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1. Introduction

The aim of this paper is to study certain strong laws of large numbers for random fields in the
sense that we shall discuss the (possible) equivalence of certain limit relations for sums over
random fields of i.i.d. random variables with suitable moment conditions.

More precisely, let {Xk,k ∈ Zd+} be i.i.d. random variables with partial sums Sn = ∑
k≤n Xk,

n ∈ Zd+, where the random field or index set Zd+, d ≥ 2, is the positive integer d-dimensional
lattice with coordinatewise partial ordering ≤.

There exist various results on strong laws for random fields in the literature. We now very
briefly describe some of them.

For random fields with i.i.d. random variables {Xk,k ∈ Zd+}, the analog of Kolmogorov’s
strong law (see [17]) reads as follows:

Sn

|n| = 1

|n|
∑
k≤n

Xk
a.s.→ 0 ⇐⇒ E(|X|(log+ |X|)d−1) < ∞, EX = 0.

Here and throughout, log+ x = max{logx,1}.
In [7], the first author has considered Marcinkiewicz laws for i.i.d. random fields. To be more

precise he proved that, for 0 < r < 2,

1

|n|1/r
Sn

a.s.→ 0 ⇐⇒ E(|X|r (log+ |X|)d−1) < ∞ (and EX = 0 when r ≥ 1).

Under somewhat stronger moment conditions, strong laws can be proven under relaxed condi-
tions on the distribution and the dependence structure. It has, for example, been shown that for
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d-dimensional martingales∗ (see, e.g., [14,19] for a definition),

Sn

|n|
a.s.→ 0 if

∑
n

E|Sn|2q

|n|q+1
< ∞ for some q ≥ 1.

For a proof, see [14], where orthogonal random fields were also discussed.
As for the rate of convergence in the strong law for random fields for i.i.d. random variables,

there exists, as in the one-dimensional case, a law of the iterated logarithm (LIL), which reads as
follows in the case d > 1 (see [22]):

lim sup
n→∞

(
lim inf
n→∞

)
Sn√

2|n| log log |n| = σ
√

d
(−σ

√
d
)

a.s. ⇐⇒

E

(
X2 (log+ |X|)d−1

log+ log+ |X|
)

< ∞ and EX = 0, EX2 = σ 2.

In particular, the moment condition and the limit depend on the dimension d . If one restricts the
lim sup to a sector avoiding the boundaries of Zd+, the first author has proven [9] that the law of
the iterated logarithm then holds under the same moment condition as in the case d = 1 and has
limit points ±σ .

A different question concerns the limit behaviour for delayed sums, sometimes called lag
sums. Let us start with ordinary random variables {Xk, k ≥ 1} and let Tn,n+nα = Sn+nα − Sn =∑n+nα

k=n+1 Xk , where 0 < α < 1 and, to be precise, nα := [nα]. For i.i.d. summands {Xk, k ≥ 1},
we then have (see [5,15])

lim
n→∞

Tn,n+nα

nα
= 0 a.s. ⇐⇒ E|X|1/α < ∞, EX = 0 and

lim sup
n→∞

Tn,n+nα√
2nα logn

= √
1 − α a.s. ⇐⇒ E(|X|2/α(log+ |X|)−1/α) < ∞,

EX2 = 1, EX = 0.

We call the latter result a law of the single logarithm (LSL). Such results are of particular interest
since they help to evaluate weighted sums of i.i.d. random variables for certain classes of weights.
Especially in the case α = 1/2, it has been shown (see, e.g., [1,5]) that certain summability
methods, such as those defined by the delayed sums, Euler, Borel and certain Valiron methods,
are equivalent for sequences {sn, n ≥ 1} satisfying sn = o(n1/2). The latter remains a.s. true
for random variables with the moment condition EX2 < ∞ since the partial sums then satisfy
Sn = oa.s.(n

1/2). Other equivalences with limit relations for delayed sums were given in [3].
These results allow one to prove a law of large numbers and, using a similar idea, an LSL for the
associated weighted sums (see, e.g., [4]). Since multivariate summability methods have attracted
new interest, multiindex versions of Chow’s and Lai’s results are of interest.

Hence, the aim of the present paper is to investigate the LSL problem for delayed sums of
random fields with i.i.d. components. The strong law itself was established in [20].

The paper is organized as follows. We begin, in Section 2, with definitions and the statement
of our main result, after which we collect various preliminaries in Section 3 and the truncation
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procedure and the Kolmogorov exponential bounds in Section 4. Thus prepared, we present the
proof of our main result, the LSL for delayed sums. Examining the proof, it turns out that one
can also prove an LSL for subsequences, the result of which is given in Section 6; in particular,
this result is also valid for the case d = 1. A closing section contains some additional results and
remarks.

2. Setting and main result

Let Zd+, d ≥ 2, denote the positive integer d-dimensional lattice with coordinatewise partial or-
dering ≤, that is, for m = (m1,m2, . . . ,md) and n = (n1, n2, . . . , nd), m ≤ n means that mk ≤ nk

for k = 1,2, . . . , d . Similarly, nα = (nα
1 , nα

2 , . . . , nα
d ). The “size” of a point equals |n| = ∏d

k=1 nk .
Moreover, n → ∞ means that nk → ∞ for all k = 1,2, . . . , d . We shall also abuse notation for
simplicity and treat the coordinates of nα as integers. Finally, C denotes a numerical constant
which may change from appearance to appearance.

Throughout the paper, X and {Xk,k ∈ Zd+} are i.i.d. random variables with partial sums Sn =∑
k≤n Xk, n ∈ Zd+.

For d = 1, the (forward) delayed sums are Tn,n+k = ∑n+k
j=n+1 Xj , k ≥ 1, that is, the increments

from Sn to Sn+k . For d = 2, the analog is the incremental rectangle

Tn,n+k = Sn1+k1,n2+k2 − Sn1+k1,n2 − Sn1,n2+k2 + Sn1,n2

and for higher dimensions, the analogous d-dimensional cube.
The aim of this paper is to prove a law of the single logarithm for the family of delayed

increments or windows

{Tn,n+nα ,n ∈ Zd+}.
Our main result is the following.

Theorem 2.1. Suppose that {Xk,k ∈ Zd+} are i.i.d. random variables with mean 0 and finite
variance σ 2, and set Sn = ∑

k≤n Xk, n ∈ Zd+. If

EX2/α(log+ |X|)d−1−1/α < ∞, (2.1)

where 0 < α < 1, then

lim sup
n→∞

(
lim inf
n→∞

)
Tn,n+nα√

2|n|α log |n| = +σ
√

1 − α
(−σ

√
1 − α

)
a.s. (2.2)

Conversely, if

P

(
lim sup

n→∞
|Tn,n+nα |√|n|α log |n| < ∞

)
> 0, (2.3)

then (2.1) holds, EX = 0 and (2.2) holds with σ 2 = VarX.
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3. Preliminaries

We first observe that a partial sum Sn is a sum of |n| i.i.d. random variables, which implies that
distributional properties and various inequalities do not depend on the (partial) order of the index
set and thus remain valid “automatically”. However, the Lévy inequalities, for example, concern
the distribution of maxk≤n Sk and here the structure of the index set enters.

