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We find the asymptotic distribution of the sample autocovariances of long-memory processes in cases of
finite and infinite fourth moment. Depending on the interplay of assumptions on moments and the intensity
of dependence, there are three types of convergence rates and limit distributions. In particular, a normal
approximation with the standard rate does not always hold in practically relevant cases.
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1. Introduction

Over the last twenty years, long-memory time series have become an important modeling tool in
geophysical sciences and also in engineering, computer networks and econometrics.

Asymptotics for the sample autocovariances of long-range dependent linear processes with
tail index α are known only in the case 1 < α < 2; see Kokoszka and Taqqu (1996). In the case
2 < α < 4, these asymptotics are known only for linear processes with absolutely summable co-
efficients ψ(j); see Davis and Resnick (1986). To illustrate what kind of results we are interested
in, consider the sample variance γ̂0 = N−1 ∑N

t=1 X2
t . Theorem 2.2 of Davis and Resnick (1986)

implies that

Na−2
N (γ̂0 − γ0)

d→
∞∑

j=0

ψ2(j)

(
S − α

α − 2

)
, (1.1)

where aN is roughly of the order N1/α and S is an (α/2)-stable random variable. Note that the
right-hand side of (1.1) involves only the sum of the squared coefficients ψ(j), yet this result
is known to hold only if

∑∞
j=0 |ψ(j)| < ∞. The question is whether (1.1) holds if one assumes

only
∑∞

j=0 ψ2(j) < ∞ (and zero mean) and, if not, what the limit of Na−2
N (γ̂0 − γ0) is in this

more general case.
We assume that the ψ(j) behave roughly like jd−1 with 0 < d < 1/2. Figure 1 summarizes

the convergence rates derived in our paper. The α-axis shows the tail index of the innovations,
but α > 4 is used merely for illustration; our results require only finite fourth moment in that
case. The currently known asymptotics correspond to the cases with d = 0, except the case when
all moments are finite (considered by Hosking (1996)). Our results for the region 4 < α < ∞
extend the corresponding results of Hosking (1996). In region A, γ̂0 − γ0 is of the standard order
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Figure 1. Regions with different rates of convergence of sample autocovariances.

N−1/2; in region B, it is roughly of the order N2/α−1. These two regions show how far the rates
established for weakly dependent processes extend. In region C, the asymptotic distribution of
γ̂h − γh does not depend on h and the limit is related to the Rosenblatt process.

The paper is organized as follows. Section 2 introduces the assumptions and the requisite
notation. Main results are stated in Section 3. Section 4 contains an important truncation lemma
which allows us to assume only the second moment and two lemmas which can be deduced from
the work of Surgailis (1982). The proofs of the main results are developed in Section 5.

2. Assumptions and notation

We consider the linear process

Xt =
∞∑

j=0

ψ(j)Zt−j . (2.1)

Throughout the paper, we denote by Z a random variable with the distribution of the Zt .
We assume that the Zt are mean zero i.i.d. and satisfy either EZ4 < ∞ or for some 2 < α < 4,

0 ≤ p ≤ 1 and a slowly varying function L(x),

P [|Zt | > x] = x−αL(x), P [Zt > x]/P [|Zt | > x] → p (x → ∞). (2.2)

In both cases, the second moment is finite and we write

σ 2 = Var[Z] = EZ2.
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We assume
∞∑

j=0

ψ2(j) < ∞. (2.3)

Assumption (2.3) is a sufficient condition for the L2 and a.s. convergence of the right-hand side
of (2.1) if EZ2

t < ∞. (Note that we assume EZ = 0.) Condition (2.3) is weaker than the condition∑∞
j=0 |ψ(j)| < ∞ and allows us to consider linear processes with long memory.

We focus on the case ψ(j) ∼ Cdjd−1 and assume

ψ(j) = jd−1l(j), 0 < d < 1/2, (2.4)

where l(·) is a function defined for positive real numbers such that l(u) → Cd as u → ∞. All
long memory models in current use, including the fractional ARIMA and the fractional exponen-
tial model, satisfy (2.4).

Suppose we observe a realization X1,X2, . . . ,XN+H ,N > 1,H ≥ 0. The sample autocovari-
ances are defined as

γ̂h = 1

N

N∑
t=1

XtXt+h, h = 0,1, . . . ,H,

and the (population) autocovariances are

γh = E[X0Xh] = σ 2
∞∑

j=0

ψ(j)ψ(j + h).

