,). The expression of the score variable U, in the proof of the previous
proposition ensures the joint convergence in distribution of n1/2(0 — ), Wur,

n (YD + 7% ) and n YD, 0

The weak convergence of n'/ 2(F, — Fy) on [0, r(nl)] follows by the representation of the
product-limit estimator under integrability conditions (Gill 1983).

4. Estimators for the nonparametric model
Let £ and f® denote the densities of F and F, such that f)(¢#) >0 for ¢ in ]0, 7r][,

j=1,2. In the nonparametric model, the distribution function F, of the second sample
may be estimated from the product-limit estimator by F (nz) =1-F (nz)’ and by
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t t R
Fuo) = | 0dP = =] paF). 4.1

For the estimation of the function ¢, let K is a symmetric kernel with support [—1, 1], %, a
bandwidth converging to 0 as » — oo and K,(¢) = h’lK(h’lt). For t in h,, T, — h,[, denote

79, (1 = J Ko (1 — $)dB9(s),
79 (1) = th,,(r — 9dFUs),

G, (1) = F0) (DL, (0}
Y2 (1) = YO F, (0} F (1)

and Y(nzjﬁ”. As h, — 0, A(h,) — 0 and F(h,) — 1, hence A and F may be estimated for
h, <t<t,— h, by

. R ©dND 4 ¢ 1 dND

Ay() =ANpg, (1) = J 1 L 1 (4.2)
" ¢ .

Fun= [ {1—dAxm}. (4.3)

h,<T;<t

Proposition 5. For every 0<7t1, <1, <7tp with 71 such that 0< fD(z)),

1@ni, = Pollwie 1 Fnp = Follmay 15, —(1 = @) Fp,Gollmp A0 — Aol ), and
|Fyw — Foll[e,r,) converge in probability to 0.

Proof. The consistency of ¢, , is a consequence of the uniform convergence of the product-
limit estimator and of the weak convergence of n'/2(F() — F()) on [ry, 7,], writing

- - OO ~ - -
17D = £ e = L K (1 — ) {dFD(s) — dFO(s)}

[71,72]

< sup j |F(s) = FO9)| |dKy, (t — 8)| + sup| K, | | F — FD|r,.2

tefr,12]1 JO
< 01} (supl 1+ [ 4K ) I F) PO
The other consistency results are proved as in Section 3. U

Proposition 6. On intervals 11, 2] such that 0 < t; < 1, < tp and 0 < fV()), the bias of
¢n,hn(t) is
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Bupy (D) = (Pup, — @i, 1) + O(nh,)™ ")

=2 fm(t) [o(OL VD) + 20 D DD} Tz + o),

its variance is
O, () = ()™ O} 2 [ var (£, (0} + (1 = @)~ g ovar{ £, (0}] + o))
with
var{ £/}, ()} = (n;h,) "k, %(rm +o(1)),

and its higher order moments are o(n'h,") and
() (P, = @un )0 = L DO} k) LD, = L0 = 0O, = £D )0}

+ or,(1). 4.4)
Proof. The mean ¢, (f) of ¢, () may be approximated as

72, o B{D, o0, 0 - 10,01 E{¢un o, o - 14, or}

AT {7, 0P " (£ ) ’
therefore
. . 1/2
o L0 P orart B 0] "0
Pn,h, f(nl,)h,,(t) (0 (1) (t)}z P|Pnn,(E T (1) ()}2

For an approximation of ¢, (#), the bias and variance of the estimators f° (nf)(t) must be
calculated. Let

A1) = t {YP(s)} " dNY(s),
0

A0y = [ (O} ),
JOo

FO 0 = [Kn,(t — 5)dFD(s) = Jﬁ;ﬂ(s*)K,,n(z — 9)dAD(s), 1 E€lhy, Ty — hal.

The processes (njh,,)l/z(f(nj) —f), j=1,2, are independent and split into a
deterministic term b(n{Ln = (njhn)l/z(f(nj) — ) and a random term (njhn)l/z(f(nj) —f(nj)).
The deterministic terms satisfy

) 2o
(nyhn) ™00, (0 = 202 + o(R).
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From the representation

ﬁ'(nj)(t) _ F(j)(t) — F(j)(t)

O. Pons

CFD(s7) dMY(s)

Jo FO (s) Y(nj)(s) ’

we have
0= 7000 = [ || S Sty
+ KG9 B ) d%j{zg)
and
B0 - 7,0 = B | [0 - (B ep .