Lemma 3.1. Suppose that {Xk,k ∈ Zd+} are independent random variables with mean 0 and
partial sums Sn = ∑

k≤n Xk.

(a) If, in addition, the summands are symmetric, then

P

(
max
k≤n

Sk > x

)
≤ 2dP (Sn > x).

(b) If the variances are finite, then

P

(
max
k≤n

Sk > x

)
≤ 2dP

(
Sn > x − d

√
2 Var(Sn)

)
.

The proof is based on induction over the dimensions. For details (in the i.i.d. case), see [8],
Lemma 2.3. Two-sided versions are immediate.

We also need relations between tail probabilities and moments analogous to the one-
dimensional

E|X| < ∞ ⇐⇒
∞∑

n=1

P(|X| > n) < ∞.

More precisely, we wish to find the necessary moment condition to ensure that∑
n

P(|X| > |n|) < ∞. (3.1)

For this, it turns out that the quantities

d(j) = Card{k : |k| = j} and M(j) = Card{k : |k| ≤ j}
and their asymptotics

M(j)

j (log j)d−1
→ 1

(d − 1)! as j → ∞ (3.2)

and

d(j) = o(jδ) for any δ > 0 as j → ∞ (3.3)

play a crucial role. We refer [12], Chapter XVIII and [21], relation (12.1.1) (for the case d = 2).
The quantity d(j) itself has no pleasant asymptotics in the sense that lim infj→∞ d(j) = d and
lim supj→∞ d(j) = +∞.
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We shall also exploit the fact that all terms in expressions such as the sum in (3.1) with equi-
sized indices are equal, which implies that

∑
n

P(|X| > |n|) =
∞∑

j=1

∑
|n|=j

d(j)P (|X| > j) (3.4)

in that particular case.
This fact, partial summation and (3.2) yield the first part of the following lemma; see also

[17]. The second part is a consequence of the fact that the inverse of the function y = xα(logx)κ

behaves asymptotically like x = y1/α(logy)−(κ/α) (except for some constant factor(s)).

Lemma 3.2. Let α > 0 and κ ∈ R and suppose that {Xk,k ∈ Zd+} are i.i.d. random variables
with mean 0 and partial sums Sn = ∑

k≤n Xk. Then

∑
n

P
(|X| > |n|α(log |n|)κ)

< ∞ ⇐⇒ E|X|1/α(log+ |X|)d−1−κ/α < ∞.

For purely numerical sequences, we have the following

Lemma 3.3. Let κ ≥ 1, θ > 0 and η ∈ R.

∞∑
i=2

∑
{n:|n|=iκ (log i)η}

1

|n|θ =
∞∑
i=2

d(iκ(log i)η)

iκθ (log i)ηθ

⎧⎪⎨
⎪⎩

< ∞, when θ >
1

κ
,

= ∞, when θ <
1

κ
.

Proof. Recalling (3.4), the convergence part follows from (3.3) and the divergence part from the
fact that d(i) ≥ d for all i. �

4. Truncation and exponential bounds

The typical pattern in proving results of the LIL-type requires two truncations; the first to match
the Kolmogorov exponential bounds (see, e.g., [11], Section 8.2) and the second to match the
moment requirements.

To this end, let δ be small, let

bn = b|n| = σδ

ε

√|n|α
log |n| (4.1)

and set

X′
n = XnI {|Xn| ≤ bn}, X′′

n = XnI
{
bn < |Xn| < δ

√|n|α log |n|},
X′′′

n = XnI
{|Xn| ≥ δ

√|n|α log |n|}.
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In the following, all objects with primes or multiple primes refer to the respective truncated
summands.

Since truncation destroys centering, we obtain, using standard procedures and noting that
EX = 0,

|EX′
k| = ∣∣−EXkI {|Xk| > bk}∣∣ ≤ E|X|I {|Xk| > bk} ≤ EX2(log+ |X|)1−α/2I {|X| > bk}

bk(logbk)1−α/2

so that

|ET ′
n,n+nα | ≤

∑
n≤k≤n+nα

EX2(log+ |X|)1−α/2I {|X| > bk}
bk(logbk)1−α/2

≤ |n|α · EX2(log+ |X|)1−α/2I {|X| > bn}
bn(logbn)1−α/2

(4.2)
≤ C

√|n|α(log |n|)α · EX2(log+ |X|)1−α/2I {|X| > bn}
= o

(√|n|α log |n|) as n → ∞.

Moreover,

VarXn ≤ EX2
n ≤ EX2 = σ 2

so that

Var(T ′
n,n+nα ) ≤ |n|ασ 2. (4.3)

An application of the Kolmogorov upper exponential bound (see, e.g., [11], Lemma 8.2.1) with
x = ε(1 − δ)

√
2 log |n| and cn = 2δ/x (note that |X′

k| = o(cn

√
Var(Tn+nα )) for n ≤ k ≤ n + nα),

together with (4.2) and (4.3), now yields

P
(|T ′

n,n+nα | > ε
√

2|n|α log |n|)
≤ P

(|T ′
n,n+nα − ET ′

n,n+nα | > ε(1 − δ)
√

2|n|α log |n|)
≤ P

(
|T ′

n,n+nα − ET ′
n,n+nα | > ε(1 − δ)

σ

√
2 Var(T ′

n,n+nα ) log |n|
)

(4.4)

≤ exp

{
−2ε2(1 − δ)2

2σ 2
log |n|(1 − δ)

}

= |n|−(ε2(1−δ)3)/σ 2
.

In order to apply the lower exponential bound (see, e.g., [11], Lemma 8.2.2) we first need a lower
bound for the truncated variances:

VarX′
n = EX′

n
2 − (EX′

n)2 = EX2 − EX2I {|Xn| > bn} − (EX′
n)2

≥ σ 2 − 2EX2I {|Xn| > bn} > σ 2(1 − δ)
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for |n| large, so that

Var(T ′
n,n+nα ) ≥ |n|ασ 2(1 − δ) for |n| large. (4.5)

It now follows that for any γ > 0,

P
(
T ′

n,n+nα > ε
√

2|n|α log |n|)
≥ P

(
T ′

n,n+nα − ET ′
n,n+nα > ε(1 + δ)

√
2|n|α log |n|)

≥ P

(
T ′

n,n+nα − ET ′
n,n+nα >

ε(1 + δ)

σ
√

(1 − δ)

√
2 Var(T ′

n,n+nα ) log |n|
)

(4.6)

≥ exp

{
−2ε2(1 + δ)2

2σ 2(1 − δ)
log |n|(1 + γ )

}

= |n|−(ε2(1+δ)2(1+γ ))/(σ 2(1−δ)) for |n| large.