When working with the innovations satisfying (2.2), we use the norming constants aN satisfy-
ing

lim
N→∞NP [|Z| > aNx] = x−α, x > 0. (2.5)

It is well known (CLT for i.i.d. r.v.’s in the stable domain of attraction) that there is an (α/2)-
stable random variable S such that

a−2
N

N∑
t=1

(Z2
t − bN)

d→ S, (2.6)

where bN = E[Z2I {|Z| ≤ aN }].
Finally, recall the definition of the Rosenblatt process:

Ud(t) = 2
∫

x1<x2<t

[∫ t

0
(v − x1)

d−1+ (v − x2)
d−1+ dv

]
W(dx1)W(dx2), (2.7)

where W(·) is the standard Wiener process on the real line.
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3. Main results

We want to find the asymptotic distribution of the vector

[γ̂h − γh,h = 0,1, . . . ,H ].
We first focus on the case of heavy-tailed innovations satisfying (2.2).

Theorem 3.1. Suppose (2.2) and (2.4) hold.

(a) If 0 < d < 1/α,2 < α < 4, then

Na−2
N [γ̂h − γh,h = 0,1, . . . ,H ]
d→

(
S − α

α − 2

)[ ∞∑
j=0

ψ(j)ψ(j + h),h = 0,1, . . . ,H

]
.

(For the above to hold for d = 1/4, we must additionally assume that a−4
N N lnN → 0.)

(b) If 1/α < d < 1/2,2 < α < 4, then

N1−2d [γ̂h − γh,h = 0,1, . . . ,H ] d→ σ 2C2
d [Ud(1), h = 0,1, . . . ,H ].

Proof. A detailed proof with the requisite notation is presented in Section 5. Part (a) follows
from Lemmas 5.1 and 5.2, while (b) follows from Lemmas 5.3 and 5.5. �

If 1 < α < 2, then Theorem 2.1 of Kokoszka and Taqqu (1996) implies that Na−2
N γ̂h converges

in distribution, so the autocovariances themselves are not bounded in probability.
We now turn to the case EZ4 < ∞. If the ψ(j) are absolutely summable, then we have the

following well-known result; see Proposition 7.3.3 of Brockwell and Davis (1991).

Theorem 3.2. Suppose
∑∞

j=0 |ψ(j)| < ∞ and EZ4 = ησ 4 < ∞. Then

N1/2[γ̂h − γh,h = 0,1, . . . ,H ] d→ [Gh,h = 0,1, . . . ,H ],
where [Gh,h = 0,1, . . . ,H ] is a mean zero Gaussian vector with

E[GhGh′ ] = (η − 3)γhγh′ +
∞∑

k=−∞
[γkγk−h+h′ + γk+h′γk−h]. (3.1)

Condition (2.4) implies that the ψ(j) are not absolutely summable. In this case, the following
theorem holds.

Theorem 3.3. Suppose EZ4 = ησ 4 < ∞ and (2.4) holds.
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(a) If 0 < d < 1/4, then

N1/2[γ̂h − γh,h = 0,1, . . . ,H ] d→ [Gh,h = 0,1, . . . ,H ],
where [Gh,h = 0,1, . . . ,H ] is a mean zero Gaussian vector with covariances (3.1).

(b) If 1/4 < d < 1/2, then

N1−2d [γ̂h − γh,h = 0,1, . . . ,H ] d→ σ 2C2
d [Ud(1), h = 0,1, . . . ,H ].

Proof. Use Proposition 5.1 for (a) and Lemmas 5.3 and 5.5 for (b). �

4. Auxiliary lemmas

We begin with a truncation lemma which allows us to extend the results established under the
assumption of all finite moments to our setting in which only the second moment is assumed
finite.

Lemma 4.1. Suppose Z is a random variable with EZ = 0 and EZ2 < ∞. There are then
bounded random variables Z(T ),T > 0, such that EZ(T ) = 0 and, as T → ∞, E[Z(T ) −
Z]2 → 0 and EZ2(T ) → EZ2.

Proof. Let µ(T ) = E[ZI{|Z| ≤ T }]. If µ(T ) = 0, set Z(T ) = ZI{|Z| ≤ T }. If µ(T ) �= 0, then
let ε(T ) be a random variable uniform on [0, |µ(T )|] and independent of Z, and set

Z(T ) = ZI{|Z| ≤ T } − 2ε(T ) sign(µ(T )).

