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ZARISKI-VAN KAMPEN THEOREMS FOR SINGULAR VARIETIES—

AN APPROACH VIA THE RELATIVE MONODROMY VARIATION
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Abstract

The classical Zariski-van Kampen theorem gives a presentation of the fundamental

group of the complement of a complex algebraic curve in P2. The first generalization

of this theorem to singular (quasi-projective) varieties was given by the first author.

In both cases, the relations are generated by the standard monodromy variation oper-

ators associated with the special members of a generic pencil of hyperplane sections.

In the present paper, we give a new generalization in which the relations are gen-

erated by the relative monodromy variation operators introduced by D. Chéniot and the

first author. The advantage of using the relative operators is not only to cover a larger

class of varieties but also to unify the Zariski-van Kampen type theorems for the funda-

mental group and for higher homotopy groups. In the special case of non-singular

varieties, the main result of this paper was conjectured by D. Chéniot and the first

author.

1. Introduction

Let X :¼ YnZ be a (possibly singular) quasi-projective variety in the com-
plex projective space Pn and let L be a generic hyperplane of Pn. By the
singular versions of the Lefschetz hyperplane section theorem (cf. [11, 13, 14, 16]),
we know that the pair ðX ;L \ X Þ is qðY ;ZÞ-connected for some integer qðY ;ZÞ
depending on the nature and the position of the singularities of Y and Z. For
instance, if X is a purely dimensional local complete intersection variety, then
qðY ;ZÞ ¼ dim X � 1 (cf. [17]). In the present paper, we are interested in the
special class of varieties for which the integer qðY ;ZÞ is equal to 1. (In par-
ticular, this includes local complete intersection varieties of pure dimension 2.)
For such a variety, the natural map

pqðL \ X ; x0Þ ! pqðX ; x0Þ
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is bijective for q ¼ 0 and surjective for q ¼ 1, where p1ð�Þ denotes the funda-
mental group and p0ð�Þ the set of path-connected components. Our goal is to
determine the kernel of the map p1ðL \ X ; x0Þ ! p1ðX ; x0Þ. In the special case
where X ¼ P2nC with C an algebraic curve, O. Zariski [27] and E. K. van
Kampen [19] showed that the kernel in question is generated by the standard
monodromy variation operators associated with the ‘‘special’’ members of a
generic pencil of line sections. (By special sections, we mean those arising from
the lines of the pencil which are tangent to the curve or that cross a singularity.)
Thus, combined with the surjectivity of the map p1ðL \ ðP2nCÞ; x0Þ ! p1ðP2nC;
x0Þ, the fundamental group p1ðP2nC; x0Þ is the quotient of p1ðL \ ðP2nCÞ; x0Þ by
the ‘‘monodromy relations’’, that is, by the normal subgroup of p1ðL \ ðP2nCÞ;
x0Þ generated by the standard monodromy variation operators.

The first generalization of the Zariski-van Kampen theorem to singular
varieties was given by the first author in [12]. There, as in the case of plane
curve complements, the kernel of the map p1ðL \ X ; x0Þ ! p1ðX ; x0Þ is generated
by the standard monodromy variation operators associated with the special
members of a generic pencil of hyperplane sections. For example, if X is the
complement of a curve C in a surface S of P3 with SnC non-singular, then the
result can be easily stated as follows. Consider a generic pencil P of hyperplanes
of P3 such that L A P. Write P0 for its base locus (i.e., P0 is the ðn� 2Þ-plane
given by the intersection of all the members of P), and assume that the natural
map

p0ðP0 \ ðSnCÞÞ ! p0ðL \ ðSnCÞÞð1:1Þ

is bijective. (Note that when S ¼ P2 this condition is always satisfied.) Under
these assumptions, Theorem 5.1 or Corollary 5.3 of [12] says that if x0 is a base
point in P0 \ ðSnCÞ, then the fundamental group p1ðSnC; x0Þ is the quotient of
the group p1ðL \ ðSnCÞ; x0Þ by the monodromy relations, that is, all the relations
of the form

Varhð½a�Þ :¼ ½a��1
hað½a�Þ ¼ ½a�1 � h � a� ¼ e;ð1:2Þ

where ½a� A p1ðL \ ðSnCÞ; x0Þ, e is the trivial element, and ha is the homo-
morphism induced in homotopy by a monodromy h associated with a special
hyperplane of the pencil. Note that h can always be chosen so that it is the
identity on P0 \ ðSnCÞ, and hence the composition of loops in (1.2) is well
defined.