5. Proof of Theorem 2.1

We follow the general scheme of [15], although some of the technicalities become more compli-
cated due to the more complicated index set.

5.1. Sufficiency – the upper bound

We begin by taking care of the double- and triple-primed contributions, after which we provide a
convergent upper Borel–Cantelli sum for the single-primed contribution over a suitably chosen
subset of points in Zd+. After this, we apply the first Borel–Cantelli lemma to this subset and then
“fill the gaps” in order to include arbitrary windows.

5.1.1. T ′′
n,n+nα

In this subsection, we establish the fact that

lim sup
n→∞

|T ′′
n,n+nα |√|n|α log |n| ≤ δ

1 − α
a.s. (5.1)

In order for |T ′′
n,n+nα |, to surpass the level η

√|n|α log |n|, it is necessary that at least N ≥ η/δ of
the X′′’s are non-zero, which, by stretching the truncation bounds to the extremes, implies that

P
(|T ′′

n,n+nα | > η
√|n|α log |n|) ≤

( |n|α
N

)(
P

(
bn < |X| < δ

√
(|n| + |n|α) log(|n| + |n|α)

))N

≤ |n|αN
(
P(|X| > C|n|α/2/ log |n|))N
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≤ C|n|αN

(
E|X|2/α(log+ |X|)d−1−1/α

(|n|α/2/ log |n|)2/α(log |n|)d−1−1/α

)N

= C
(log |n|)N((3/α)+1−d)

|n|N(1−α)
.

Since the sum of the probabilities converges whenever N(1 − α) > 1, considering that, in addi-
tion, Nδ ≥ η, we have shown that

∑
n

P
(|T ′′

n,n+nα | > η
√|n|α log |n|) < ∞ for all η >

δ

1 − α
,

which establishes (5.1) via the first Borel–Cantelli lemma.

5.1.2. T ′′′
n,n+nα

Next, we show that

lim
n→∞

|T ′′′
n,n+nα |√|n|α log |n| = 0 a.s. (5.2)

This is easier, since, in order for |T ′′′
n,n+nα |’s to surpass the level η

√|n|α log |n| infinitely often,
it is necessary that infinitely many of the X′′′’s are non-zero. However, via an appeal to the first
Borel–Cantelli lemma, the latter event has zero probability since

∑
n

P
(|Xn| > η

√|n|α log |n|) =
∑

n

P
(|X| > η

√|n|α log |n|) < ∞

if and only if (2.1) holds; recall Lemma 3.2.

5.1.3. T ′
n,n+nα

As for T ′
n,n+nα , we must resort to subsequences. Set λ1 = 1, λ2 = 2 and, further,

λi =
(

i

log i

)1/(1−α)

, i = 3,4, . . . , and � = {λi, i ≥ 1}.

Our attention here is on the subset of points n = (n1, n2, . . . , nd) ∈ Zd+ such that nk ∈ �, that is,
nk = λik for all k = 1,2, . . . , d, in short n ∈ �.

Suppose that n ∈ � and set i = ∏d
k=1 ik . This implies, in particular, that ik ≤ i and that log ik ≤

log i for all k so that

|n| =
d∏

k=1

λk =
( ∏d

k=1 ik∏d
k=1 log ik

)1/(1−α)

≥ i1/(1−α)

(log i)d/(1−α)
.
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With this and (3.3) in mind, the estimate (4.4) over the subset � now yields

∑
{n∈�}

P
(|T ′

n,n+nα | > ε
√

2|n|α log |n|)

≤
∑

{n∈�}
|n|−(ε2(1−δ)3)/σ 2 ≤

∑
i

∑
|∏d

k=1 ik |=i

|n|−(ε2(1−δ)3)/σ 2

(5.3)

≤
∑

i

d(i)

(
i1/(1−α)

(log i)d/(1−α)

)−(ε2(1−δ)3)/(σ 2)

≤ C +
∑
i≥i0

d(i)i−(ε2((1−δ)3−2δ))/(σ 2(1−α)) < ∞

for ε > σ
√

1−α

(1−δ)3−2δ
(where i0 was chosen such that (log i)d(1−δ)3 ≤ iδ and d(i) ≤

iδ(ε
2(1−δ)3)/(σ 2(1−α)) for i ≥ i0).

5.1.4. Combining the contributions

We first note that an application of the first Borel–Cantelli lemma to (5.3) provides an upper
bound for lim supT ′

n,n+nα as n → ∞ through the subset �. More precisely,

lim sup
n→∞
{n∈�}

|T ′
n,n+nα |√

2|n|α log |n| ≤ σ

√
1 − α

(1 − δ)3 − 2δ
a.s. (5.4)

Combining this with (5.1) and (5.2) now yields

lim sup
n→∞
{n∈�}

|Tn,n+nα |√
2|n|α log |n| ≤ σ

√
1 − α

(1 − δ)3 − 2δ
+ δ

1 − α
a.s.,

which, due to the arbitrary nature of δ, tells us that

lim sup
n→∞
{n∈�}

|Tn,n+nα |√
2|n|α log |n| ≤ σ

√
1 − α a.s. (5.5)

5.1.5. Filling the gaps

Thus far, we have shown that the lim sup for a special subsequence is as desired. We must now
show that the lim sup remains the same for an arbitrary sequence. For the usual LIL, this is typi-
cally done by studying the gaps between subsequence points with the aid of the Lévy inequalities.
Here, however, we must proceed differently.
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Since the procedure is the same in all dimensions, we restrict ourselves to carrying out the
details for the case d = 2. Since, in the following, we shall use the letters m and n for x- and
y-coordinates, respectively, we set

mj = nj = λj , j ≥ 1,

that is, the points (mj ,nk) for j, k = 1,2, . . . are the Southwest corners of the windows we have
considered thus far.