X

+ JK”"”_S)K”"”_U){JO Fiy) YP(y)

* F () dM(y)

}

all
o F(

+2

4

[ate=aq]|
|

=E

+ j Jm(r K (1 v){JO {

X dFD(s) dF P (v)

CFP00)
2] K- S){Jo FO(y)

r FO ™) dM(u)
My ¥ (w)

} dF(j)(U)dF(j)(s)

s (Do — )
Khn(t_s){J F, (7)) dM5P(y)
Ky, (1= 0)F ) ")

jK%,n(t (R

}
}dﬁ-”(s)]

dA(f)(s)
Y(s)

FO(y) Yy

dM(v)

0w

P

2 .
dA(J)(y)
Y (y)

F)om)
FO(y)

}

dA(f)(y)
Y ()

}

}dﬁ(*")(s)

Ky, (t—y)

On every interval [7), 7] such that cy < HY(ty) = F(t)G(ty) < Cp, k=1,2,
cy < n;l Y (nf)(rk) < Cpy for n sufficiently large then
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(H () — ' YP(0)
(HP 1Y) ()

E{(n;'YP(0)™"} = (HV ()™ + E{

Moreover
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} = (H2(1) ™"+ 0(n™).

ap . n;
FO ) = F(J)(t){l gty gi,»(t)} + 7 (D), |70l = o(1), almost surely,
i=1

where the processes {;;(#) are independent and identically distributed with finite covariances.

Hence

f(j)

B0~ 0,00 = | [ K09 T 00

SAU j) ) o
+ J J Ky, (t— 85K, (t— v){L dAJG} dFD(s) dF D (v)

FOG
S ()] .
2] K- s){j0 Ki(t— ) %}dw@)} (1+ o(1))
= 00 oy,

and higher-order moments of f (,if)hn(t) are o(hi). Therefore, for any ¢ € [1}, 73]

2
AvR0)

—17-1
f(l) (t)+0(n hn )’
nh,

(/’n,h,,(l) =

the expression of the bias of @, ,(7) follows and its variance v, j, () is

) 2o
n =E . — ho).
v ,hn(t) {(P ,hn(t) f(nl’)hn(t) + 0( n)

By similar expansions,

(4.5)
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R0
@

fiﬁinu){m,hn(m } = £ = £ 00 = i O] 70,0 = £ (0}

{700 =10, 070, 0=, 0}
) 0

~ 2
Bnn (O], (0 = 10,0}
S (®

S0
+{wn,hn<r)— i (t)}{f“h,,()—f“ 0}

+

and the approximation of v, (f) follows from the independence of f (nz,)hn(t) and f (nl’)h”(t) and
from the order of their moments of order £ > 2.
From formula (4.5) and the expression for the variance of @, ,,

(nh ) { G, (1) = @up (D)}
= (nh)' 2 {10, YD, (0 — 1P, (0} = 0uin, (DL, (0 = 110, (0}
— OOy HD O — D MY, () = £, (03 + 01,(1)

and (4.4) follows. Ol

The next result is a consequence of (4.4) and of the weak convergence of the
independent processes (n,h ,,)l/z(f(’) f(n’)h)

Proposition 7. On every interval [t|, 12] such that 0 <1, <71, <71 and 0 < f(l)(rl), the
process W, :(hn)l/z(gbn,;,n — @) converges weakly on [t|, 12] to a centred Gaussian
process W, with null covariances and with variance

o(n)=1lim v, () = {fVD} [ o@D} + (1 - )P (naV(D)}],
with 0 (t) = 1k,G () f V).
Proposition 8. On every interval [t1, T3] such that 0<7t, <71, <7Tp, the process

n'/ 2(An — No) defined by (4.2) converges weakly to a centred Gaussian process W, such
that
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t "(F ;
Wa(t) = J —— {dMD + oy 'dMP} + (1 - a)W(/,(t)J { 7 _ ﬁ}d/\o(s)
0 FoG 0| Foo @0
t @odWr,
Wr J 0
1 - TO - = dA )
EIRE - '

where (M, M®) and W, are defined in Proposition 4.