Then EZ(T ) = 0, by the definition of Z(T ). Moreover,

E[Z(T ) − Z]2 = E[ZI{|Z| > T } − 2ε(T ) sign(µ(T ))]2

≤ 2[E(Z2I{|Z| > T }) + 4Eε2(T )].
Since EZ2 < ∞, E(Z2I{|Z| > T }) → 0, and Eε2(T ) = µ3(T )/3 → 0 because µ(T ) → EZ =
0. The assertion EZ2(T ) → EZ2 now also follows. �

The following lemma is a special case of Lemma 7 of Surgailis (1982).
Denote by {W(t)} the standard Wiener process on the real line. Consider the sequence

{WN,N ≥ 0} of random sequences

WN = {WN(k), k = . . . ,−1,0,1, . . .}.
It is convenient to think of WN(k) as approximately the increment of W over the interval
[k/N, (k + 1)/N).
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Lemma 4.2. Suppose each WN(k) has all finite moments, EWN(k) = 0 and Var[WN(k)] = N−1.

Assume that for any real numbers a < b,∑
aN≤k<bN

WN(k)
d→ W(b) − W(a).

Let f (x1, x2) be a measurable function such that∫ ∞

−∞

∫ ∞

−∞
|f (x1, x2)|2 dx1 dx2 < ∞.

Suppose {fN,N ≥ 1} is a sequence of measurable functions of the form

fN(x1, x2) =
∑
k �=k′

cN(k, k′)I[k/N,(k+1)/N)(x1)I[k′/N,(k′+1)/N)(x2) (4.1)

such that ∫ ∞

−∞

∫ ∞

−∞
|f (x1, x2) − fN(x1, x2)|2 dx1 dx2 → 0 as N → ∞. (4.2)

Then, as N → ∞,

∑
k �=k′

cN(k, k′)WN(k)WN(k′) d→
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)W(dx1)W(dx2).

The next result is similar to Lemma 4 of Surgailis (1982). The extension involves the presence
of the lag h. To state it, we introduce the coefficients

CN,h(k, k′) = N1−2d
N∑

t=1

ψ(t − k)ψ(t + h − k′) (4.3)

and set

fN,h(x1, x2) =
∑

k �=k′≤N

CN,h(k, k′)I[k/N,(k+1)/N)(x1)I[k′/N,(k′+1)/N)(x2). (4.4)

Lemma 4.3. Consider the function f defined by (5.12) and the sequence of functions fN defined
by (4.4) and (4.3). Suppose (2.4) holds. If d > 1/4, then∫ ∞

−∞

∫ ∞

−∞
[fN,h(x1, x2) − f (x1, x2)]2 dx1 dx2 → 0 as N → ∞. (4.5)

Proof. By Lemma 4 of Surgailis (1982), (4.5) holds with h = 0. Thus, it is enough to show that∫ ∞

−∞

∫ ∞

−∞
[fN,h(x1, x2) − fN,0(x1, x2)]2 dx1 dx2 → 0 as N → ∞. (4.6)

Relation (4.6) can be verified using the dominated convergence theorem. �
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5. Proofs

We begin with the proof of part (a) of Theorem 3.3 as it is uses an approach which differs
from that of the remaining proofs. The idea is the same as in the proof of Proposition 7.3.3 of
Brockwell and Davis (1991), but the summability arguments must be handled with care.

Proposition 5.1. The conclusions of Theorem 3.2 remain true if the assumption
∑∞

j=0 |ψ(j)| <
∞ is replaced by (2.4) with the restriction 0 < d < 1/4.

Proof. For sufficiently large m, define

X
(m)
t =

m∑
j=0

ψ(j)Zt−j , γ̂
(m)
h = N−1

N∑
t=1

X
(m)
t X

(m)
t+h

and

γ
(m)
h = E

[
X

(m)
t X

(m)
t+h

] = σ 2
m−h∑
j=0

ψ(j)ψ(j + h).

Proposition 7.3.2 of Brockwell and Davis (1991) states that, as N → ∞,

N1/2[γ̂ (m)
h − γ

(m)
h ,h = 0,1, . . . ,H

] d→ [
G

(m)
h ,h = 0,1, . . . ,H

]
, (5.1)

where [G(m)
h ,h = 0,1, . . . ,H ] is a mean zero Gaussian vector with

E
[
G

(m)
h G

(m)

h′
] = (η − 3)γ

(m)
h γ

(m)

h′ +
∞∑

k=−∞

[
γ

(m)
k γ

(m)

k−h+h′ + γ
(m)

k+h′γ
(m)
k−h

]
.