The first step is to show that the selected windows overlap, that is, that they cover all of Zd+.
For this purpose, it suffices to consider squares. We thus wish to show that

mi + mα
i > mi+1 for all i,

that is, that

(
i

log i

)1/(1−α)

+
(

i

log i

)α/(1−α)

>

(
i + 1

log(i + 1)

)1/(1−α)

for all i ≥ 3, (5.6)

in other words, that the Northeast end-point of one square overlaps the Southwest end-point of
the following Northeast-square. This, however, follows from the fact that

(i/(log i))1/(1−α) + (i/(log i))α/(1−α)

((i + 1)/(log(i + 1)))1/(1−α)

=
(

i log(i + 1)

(i + 1) log i

)1/(1−α)

·
(

1 + log i

i

)

=
(

log(i + 1)

log i

)1/(1−α)

·
(

1 − 1

i + 1

)1/(1−α)

·
(

1 + log i

i

)1/(1−α)

≥
(

1 − 1

i + 1

)1/(1−α)

·
(

1 + log i

i

)1/(1−α)

≥
(

1 + 1

i

(
log i − i

i + 1
− log i

i(i + 1)

))1/(1−α)

> 1 for i ≥ 3.

Next, we select an arbitrary window,

T((m,n),(m+mα,n+nα)).

Since, trivially, we have nk +nα
k ≤ nk+1 +nα

k+1 (as well as mj +mα
j ≤ mj+1 +mα

j+1), it follows
that an arbitrary window is always contained in the union of (at most) four selected windows as
depicted in Figure 1.

The program for this subsubsection is (essentially) to show that the discrepancy between an
arbitrary window and the original ones is asymptotically negligible.
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Figure 1. A dotted arbitrary window.

From (5.4), we recall that

lim sup
n→∞

{n:|n|=λi }

|T ′
n,n+nα |√

2|n|α log |n| ≤ σ

√
1 − α

(1 − δ)3 − 2δ
a.s.

We wish to show that the same relation holds for the full subsequence, that is, that

lim sup
n→∞

|T ′
n,n+nα |√

2|n|α log |n| ≤ σ

√
1 − α

(1 − δ)3 − 2δ
a.s.,

which, remembering that we are restricting ourselves to the case d = 2, transforms into

lim sup
j,k→∞

∑mj +mα
j

i1=mj

∑nk+nα
k

i2=nk
X′

i1,i2√
2mα

j nα
k log(mjnk)

≤ σ

√
1 − α

(1 − δ)3 − 2δ
a.s.

by showing that

lim sup
j,k→∞

max
mj <m≤mj+1
nk<n≤nj+1

∣∣∣∣
∑m+mα

i1=m

∑n+nα

i2=n X′
i1,i2√

2mαnα log(mn)
−

∑mj +mα
j

i1=mj

∑nk+nα
k

i2=nk
X′

i1,i2√
2mα

j nα
k log(mjnk)

∣∣∣∣ = 0 a.s.
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However, since nk+1/nk → 1 as k → ∞ (and mj+1/mj → 1 as j → ∞) it suffices to show, say,
that

lim sup
j,k→∞

max
mj <m≤mj+1
nk<n≤nk+1

|∑m+mα

i1=m

∑n+nα

i2=n X′
i1,i2

− ∑mj +mα
j

i1=mj

∑nk+nα
k

i2=nk
X′

i1,i2
|√

mα
j nα

k log(mjnk)
= 0 a.s. (5.7)

By combining this with our previous results concerning T ′′
n,n+nα and T ′′′

n,n+nα , as in the previ-
ous subsubsection, we are then in the position to conclude that relation (5.5) holds for the full
sequence, that is,

lim sup
n→∞

|Tn,n+nα |√
2|n|α log |n| ≤ σ

√
1 − α a.s.,

as desired (since now d = 2).
In order to pursue our task, we separate the index set into 3 pieces (since d = 2) depending on

whether the arbitrary window is located in “the center” or “near” one of the coordinate axes (for
a similar discussion, cf. [8], Section 4).

The center; j, k ≥ M , M large

Proof of 5.7. Let Dm,n denote the random variable in the numerator of (5.7), that is, set

Dm,n =
m+mα∑

i1=m+1

n+nα∑
i2=n+1

X′
i1,i2

−
mj +mα

j∑
i1=mj +1

nk+nα
k∑

i2=nk+1

X′
i1,i2

=
m+mα∑

i1=mj +mα
j +1

n+nα∑
i2=n+1

X′
i1,i2

+
mj +mα

j∑
i1=m+1

n+nα∑
i2=nk+nα

k +1

X′
i1,i2

(5.8)

−
mj +mα

j∑
i1=mj +1

n∑
i2=nk+1

X′
i1,i2

−
m∑

i1=mj +1

nk+nα
k∑

i2=n+1

X′
i1,i2

.

The corresponding random variables are located in the shaded area in Figure 2.
As for the truncated means and variances, we recall that

EX′
k = o

(√
log(|k|)/|k|α)

as k → ∞, and that VarX′
k ≤ E(X′

k)2 ≤ σ 2,

which, in the present case, means that

EX′
i1,i2

= o
(√

log(mjnk)/(m
α
j nα

k )
)

as j, k → ∞, and that VarX′
i1,i2

≤ σ 2, (5.9)

uniformly in i1 ≥ mj and i2 ≥ nk .
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Figure 2. The shaded difference.

In order to compute the mean and variance of Dm,n, we need an estimate of the number of
summands involved in (5.8).

As a preliminary, we note that, via the mean value theorem,

mj+1 − mj =
(

j + 1

log(j + 1)

)1/(1−α)

−
(

j

log j

)1/(1−α)

∼ 1

1 − α

jα/(1−α)

(log j)1/(1−α)
as j → ∞,

mα
j+1 − mα

j =
(

j + 1

log(j + 1)

)α/(1−α)

−
(

j

log j

)α/(1−α)

∼ α

1 − α

j(2α−1)/(1−α)

(log j)α/(1−α)
as j → ∞.

Since 2α − 1 < α, we also note that

mα
j+1 − mα

j = o(mj+1 − mj) as j → ∞.

Analogous relations obviously also hold for nk+1 − nk and nα
k+1 − nα

k .
Using all of this, we find that the number of summands in (5.8) equals

Card(Dm,n) = (m + mα − mj − mα
j )nα + (mj + mα

j − m)(n + nα − nk − nα
k )

+ mα
j (n − nk) + (m − mj)(nk + nα

k − n)

≤ (mj+1 + mα
j+1 − mj − mα

j )nk+1 + mα
j (nk+1 + nα

k+1 − nk − nα
k )
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+ mα
j (nk+1 − nk) + (mj+1 − mj)n

α
k

∼ C
jα/(1−α)

(log j)1/(1−α)

(
k

logk

)α/(1−α)

+ kα(1−α)

(logk)1/(1−α)

(
j

log j

)α/(1−α)

= Cmα
j nα

k

(
1

log j
+ 1

logk

)
as j, k → ∞.

Combining this with the estimate for the truncated expectations and variances in (5.9), we con-
clude that, for mj ≤ m ≤ mj+1, nk ≤ n ≤ nk+1 and j, k → ∞,

E(Dm,n) = o

(√
mα

j nα
k log(mjnk)

(
1

log j
+ 1

logk

))

and

Var(Dm,n) ≤ Cmα
j nα

k

(
1

log j
+ 1

logk

)
σ 2.