Proof. W, A(t) is now written

t

1 N

1/2 - - (1) -1 2 -ly@® _v®

n Jh IEEa) {dM) + @, AMS) + @ Y5 ANy, — Y5 dAo}
n npn

where t €lh,, T, — h,[,

(2) 7 il
~—1 dA(Po _ Y”a‘f’n — @ﬂ — i

P dA, YQ  @uFy F,

' P Fy n\PW, g ®0 Fy

= J(q’n*(/’o)dF0+J§Dnl’l dWpp t—=—+——="+——1)=
F(ﬂ

0 0 an,(ﬁn Fn,(ﬁn Pn F(po

and the weak convergence of W, is a consequence of the joint convergence of
A1 1 A2 2 _ 5(2 _ o

() (F30, = Fo s R P(FD = 0, w7ty + 7)) and #7'Y?). The limit
distribution of the nonparametric density is caracterized in Pingon and Pons (2006). (]

As in Section 3, the weak convergence of n'/?(F, — Fy)) defined with (4.3) follows by
the representation of the product-limit estimator under integrability conditions.

5. Efficient estimators

Efficient estimators of F' and 0 or ¢ are obviously independent of those of @ and G which
are only estimated from (p;)i<, and from (8;log G(T;) + (1 — 6;)log g(T:))i=, in (2.1).

For (0, F)e®XF, let LyF)={a:Ry —R? [|a*dF <o}, LYF)={ac
Ly(F); [adF =0} and let Ly(Fp) and Lg(Fg) be similarly defined for Fy. Following the
approach presented in Bickel et al. (1993), we consider the linear operators R on Lg(F ) and
Ry on L3(Fy) defined by

{o.¢]

Ra(t) = a(t) — F’l(t)ro adF, Roa(t) = a(t) — F;I(I)J ‘a(pg dF.

t

Their adjoint operators are
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R*b(f) = b(f) — Jl bdA, Ry b(1) = b(1) — Jl bdAg,
0 0

which satisfy R* = R~' and R} = R;'. The scores Iy for 6 and I for the distribution
function F satisfy

(T, 0, p) = (1 - p)J Ro 2% dMy = (1 — p)LyRy 22,
®o ®o

Ira(T, S, p)=p J RadM + (1 - p) J ReadMy = pLR @ (1 — p)LgRy
with
LT, 0) = J bdM, Lob(T, 0) = J bdM,.

The linear space R(iF) generated by Ir is closed since K = pLR and Ky = (1 —p)LgRy
generate orthogonal and closed spaces. The adjoint operators of K, Ky and [y are given by

K*b(f) = aR™'L*b(1), Kpb(t) = (1 — a)Ry' L b(1),
IEb(1) = (K* + K})b(1).
Let Da(f) = L*La(t) = G(f)a(t) = L;Lga(t). Then for every a in Lg(Fe),
Itira(t) = aR™'L* LRa(?) + (1 — a)R," L} Ly Rya(1),
= aR ' DRa(t) + (1 — a)pgR," DRya(t).

The efficient score function lz .for 0 satisfies lz = ig —1 rag, for some ay in
LY(F) N LY(Fg), and E{;(T, 0, p)Y{Irb(T, S, p)}T =0 for every b€ LY(F)N LY(Fp), so
Iy = (1 — p)LoRo(¢0/po — ag) — pLRay,

0= (I3, Ipb) = <K;K9 (%— 619), b>F9 — (K" Kag, b)r, (5.1)

—(1— a)<R91DR0 (Z“’ - a9>, b>F0 — a(R"'DRag, b)r,  for all b,
7]
therefore

aR"'DRag = (1 — a)pg R;' DRy (ﬂ - a9>,
Po

%o (t). (5.2)

Iplrag(t) = (1 - a)q)e(l)RélDRa%

The operator l?;l F may be inverted since
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|FEip|? = sup {aJ(Ra)Z(_}ZdF—i—(l - a)J(Rga)z(_}zng};
1

a€ LY(FNLY(Fy):||all 1, m=lall L, ()=

without censoring it equals 1, and it is strictly positive because a(Ra)> +
(1 — a)pa(Rga)* # 0 for any ¢y # 0. A solution of (5.2) is deduced to be

ag(t) = (1 - a){l'j;iF}1(pe(r){RelnR9zZm}. (5.3)