A conjecture of D. Chéniot and the first author [7, §4] says that the above
mentioned result still holds true when the map (1.1) is not bijective provided that
we consider the action of the monodromies not only on the absolute loops of
L \ ðSnCÞ but also on the ‘‘relative’’ loops of L \ ðSnCÞ modulo P0 \ ðSnCÞ.
(Here, by a relative loop, we mean a path a : I :¼ ½0; 1� ! L \ ðSnCÞ with
að1Þ ¼ x0 (the base point) and að0Þ A P0 \ ðSnCÞ.) Precisely, as h is the identity
on P0 \ ðSnCÞ, the composition

a�1 � h � a : I ! L \ ðSnCÞ
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of the relative loops a�1 and h � a, defined by

a�1 � h � aðtÞ :¼ að1� 2tÞ for 0a ta 1=2;

h � að2t� 1Þ for 1=2a ta 1;

�
ð1:3Þ

is well defined and is an absolute loop based at x0 (i.e., a�1 � h � að0Þ ¼ a�1 �
h � að1Þ ¼ x0), even if a is a relative loop. Note that, in general, composing
relative loops does not make sense. The possibility to perform such a compo-
sition in our situation comes from the fact that h is the identity on P0 \ ðSnCÞ.
Observe that when a is an absolute loop, the relation (1.3) is nothing but the
standard composition of the absolute loops a�1 and h � a. The conjecture in
[7, §4] says that the result about p1ðSnC; x0Þ which we have mentioned above
still holds true when the map (1.1) is not bijective provided that we add all the
relations of the form

Varrelh ð½a�Þ :¼ ½a�1 � h � a� ¼ e

to the relations (1.2), with this time ½a� belonging to the relative homotopy set
p1ðL \ ðSnCÞ;P0 \ ðSnCÞ; x0Þ. (Note that, in general, this pointed set does not
have a group structure.)

In the present paper, we prove that this conjecture is true. Actually, we
prove a new generalization of the Zariski-van Kampen theorem which not only
implies the above conjecture (i.e., the non-singular case) but which also covers a
class of singular varieties larger than the class covered by Theorem 5.1 of [12].
Besides to obtain a larger class of varieties, another advantage of using the
relative operators is to unify the Zariski-van Kampen type theorems for the
fundamental group and for higher homotopy groups. (For details about higher
homotopy groups, we refer the reader to [7, 8, 20].)

Notation 1.1. Throughout, I denotes the unit interval ½0; 1�. If ðA;BÞ is a
pointed pair with base point b A B, we denote by F 1ðA;B; bÞ the set of relative
loops of A modulo B based at b. These are (continuous) maps a : I ! A such
that að0Þ A B and að1Þ ¼ b. We denote by F 1ðA; bÞ the set of loops of A based
at b—that is, maps a : I ! A such that að0Þ ¼ að1Þ ¼ b. We sometimes say
absolute loop instead of loop to emphasize the contrast with relative loops.

Given a in F 1ðA;B; bÞ (respectively, in F 1ðA; bÞ), we denote by ½a�A;B;b
(respectively, by ½a�A;b) the homotopy class of a in the pointed set p1ðA;B; bÞ
(respectively, in the fundamental group p1ðA; bÞ). When there is no ambiguity,
we omit the subscripts. If ½a�A;B;b ¼ ½b�A;B;b (respectively, ½a�A;b ¼ ½b�A;b), then

we use the expression ‘‘a and b are homotopic in ðA;B; bÞ (respectively, in
ðA; bÞ)’’. We write e for the trivial element of the group p1ðA; bÞ (i.e., the
homotopy class of the constant loop based at b). As usual, p0ðAÞ will denote the
set of path-connected components of A.

For any map g : ðA; bÞ ! ðA 0; b 0Þ of pointed sets (i.e., gðbÞ ¼ b 0), we denote
by ga : p1ðA; bÞ ! p1ðA 0; b 0Þ the homomorphism induced by g. By a natural
map, we mean the homomorphism induced by an inclusion map.
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Finally, we use standard notation from homotopy theory. For example, if a
and b are paths in A with að1Þ ¼ bð0Þ, then we write a � b (or simply ab) for the
composition or product of a and b, which is defined by

a � bðtÞ :¼ að2tÞ for 0a ta 1=2;

bð2t� 1Þ for 1=2a ta 1;

�
we denote by a�1 the ‘‘inverse path’’ to a, which is defined by a�1ðtÞ :¼ að1� tÞ;
and so on. For further details in homotopy theory, we refer the reader for
instance to [25, §15].