Now, let η > 0 be arbitrarily small. Using the upper exponential inequalities, we obtain, for j, k

large,

P

( |Dm,n|√
mα

j nα
k log(mjnk)

> 2η

)

= P

(
|Dm,n − EDm,n| > η

√
mα

j nα
k log(mjnk)

VarDm,n

· √VarDm,n

)

≤ P

(
|Dm,n − EDm,n| > Cη

√
log j logk log(mjnk)

log j + logk
· √VarDm,n

)

∼ P
(|Dm,n − EDm,n| > Cη

√
log j logk

√
VarDm,n

)
≤ exp

{
−1

2
Cη2 log j logk

}
,

independent of (n,m) ∈ [mj ,mj+1] × [nk,nk+1]. Next, let M large be given and let j, k > e2M .
Then,

log j logk ≥ M(log j + logk),

which implies that

exp
{− 1

2Cη2 log j logk
} ≤ exp

{− 1
2Cη2M(log j + logk)

} = (jk)−Cη2M
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and, hence, that

P

(
max

mj <m≤mj+1
nk<n≤nk+1

|Dm,n|√
mα

j nα
k log(mjnk)

> 2η

)

≤ (mj+1 − mj)(nk+1 − nk) max
mj <m≤mj+1
nk<n≤nj+1

P

( |Dm,n|√
mα

j nα
k log(mjnk)

> 2η

)

≤ C
jα/(1−α)

(log j)1/(1−α)

kα/(1−α)

(logk)1/(1−α)
(kj)−Cη2M

≤ C(jk)−Cη2M,

so that, by choosing M sufficiently large that Cη2M > 1, we may finally conclude that

∑
j,k

P

(
max

mj <m≤mj+1
nk<n≤nk+1

|Dm,n|√
mα

j nα
k log(mjnk)

> η

)
< ∞ for any η > 0,

which, in turn, verifies (5.7) – for an arbitrary “central” window. �

The case k ≤ M , M large

For the “boundary” cases, we consider a denser subsequence, namely

Aj,k =
{
(j, k) ∈ Z2+ : mj =

(
j

log j

)1/(1−α)

, j ≥ 3, and k = 1,2, . . . ,M

}
.

A consequence of this is that additional windows are involved so that we must first convince
ourselves that the upper bound of the lim sup of the thus chosen subset remains the same. Since,
as we have seen, the double- and triple-primed contributions do not contribute, it follows that it
suffices to investigate T ′

n,n+nα . In fact, borrowing from (4.4), we have, for n = (mj , k) large,

P
(|T ′

n,n+nα | > ε
√

2nα log |n|) ≤ |n|−(ε2(1−δ)3)/σ 2 = (mjk)−(ε2(1−δ)3)/σ 2

so that ∑
{n=(j,k)∈Aj,k}

P
(|T ′

n,n+nα | > ε
√

2nα log |n|)

≤
∞∑

j=3

M∑
k=1

((
j

log j

)1/(1−α)

k

)−(ε2(1−δ)3)/σ 2

≤ M̃

∞∑
j=3

(
j

log j

)−(ε2(1−δ)3)/(σ 2(1−α))

< ∞ for ε >

√
σ 2(1 − α)

(1 − δ)3
,
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which is the same as

lim sup
j→∞

{(j,k)∈Aj,k}

∑nj +nα
j

i1=nj

∑k+kα

i2=k X′
i1,i2√

2nα
j kα log(nj k)

≤ σ

√
1 − α

(1 − δ)3
a.s. (5.10)

To complete the proof for this case, it remains to establish the analog of (5.7), that is, that

lim sup
j→∞

max
mj <m≤mj+1

n≤M

|∑m+mα

i1=m

∑n+nα

i2=n X′
i1,i2

− ∑mj +mα
j

i1=mj

∑n+nα

i2=n X′
i1,i2

|√
mα

j nα log(mjn)
= 0 a.s. (5.11)

Proof of (5.11). With Dm,n as the random variable in the numerator of (5.11), we have

Dm,n =
m+mα∑

i1=m+1

n+nα∑
i2=n+1

X′
i1,i2

−
mj +mα

j∑
i1=mj +1

n+nα∑
i2=n

X′
i1,i2

=
m∑

i1=mj

n+nα∑
i2=n+1

X′
i1,i2

+
m+mα∑

i1=mj +mα
j

n+nα∑
i2=n+1

X′
i1,i2

,

which corresponds to the shaded area in Figure 3.
Continuing as before, we find that

Card(Dm,n) = (m + mα − mj − mα
j )nα + (m − mj)n

α

≤ (mj+1 + mα
j+1 − mj − mα

j )nα + (mj+1 − mj)n
α

∼ C
jα/(1−α)

(log j)1/(1−α)
nα = C

mα
j nα

log j
.

Combining this with the estimate for the truncated expectations (which, in this case, corresponds

to EXi1,n = o(
√

log(mjn)/mα
j nα)) and variances in (5.9), we conclude that, for mj ≤ m ≤ mj+1,

Figure 3. The shaded difference.
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n ≤ M and j, n → ∞,

E(Dm,n) = o

(√
mα

j nα log(mjn)

log j

)
and Var(Dm,n) ≤ C

mα
j nα

log j
σ 2.

The exponential inequalities therefore yield

P

( |Dm,n|√
mα

j nα log(mjn)
> 2η

)
= P

(
|Dm,n − EDm,n| > η

√
mα

j nα log(mjn)

VarDm,n

· √VarDm,n

)

≤ P
(|Dm,n − EDm,n| > Cη

√
log j log(mjn) · √VarDm,n

)
∼ P

(|Dm,n − EDm,n| > Cη log j
√

logn
√

VarDm,n

)
≤ exp

{
−1

2
Cη2(log j)2 logn

}
≤ exp

{
−1

2
Cη2(log j)2

}

so that

P

(
max

mj <m≤mj+1

n≤M

|Dm,n|√
mα

j nα log(mjn)
> 2η

)

≤ (mj+1 − mj)M max
mj <m≤mj+1

n≤M

P

( |Dm,n|√
mα

j nα log(mjn)
> 2η

)

≤ C
jα/(1−α)

(log j)1/(1−α)
exp

{
−1

2
Cη2(log j)2

}

≤ exp

{
−1

2
Cη2(log j)2 + 1

1 − α
log j

}

≤ exp

{
−1

2
Cη2(log j)2

}
,

from which we finally conclude that

∑
j

P

(
max

mj <m≤mj+1

n≤M

|Dm,n|√
mα

j nα log(mjn)
> η

)
< ∞ for any η > 0,

which, in turn, verifies (5.11).