The proof is completed by appealing to the standard argument; see Theorem 3.2 on page 28 of
Billingsley (1999), which, in addition to (5.1), requires

[
G

(m)
h ,h = 0,1, . . . ,H

] d→ [Gh,h = 0,1, . . . ,H ], as m → ∞ (5.2)

and, for each h and ε > 0,

lim
m→∞ lim sup

N→∞
P

{∣∣N1/2(γ̂ (m)
h − γ

(m)
h

) − N1/2(γ̂h − γh)
∣∣ > ε

} = 0. (5.3)

Relation (5.2) follows from the convergence γ
(m)
h → γh for which only the square summability

of the ψ(j) is needed.
To prove (5.3), it suffices to show that limm→∞ limN→∞ N Var[γ̂ (m)

h − γ̂h] = 0, which reduces
to verifying that

lim
N→∞N Var[γ̂h] = EG2

h, (5.4)
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lim
m→∞ lim

N→∞N Var
[
γ̂

(m)
h

] = EG2
h, (5.5)

lim
m→∞ lim

N→∞N Cov
(
γ̂

(m)
h , γ̂h

) = EG2
h. (5.6)

To establish (5.4)–(5.6), we need the assumption d < 1/4. As in the proof of Proposition 7.3.1
of Brockwell and Davis (1991), we have

N Var[γ̂h]

=
∑

|k|<N

(
1 − |k|

N

)[
(η − 3)σ 4

∑
i

ψ(i)ψ(i + h)ψ(i + k)ψ(i + k + h) + γkγk + γk+hγk−h

]
.

Relation (5.4) now follows from the dominated convergence theorem, for which we need

∑
k

∑
i

|ψ(i)ψ(i + h)ψ(i + k)ψ(i + k + h)| < ∞ (5.7)

and ∑
k

γ 2
k < ∞. (5.8)

While the square summability of the ψ(j) is sufficient for (5.7) to hold, for (5.8), we need∑
k>0 k4d−2 < ∞, which requires that d < 1/4.

The same argument and the convergence limm→∞ EG
(m)2
h = EG2

h lead to (5.5). Relation (5.6)
follows in a similar manner. �

In the following, we work separately with diagonal and off-diagonal terms.
Fix real numbers uh,h = 0,1, . . . ,H, and consider the decomposition

H∑
h=0

uh(γ̂h − γh) = DN + RN,

with the diagonal terms

DN =
H∑

h=0

uhdN,h, dN,h = 1

N

N∑
t=1

∞∑
j=0

ψ(j)ψ(j + h)[Z2
t−j − σ 2],

and the off-diagonal terms

RN =
H∑

h=0

uhrN,h, rN,h = 1

N

N∑
t=1

∑
i �=j+h

ψ(j)ψ(i)Zt−jZt+h−i .
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Also, define

cj =
H∑

h=0

uhcj (h), cj (h) = ψ(j)ψ(j + h). (5.9)

Note that cj (h) ∼ C2
dj2d−2, so the cj are absolutely summable.

The next two lemmas are specific to the case of infinite fourth moment and so are established
first.

Lemma 5.1. Suppose 2 < α < 4 and that (2.2) and (2.4) hold. Then

Na−2
N [dN,h,h = 0,1, . . . ,H ]
d→

(
S − α

α − 2

)[ ∞∑
j=0

ψ(j)ψ(j + h),h = 0,1, . . . ,H

]
.

Proof. Observe that DN = N−1 ∑N
t=1

∑∞
j=0 cjZ

2
t−j − σ 2 ∑∞

j=0 cj . Since the cj defined by
(5.9) are absolutely summable, using Theorem 4.1 of Davis and Resnick (1985) and follow-

ing the proof of Theorem 2.2 of Davis and Resnick (1986), we conclude that Na−2
N DN

d→
(S − α

α−2 )
∑∞

j=0 cj . �

Lemma 5.2. Suppose 2 < α < 4 and that (2.2) and (2.4) hold. If d < 1/α (and a−4
N N lnN → 0

if d = 1/4), then Na−2
N rN,h

P→ 0.

Proof. Set ξt (h) = ∑
i,j≥0,i �=j+h ψ(i)ψ(j)Zt−jZt+h−i so that rN,h = N−1 ∑N

t=1 ξt (h). If

EZ = 0 and EZ2 = σ 2 < ∞, then for 0 < d < 1/2,

E[ξnξ0] = σ 4
∑

n≤i �=j<∞
[ψ(i)ψ(j)ψ(i − n)ψ(j − n) + ψ(i)ψ(j)ψ(j − n)ψ(i − n)],

which implies E[ξnξ0] ∼ Kdσ 4n4d−2. Therefore,

Var

[
N∑

t=1

ξt

]
=

{
O(N), if 0 < d < 1/4,
O(N lnN), if d = 1/4,
O(N4d), if 1/4 < d < 1/2.