Example 1. Let F a parametric family 7 = {F,, 7 € H} on R,, with densities f, with
respect to a measure u, and Feo 3 a set of distributions with densities ¢g,, on a finite interval
[0, 7] with respect to F;. Let a,; = cf;lfnl{fpo} in Lg(F,?) and Lg(Fg,n) for every (0, 1) in
(® X H}, where the constant ¢ and © are such that the unit norms of;a,7 equal 1, therefore
Jo @2¢oy du = [} a du. ~ Then ||| >0 if  a{fyFy — fFy}* + (1 = )eo,{fy
[T 0o, dF, — fy |” 9o, dF,}* # 0. For exponential distributions F, with parameter 7 and
Po(x) = Ao 1 (x) such that 0 < 6 <5 and 1 — O~ = Ag.(1 — e~ ~97), this condition
is satisfied with a,(x) = c(1 — x).

Example 2. Let F a nonparametric family of distributions with densities f* with respect to a
measure y and Lp-derivative f , and let @g a non-uniform parametric density on a finite
interval [0, 7] with respect to F in F. Let a=c¢f "' f1{;~q) in L3(F) and L)(Fy), where
v and ¢ are chosen such that ¢ has unit norms. Then a{fF — fF}*+(1
— 0)po{f [*@odF — f [ ppdF}* =0 and ||[3i¢| > 0.

The efficient influence function for 6 is
ZG(TJ (37 p; a) 0’ F’ G) = (1*(a7 0’ F’ G))illz((TQ 6’ p; a’ 07 F’ G)
with the efficient score function defined by (5.1) and the efficient information matrix

I"(a, 0, F, G) = (I;(T, 5, p; &, 0, F, G), I}(T, 9, p; @, 0, F, G)),
. ®2 ]
=(1- a)J{Rg (% — ag) } (pe(_;dF + aJ{Rag}®2(7dF. (5.4)
0

A solution ag of (5.2) and the functions lz and [ ;k depend on all the parameters a, 8, F
and G, they may be estimated from (7}, O;, p;)i=1,..». In the uncensored case,
R™'DR = id = R;' DRy and

vy L=
a+ (1 —a)pe

which does not depend on F and G. Moreover LR = LgRy = id, therefore
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. . o Po ey B0
IH(T’ 9, ps a, 0) =all=p) QDH{Q +(1- a)ﬁD&} ol a)a + (1 = a)eg ’
. ®2
. . B B Po
15(T, 0, p; a, 0) = a(l — a) Ua{q)@{aﬂl —a)fpe}} o

. @2
Po
sa-of{ ) o

_ . q’e
=ad “)J oot (L —aps

In the nonparametric model Mrqe, the efficient score function for ¢ is defined on
LY(F)N LY(F,), where LY(F,) = {a: Ry — R?; [apdF =0, [|ja||’¢dF < oo}, by

Iya=(1—p)LyRy(a—bs) — pLRb,,
ba(t) = (1 — a){iir} ' o(){R," DR,y a(n)},

Ifipa(t) = aR™' DRa(1) + (1 — a)p(){R,' DRya(1)},

with Rya(t) = a(1)— F,' (1) [ ap dF, Lya(T, 8) = 6a(T) — || bF, ¢dF. In the uncen-
sored case, the solution is

(1 =aae
“Tat(-ag’
* . — — — — 1
(T 0. ps 0 )a = {a(l = p) = p(1 = )0} o
. 6 a®2 d
LT, 6, p; a, w)afa(l_a)Jm For

More generally, it is defined by (5.4).

As for efficient estimation in parametric models, an estimator of 0 is deduced by a
Newton iterative procedure of the form 6, = 6, + n‘/z(l* )"y where I, and [, are
the estimators of 7 and 19 obtained by replacing the unknown parameters a, 6, F and G
by the above estlmators (Bickel et al. 1993). In the uncensored case, ln,a and / j:ﬁ are simply
given by
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n
j:,() = n_l Z l;k(Tla Pis dna on)
i=1

0,

'ty {(1 - p»{%m) — ag(T}; dy, en)} — piag(Ts; G, en)},
i=1
n . ®2
I =a,01 —da,)n"! S TE— .
no = (1 —dy) ;{aﬁ(l_anm( )}
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