The case j ≤ M , M large

This part clearly follows in the same way as the previous one by interchanging the roles of j

and k. �
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This, finally, concludes the proof of the upper bound

lim sup
n→∞

|Tn,n+nα |√|n|α log |n| ≤ σ
√

1 − α a.s. (5.12)

5.2. Sufficiency – the lower bound

We first derive a divergent Borel–Cantelli sum for the single-primed contributions restricted to
the subsets of windows based on the subsequence λ1 = 1, λ2 = 2 and λi = i1/(1−α), i ≥ 3.
More precisely, in dimension 2, the Southwest coordinates are (i1/(1−α), k1/(1−α)), the horizontal
widths are iα/(1−α) and the vertical widths are kα/(1−α), i, k ≥ 1. (See Figure 4.) In order to apply
the second Borel–Cantelli lemma to this subset, we then show that this provides an independent
subset of windows. Combining this with (5.1) and (5.2) provides a lower bound for the subset
and, further, for the whole set.

5.2.1. T ′
n,n+nα

Let A denote the set of Southwest coordinates involved, that is, set

A = {
n ∈ Z2+ : n = (

i
1/(1−α)

1 , i
1/(1−α)

2

)
, i1, i2 ≥ 1

}
.

An application of (4.6) now tells us that

Figure 4. Independence of windows.
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∑
{n∈A}

P
(
T ′

n,n+nα > ε
√|n|α log |n|) ≥

∑
{n∈A}

|n|−(ε2(1+δ)2(1+γ ))/(σ 2(1−δ))

=
∑

i

∑
{i1,i2:i1·i2=i}

|n|−(ε2(1+δ)2(1+γ ))/(σ 2(1−δ)) (5.13)

=
∑

i

d(i)i−(ε2(1+δ)2(1+γ ))/(σ 2(1−α)(1−δ)) = ∞

for all ε < σ
√

(1−α)(1−δ)

(1+δ)2(1+γ )
.

5.2.2. Independence

In order to prove that the selected windows are disjoint, it suffices to check that, throughout, each
coordinate with index i + 1 is larger than the corresponding coordinate of n + nα with index i.
This means that we must show that

i1/(1−α) + iα/(1−α) < (i + 1)1/(1−α) for all i. (5.14)

However, this follows from the fact that

i1/(1−α) + iα/(1−α)

(i + 1)1/(1−α)
=

(
i

i + 1

)1/(1−α)

·
(

1 + 1

i

)
=

(
i

i + 1

)α/(1−α)

< 1.

5.2.3. Combining the contributions

We have just shown that the selected subset of windows is disjoint and, hence, that the events con-
sidered in (5.13) are independent. An application of the second Borel–Cantelli lemma therefore
tells us that

lim sup
n→∞

{n:n∈A}

T ′
n,n+nα√|n|α log |n| ≥ σ

√
(1 − α)(1 − δ)

(1 + δ)2(1 + γ )
.

Combining this with (5.1) and (5.2), it follows that

lim sup
n→∞

{n:n∈A}

Tn,n+nα√|n|α log |n| ≥ σ

√
(1 − α)(1 − δ)

(1 + δ)2(1 + γ )
− δ

1 − α
a.s.

Therefore, due to the arbitrary nature of δ and γ , it follows that

lim sup
n→∞

{n:n∈A}

Tn,n+nα√|n|α log |n| ≥ σ
√

1 − α a.s. (5.15)
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and, since the overall lim sup is obviously at least as large as the selected one, that

lim sup
n→∞

Tn,n+nα√|n|α log |n| ≥ σ
√

1 − α a.s. (5.16)

5.2.4. Final step

The proof of the sufficiency is completed by combining (5.12) and (5.16).

5.3. Necessity

If (2.3) holds, then, by the zero–one law, the probability that the lim sup is finite is 0 or 1. Hence,
being positive, it equals 1. Consequently (cf. [15], page 438 or [17,18]),

lim sup
n→∞

|Xn|√|n|α log |n| < ∞ a.s.,

from which it follows, via the second Borel–Cantelli lemma and the i.i.d. assumption, that

∞ >
∑

n

P
(|Xn| > √|n|α log |n|)

=
∑

n

P
(|X| > √|n|α log |n|).

This verifies (2.1) in view of Lemma 3.2 (with β = 1).
An application of the sufficiency part finally tells us that (2.2) holds with σ 2 = VarX.

6. An LSL for subsequences

As we have seen, it follows from (5.1) and (5.2) that the values of the extreme limit points are
determined by the behaviour of T ′

n,n+nα . In this section, we shall exploit this fact further and
prove an LSL for subsequences (paralleling [10], where this was done for the classical LIL; cf.
also [11], Section 8.5).

To this end, we replace the set � in the computation of the upper bound by the set

�∗ = {
λ∗

i = λ
β
i = iβ/(1−α), i ≥ 1

}
(6.1)

and, consequently, � by �∗.
Now, if all coordinates of n belong to �∗ (in short, n ∈ �∗), then so does |n|, that is, the

“size” of the points in Zd+. This means that
∑

{n∈�∗} = ∑
{n:|n|∈�∗}, that is, summation runs over

a sequence of hyperbolas approaching infinity.
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With this in mind, an inspection of the computation of the upper bound of T ′
n,n+nα , together

with an application of Lemma 3.3 with κ = β/(1 − α), θ = ε2(1 − δ)3/σ 2 and η = 0, reveals
that formula (5.3) becomes∑

{n∈�∗}
P

(|T ′
n,n+nα | > ε

√|n|α log |n|)

=
∑

i

∑
{n:|n|=iβ/(1−α)}

P
(|T ′

n,n+nα | > ε
√|n|α log |n|)

≤
∑

i

∑
{n:|n|=iβ/(1−α)}

|n|−(ε2(1−δ)3)/σ 2
< ∞ (6.2)

for all ε > σ
√

1−α

β(1−δ)3 . Moreover, with i raised to the various powers in the computations of the

lower bound replaced by i raised to β times the same powers and the index set A replaced by

A∗ = {
n ∈ Z2+ : n = (

iβ/(1−α), kβ/(1−α)
)
, i ≥ 1

}
, (6.3)

(5.13) transforms into∑
{n∈A∗}

P
(
T ′

n,n+nα > ε
√|n|α log |n|) ≥

∑
{n∈A∗}

|n|−(ε2β(1+δ)2(1+γ ))/(σ 2(1−δ))

(6.4)
=

∑
i

d(i)i−(ε2β(1+δ)2(1+γ ))/(σ 2(1−α)(1−δ)) = ∞

for all ε < σ
√

(1−α)(1−δ)

β(1+δ)2(1+γ )
.

By combining these estimates with (5.1) and (5.2) as in the proof of Theorem 2.1, we obtain
the following LSL for subsequences.