(5.10)

The claim follows because aN = N1/αL(N), where L(·) is slowly varying. �

The following lemma establishes asymptotics for the diagonal terms in the case of finite fourth
moment.
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Denote by N(0,	) an (H + 1)-variate normal vector with the covariance matrix 	 =
{	(h,h′), h,h′ = 0,1, . . . ,H } given by

	(h,h′) = Eε2
0

∞∑
i=0

∞∑
k=0

ci(h)ck(h
′), (5.11)

in which the cj (h) are defined by (5.9).

Lemma 5.3. Suppose that EZ4 < ∞ and (2.4) holds. Then

N1/2[dN,h,h = 0,1, . . . ,H ] d→ N(0,	).

Proof. Use Theorem 7.7.8 of Anderson (1971). �

In the remainder of this section, we study the off-diagonal terms in the case d > 1/4.
Assuming only EZ2 < ∞, using Lemma 4.1, we can define a sequence of bounded, indepen-

dent, identically distributed random variables Zi(T ) such that EZi(T ) = 0,E[Zi(T ) − Zi] → 0
and Zi(T ) is independent of {Zj (T ), j �= i}. Further, define

RN(T ) =
H∑

h=0

uhrN,h(T ),

where

rN,h(T ) = 1

N

N∑
t=1

∑
i �=j+h

ψ(j)ψ(i)Zt−j (T )Zt+h−i (T )

= 1

N

∑
k �=k′

Zk(T )Zk′(T )

N∑
t=1

ψ(t − k)ψ(t + h − k′).

Denote by {W(t)} the standard Wiener process on the real line.

Lemma 5.4. Suppose EZ2 < ∞ and (2.4) holds. If d > 1/4, then

N1−2d [rN,h(T ),h = 0,1, . . . ,H ]
d→ σ 2(T )

[∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)W(dx1)W(dx2), h = 0,1, . . . ,H

]
,

where σ 2(T ) = Var[Z0(T )] and

f (x1, x2) = C2
d

∫ 1

0
(v − x1)

d−1+ (v − x2)
d−1+ dv. (5.12)
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Proof. Introducing

C̃N (k, k′) =
H∑

h=0

uh

N∑
t=1

N1−2dψ(t − k)ψ(t + h − k′),

we obtain

RN(T ) = N2d−2
∑
k �=k′

C̃N (k, k′)Zk(T )Zk′(T ) = N2d−1σ 2(T )
∑
k �=k′

C̃N (k, k′)Z∗
k (T )Z∗

k′(T ),

where Z∗
k (T ) = N−1/2Zk(T )/σ (T ).

Clearly, EZ∗
k (T ) = 0,Var[Z∗

k (T )] = 1/N , and by the functional central limit theorem,∑
aN≤k≤bN Z∗

k (T )
d→ W(b) − W(a). By Lemma 4.3,

∫ ∞

−∞

∫ ∞

−∞
[f̃N (x1, x2) − f̃ (x1, x2)]2 → 0,

where

f̃N (x1, x2) = C̃N (k, k′)I[k/N,(k+1)/N)(x1)I[k′/N,(k′+1)/N)(x2)

and f̃ (x1, x2) = f (x1, x2)
∑H

h=0 uh.

Thus, all conditions of Lemma 4.2 are satisfied and the claim follows. �

The next result shows that Lemma 5.4 remains valid without assuming bounded errors.

Lemma 5.5. Suppose EZ2 < ∞ and (2.4) holds. If d > 1/4 (and d < 1/2), then

N1−2d [rN,h, h = 0,1, . . . ,H ] d→ σ 2
[∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)W(dx1)W(dx2), h = 0,1, . . . ,H

]
,

where f (x1, x2) is defined in (5.12).

Proof. Since σ 2(T ) → σ 2, it is enough to show that for any ε > 0 and each h = 0,1, . . . ,H ,

lim
T →∞ lim sup

N→∞
P {N1−2d |rN,h − rN,h(T )| > ε} = 0. (5.13)

Let

ξt,h =
∑
k �=k′

ψ(t − k)ψ(t + h − k′)ZkZk′

and

ξt,h(T ) =
∑
k �=k′

ψ(t − k)ψ(t + h − k′)Zk(T )Zk′(T ).



416 L. Horváth and P. Kokoszka

Relation (5.13) will follow once we have shown that

E

[
N∑

t=1

(
ξt,h − ξt,h(T )

)]2

= E[Z − Z(T )]2O(N4d). (5.14)

Observe that [
N∑

t=1

(
ξt,h − ξt,h(T )

)]2

≤ 2[S1(N,T ) + S2(N,T )],

where

S1(N,T ) =
[

N∑
t=1

∑
k �=k′

ψ(t − k)ψ(t + h − k′)Zk

(
Zk′ − Zk′(T )

)]2

,

S2(N,T ) =
[

N∑
t=1

∑
k �=k′

ψ(t − k)ψ(t + h − k′)Zk′(T )
(
Zk − Zk(T )

)]2

.

To compute the expected value

ES1(N,T ) =
N∑

t,s=1

∑
k �=k′

∑
i �=i′

ψ(t − k)ψ(t + h − k′)ψ(s − i)ψ(s + h − i′)

× E
[
Zk

(
Zk′ − Zk′(T )

)
Zi

(
Zi′ − Zi′(T )

)]
,

note that the expected value on the right-hand side vanishes, except in two cases: (a) k = i and
k′ = i′; (b) k = i′ and k′ = i.

In case (a),

E
[
Zk

(
Zk′ − Zk′(T )

)
Zi

(
Zi′ − Zi′(T )

)] = σ 2E[Z − Z(T )]2.

In case (b), by Schwarz’s inequality,

E
[
Zk

(
Zk′ − Zk′(T )

)
Zi

(
Zi′ − Zi′(T )

)] ≤ σ 2E[Z − Z(T )]2.

It follows that

ES1(N,T ) ≤ σ 2E[Z − Z(T )]2[E11(N,h) + E12(N,h)],
where

E11(N,h) =
N∑

s,t=1

∑
k �=k′

ψ(t − k)ψ(t + h − k′)ψ(s − k)ψ(s + h − k′),

E12(N,h) =
N∑

s,t=1

∑
k �=k′

ψ(t − k)ψ(t + h − k′)ψ(s − k′)ψ(s + h − k).
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We must thus verify that E11(N,h) and E12(N,h) are O(N4d). We will show the verification
for E12(N,h) because the argument for E11(N,h) is the same (in fact, it is slightly shorter, as
the h cancels in the corresponding sums). Setting i = t − k and i′ = t + h − k′, we obtain

|E12(N,h)| ≤
N∑

s,t=1

∑
i

|ψ(i)ψ(s − t + h + i)|
∑
i′

|ψ(i′)ψ(s − t − h + i′)|.

We apply to the right-hand side the method of summing over the diagonals and consider the cases
s − t = 0, n = s − t > 0 and −n = s − t < 0. Consequently,

|E12(N,h)| ≤ Ē120 + Ē12+ + Ē12−,

where

Ē120 = N
∑

i

|ψ(i)ψ(h + i)|
∑
i′

|ψ(i′)ψ(−h + i′)| ≤ N

[∑
i

ψ2(i)

]2

= O(N),

Ē12+ =
N−1∑
n=1

(N − n)
∑

i

|ψ(i)ψ(n + h + i)|
∑
i′

|ψ(i′)ψ(n − h + i′)|,

Ē12− =
N−1∑
n=1

(N − n)
∑

i

|ψ(i)ψ(−n + h + i)|
∑
i′

|ψ(i′)ψ(−n − h + i′)|.

A change of variables shows that Ē12− = Ē12+, so it remains to verify that Ē12+ = O(N4d).

Since, by (2.4), |ψ(j)|/jd−1 is bounded, we have, for any n ≥ 0,

∑
i

|ψ(i)ψ(n + i)| = O

(∫ ∞

1
id−1(n + i)d−1 di

)
= O(n2d−1).

It follows that

Ē12+ = O(N)

{
N−1∑

n=h+1

(n + h)2d−1(n − h)2d−1 +
h−1∑
n=1

(n + h)2d−1(h − n)2d−1

}
.

The second term in the braces is O(h2d) = O(1). The first term is

N+h−1∑
j=1

(j + 2h)2d−1j2d−1 ≤
N+h−1∑

j=1

j4d−2 = O(N4d−1).

This completes the verification that Ē12+ = O(N4d). We have thus established that ES1(N,T ) =
σ 2E[Z −Z(T )]2O(N4d). Exactly the same argument applies to S2(N,T ), so (5.14) and, conse-
quently, (5.13) follow. �
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