Theorem 6.1. Suppose that {Xk,k ∈ Zd+} are i.i.d. random variables with mean 0 and finite
variance σ 2, set Sn = ∑

k≤n Xk, n ∈ Zd+, and let �∗ be as defined in (6.1). If

EX2/α(log+ |X|)d−1−1/α < ∞, (6.5)

where 0 < α < 1, then, for β > 1,

lim sup
n→∞
{n∈�∗}

(
lim inf
n→∞
{n∈�∗}

)
Tn,n+nα√

2|n|α log |n| = σ

√
1 − α

β

(
−σ

√
1 − α

β

)
a.s. (6.6)

Conversely, if

P

(
lim sup

n→∞
{n∈�∗}

|Tn,n+nα |√|n|α log |n| < ∞
)

> 0, (6.7)
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then (6.5) holds, EX = 0 and (6.6) holds with σ 2 = VarX.

The theorem tells us that the extreme limit points get closer and approach zero as β increases,
that is, the thinner the subsequence, the less wild are the observable oscillations.

Proof of Theorem 6.1. Since we consider subsequences, there are no gaps to fill. The only thing
to check for the sufficiency is thus the independence for the lower bound, which is “immediate”
since the subsequence here is sparser than that in (5.14). Indeed,

(i + 1)β/(1−α) = iβ/(1−α)

(
1 + 1

i

)β/(1−α)

> iβ/(1−α)

(
1 + β

1 − α

1

i

)

= iβ/(1−α) + i(β−1+α)/(1−α) ≥ iβ/(1−α) + i(βα)/(1−α).

The converse follows as in Theorem 2.1, so there is nothing more to prove there. �

Remark 6.1. An even closer inspection of the proofs shows that, in fact, Theorem 6.1 remains
true with iβ/(1−α) replaced by ( i

log i
)β/(1−α) or even by iβ1/(1−α)(log i)β2 for any β1 > 1 and

β2 ∈ R, and, more generally, by iβ/(1−α)�(i), where β > 1 and � is a slowly varying function.

Remark 6.2. The results above show that the set of limit points of
Tn,n+nα√

2|n|α log |n| is given by the

whole interval [−σ
√

1 − α,σ
√

1 − α].

Remark 6.3. Theorem 6.1 also holds for the case d = 1, thereby providing an extension to sub-
sequences of Lai’s original result.

As a special case, we mention the following result which tells us what happens if we consider
the points along the diagonal. We leave the details to the reader.

Theorem 6.2. Under the assumptions of Theorem 6.1,

lim sup
n→∞

{n=(iβ/(1−α),...,iβ/(1−α))}

(
lim inf
n→∞

{n=(iβ/(1−α),...,iβ/(1−α))}

)
Tn,n+nα√

2|n|α log |n|

= σ

√
1 − α

dβ

(
−σ

√
1 − α

dβ

)
a.s.

The converse is as before.

7. Maximal windows

An LSL for the sequence of maximal windows or delayed sums is now easily attainable with the
aid of the Lévy inequalities; see Lai [15] for the case d = 1.
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Theorem 7.1. Suppose that {Xk,k ∈ Zd+} are i.i.d. random variables with mean 0 and finite
variance σ 2, and set Sn = ∑

k≤n Xk, n ∈ Zd+. If (2.1) holds, then

lim sup
n→∞

max0≤k≤nα Tn,n+k√
2|n|α log |n| = σ

√
1 − α a.s. (7.1)

Conversely, if

P

(
lim sup

n→∞
max0≤k≤nα |Tn,n+k|√|n|α log |n| < ∞

)
> 0, (7.2)

then (2.1) holds, EX = 0 and (7.1) holds with σ 2 = VarX.

Proof. Since

|Tn,n+nα | ≤ max
0≤k≤nα

|Tn,n+k|,
the only implication that requires a proof is (2.1) ⇒ (7.1) and this is achieved with the aid of
the Lévy inequality Lemma 3.1(b), according to which

P

(
max0≤k≤nα |Tn,n+k|√|n|α log |n| > ε

)
= P

(
max

0≤k≤nα
|Tn,n+k| > ε

√|n|α log |n|
)

≤ 2dP
(|Tn,n+nα | > ε

√|n|α log |n| − d
√

2 Var(Tn,n+nα )
)

≤ 2dP
(|Tn,n+nα | > ε(1 − δ)

√|n|α log |n|)
for any δ > 0, provided n is sufficiently large. �

The LSL for subsequences carries over similarly.

Theorem 7.2. Suppose that {Xk,k ∈ Zd+} are i.i.d. random variables with mean 0 and finite
variance σ 2, and set Sn = ∑

k≤n Xk, n ∈ Zd+. If (2.1) holds, then, for β > 1,

lim sup
n→∞

{n:|n|=iβ/(1−α)}

max0≤k≤nα

{n:|n|=iβ/(1−α)}
Tn,n+k

√
2|n|α log |n| = σ

√
1 − α

β
a.s. (7.3)

Conversely, if

P

(
lim sup

n→∞
{n:|n|=iβ/(1−α)}

max0≤k≤nα

{n:|n|=iβ/(1−α)}
|Tn,n+k|

√|n|α log |n| < ∞
)

> 0, (7.4)

then (2.1) holds, EX = 0 and (7.3) holds with σ 2 = VarX.
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8. Additional results and remarks

In this closing section, we begin with some additional comments and remarks, after which we
close with an LIL-type result derived via the delta method, which, in turn, is applied to the LIL
as well as the LSL.

8.1. The set of limit points is independent of d

From the central limit theorem, we know that

Tn,n+nα√|n|α
d→N(0, σ 2) as n → ∞.

Moreover, the windows are disjoint (at least asymptotically). This means that, heuristically,

Tn,n+nα√|n|α log |n| = Tn,n+nα√|n|α · 1√
log |n| ≈ Vn√

log |n| ,

where {Vn,n ∈ Zd+} are i.i.d. N(0, σ 2)-distributed random variables. This implies, among

other-things, that one might expect {maxn
Tn,n+nα√|n|α log |n| ,n ∈ Zd+} to share the asymptotics of

{maxn
Vn√

log |n| ,n ∈ Zd+}, which would mean that, asymptotically, we are dealing with a sequence
of maxima of i.i.d. Gaussian random variables normalized by the logarithm of the number of
them, which, of course, does not depend on the structure of the index set.

For an interesting reference in the present context – maxima of Gaussian random fields – we
refer to [16].

8.2. On the choice of subsequences

In the course of the proofs, we have seen that the double- and triple-primed sums are negligible
and that the size of the oscillations depends on the primed sums along a suitably selected sub-
sequence. In the proofs of the LIL for sums, the exponential bounds are exponentials of iterated
logarithms, that is, powers of logarithms. In order to obtain a convergent sum (for the upper
bound), the natural choices of subsequences are geometrically increasing ones.

In our context, the exponential bounds are exponentials of single logarithms, that is, powers.
In order to obtain a convergent sum (for the upper bound), the natural choices of subsequences
are polynomially increasing ones.

We also recall that in connection with Theorem 6.1, we observed that the oscillations become
less wild as the subsequences get thinner.

8.3. Functional LSL’s

A further project might be to consider possible functional or Strassen versions of our results. For
references in the one-dimensional case, see, for example, [2,6].
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8.4. The LIL, the LSL and the delta method

The following application of the so-called delta method to the law of the iterated logarithm might
not be new. However, we have never seen it in the literature (cf., e.g., [11], page 349 in connection
with the central limit theorem).

Theorem 8.1. Suppose that {Un,n ≥ 1} is a sequence of random variables, for which there exist
positive sequences {an,n ≥ 1} and {bn,n ≥ 1} tending to infinity as n → ∞, such that

Un

bn

a.s.→ μ as n → ∞ (0 ≤ μ < ∞)

and

lim sup
n→∞

(
lim inf
n→∞

)
an

(
Un

bn

− μ

)
= 1 (−1) a.s. (8.1)

(i) If g is continuously differentiable at (in a neighbourhood of) μ and g′(μ) �= 0, then

lim sup
n→∞

(
lim inf
n→∞

)
an

(
g

(
Un

bn

)
− g(μ)

)
= +|g′(μ)| (−|g′(μ)|).

(ii) If g is m ≥ 2 times continuously differentiable at (in a neighbourhood of) μ, g(k)(μ) = 0,
k = 1,2, . . . ,m − 1, and g(m)(μ) > 0, say, then

lim sup
n→∞

(
lim inf
n→∞

)
a

m/2
n

(
g

(
Un

bn

)
− g(μ)

)
= + 1

m!g
(m)(μ)

(
− 1

m!g
(m)(μ)

)
,

if m is odd. If, on the other hand, m is even, then

lim sup
n→∞

a
m/2
n

(
g

(
Un

bn

)
− g(μ)

)
= + 1

m!g
(m)(μ).

Proof. (i) By Taylor expansion,

g

(
Un

bn

)
= g(μ) +

(
Un

bn

− μ

)
g′(θn),

where |θn − μ| ≤ |Un

bn
− μ|, so that

an

(
g

(
Un

bn

)
− g(μ)

)
= an

(
Un

bn

− μ

)
g′(θn),

and (i) follows.
(ii) Using second-order Taylor expansion, and recalling that g′(μ) = 0, we similarly obtain

a2
n

(
g

(
Un

bn

)
− g(μ)

)
= 1

2

(
an

(
Un

bn

− μ

))2

g′′(θn),
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which establishes (ii) in the case m = 2 and similarly in the other cases with higher order Taylor
expansions. Note that one loses the sign of (Un

bn
− μ) when m is even. �

Remark 8.1. In case the limit points in (8.1) are dense in [−1,1], the lim inf in case (ii) for
g(m)(μ) > 0 with m even is equal to zero.

As immediate corollaries, we obtain the following results related to the Hartman–Wintner LIL
([13] or, e.g., [11], Theorem 8.1.2) and Lai’s LSL for delayed sums [15], respectively.

Corollary 8.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean μ and finite
variance σ 2, and set Sn = ∑n

k=1 Xk , n ≥ 1.

(i) If g is continuously differentiable at (in a neighbourhood of) μ and g′(μ) �= 0, then

lim sup
n→∞

(
lim inf
n→∞

)√
n

log logn

(
g

(
Sn

n

)
− g(μ)

)
= +σ

√
2|g′(μ)| (−σ

√
2|g′(μ)|).

(ii) If g is m ≥ 2 times continuously differentiable at (in a neighbourhood of) μ, g(k)(μ) = 0,
k = 1,2, . . . ,m − 1, and g(m)(μ) > 0, say, then

lim sup
n→∞

(
lim inf
n→∞

)(
n

log logn

)m/2(
g

(
Sn

n

)
− g(μ)

)

= + 1

m!
(
σ
√

2
)m

g(m)(μ)

(
− 1

m!
(
σ
√

2
)m

g(m)(μ)

)
,

if m is odd. If, on the other hand, m is even, then

lim sup
n→∞

(
n

log logn

)m/2(
g

(
Sn

n

)
− g(μ)

)
= + 1

m!
(
σ
√

2
)m

g(m)(μ)

and

lim inf
n→∞

(
n

log logn

)m/2(
g

(
Sn

n

)
− g(μ)

)
= 0.

Proof. Use Theorem 8.1 with Un = Sn, bn = n, μ = EX and an =
√

n

2σ 2 log logn
, and apply the

strong law of large numbers and the Hartman–Wintner LIL in order to verify that the assumptions
are fulfilled. An appeal to Remark 8.1 completes the proof. �

Corollary 8.2. Let X,X1,X2, . . . be i.i.d. random variables with mean 0 and variance 1 and
suppose that E|X|2/α(log+ |X|)−1/α < ∞. Finally, set Tn,n+nα = ∑n+nα

k=n+1 Xk .



Delayed sums of random fields 275

(i) If g is continuously differentiable at (in a neighbourhood of) 0 and g′(0) �= 0, then

lim sup
n→∞

(
lim inf
n→∞

)√
nα

logn

(
g

(
Tn,n+nα

nα

)
− g(0)

)
= √

2|g′(0)| (−√
2|g′(0)|).

(ii) If g is m ≥ 2 times continuously differentiable at (in a neighbourhood of) μ, g(k)(μ) = 0,
k = 1,2, . . . ,m − 1, and g(m)(μ) > 0, say, then

lim sup
n→∞

(
lim inf
n→∞

)(
nα

logn

)m/2(
g

(
Tn,n+nα

nα

)
− g(0)

)

= + 1

m!2m/2g(m)(0)

(
− 1

m!2m/2g(m)(0)

)
,

if m is odd. If, on the other hand, m is even, then

lim sup
n→∞

(
nα

logn

)m/2(
g

(
Tn,n+nα

nα

)
− g(0)

)
= + 1

m!2m/2g(m)(0)

and

lim inf
n→∞

(
nα

logn

)m/2(
g

(
Tn,n+nα

nα

)
− g(0)

)
= 0.

Proof. Use Theorem 8.1 with Un = Tn,n+nα , bn = nα , μ = 0 and an =
√

nα

2 logn
, and apply

Chow’s strong law [5] and Lai’s LSL [15] in order to check the assumptions. For the case where
m is even, use results of this paper together with Remark 8.1. �
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