2. Standard and relative monodromy variation operators

Let X :¼ YnZ be a quasi-projective variety in Pn ðnb 2Þ, that is, Y is a
non-empty closed algebraic subset of Pn and Z is a proper closed algebraic subset
of Y . Pick a Whitney stratification X of Y such that Z is a union of strata, and
consider a projective hyperplane L of Pn transverse to (the strata of ) X. The
choice of such a hyperplane is generic. Then choose a pencil P of hyperplanes
of Pn so that its base locus P0 (which is also called the axis of P) is transverse to
X and such that L A P. The choice of such an ðn� 2Þ-plane P0 of Pn is gen-
eric inside the hyperplane L. Then all the members of P are transverse to X
except a finite number of them L1; . . . ;LN—so-called special hyperplanes of P.
Furthermore, for each Li ð1a iaNÞ, there is only a finite number of points
where Li is not transverse to X. Let us denote by Si the set of such points, and
let us write

S :¼
[

1aiaN

Si:

It is worth to observe that the intersection S \P0 is empty. Also, note that if L 0

is not a special hyperplane of P, then the pair ðL 0 \ X ;P0 \ X Þ is homeomorphic
to the pair ðL \ X ;P0 \ XÞ. For details we refer the reader to [5].

Now parametrize the elements of P by P1 as usual, and write l (respec-
tively, li) for the parameter corresponding to the generic hyperplane L (respec-
tively, to the special hyperplane Li). For each 1a iaN, pick a small closed
disc Di � P1 centred at li and fix a point li on its boundary qDi. Choose the

Di’s mutually disjoint. Finally, take a simple path ri in P1 joining l to li so
that:

(1) imðriÞ \Di ¼ flig;
(2) imðriÞ \ imðrjÞ ¼ flg if i0 j;
(3) imðriÞ \Dj ¼ j if i0 j.

Notation 2.1. For any subsets E � Pn and L � P1, we set

EL :¼
[
l AL

ðPðlÞ \ EÞ;
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where PðlÞ is the member of P with parameter l. For example, Xflg ¼
PðlÞ \ X ¼ L \ X . Hereafter, to simplify, we shall write Xl instead of Xflg.
Also, because of a frequent use of the section of X by the base locus P0 of the
pencil, we set

A :¼ P0 \ X :

Finally, throughout we shall write

P1� :¼ P1nfl1; . . . ; lNg:

2.1. Monodromy. For each 1a iaN, set Ki :¼ imðriÞ [Di, choose a loop
di : I ! qDi which runs once counterclockwise along the boundary of Di, starting
and ending at li, and consider the loop oi : I ! qKi along the boundary qKi of
Ki defined by the composition

oi :¼ ridir
�1
i :

In particular, we have oið0Þ ¼ oið1Þ ¼ l. By [6, Lemma 4.1], for each i, there
is an isotopy

Hi : Xl � I ! XqKi
; ðx; tÞ 7! Hiðx; tÞ;ð2:1Þ

satisfying the following properties:
(1) Hiðx; 0Þ ¼ x for any x A Xl;
(2) Hiðx; tÞ A XoiðtÞ for any x A Xl and any t A I ;
(3) for each t A I , the map Xl ! XoiðtÞ, defined by x 7! Hiðx; tÞ, is a

homeomorphism;
(4) Hiðx; tÞ ¼ x for any x A A and any t A I .

The terminal homeomorphism hi : Xl ! Xl of the above isotopy, defined by

x 7! hiðxÞ :¼ Hiðx; 1Þ
leaves A pointwise fixed.

Definition 2.2. The map hi is called a monodromy of Xl relative to A
above oi.

Remark 2.3 (cf. [6, Lemma 4.3]). Another choice of oi within the same
homotopy class ½oi� A p1ðP1�; lÞ and another choice of Hi as above would give a
new monodromy isotopic to hi within Xl by an isotopy leaving A pointwise fixed.
In other words, the isotopy class of hi in Xl relative to A is completely deter-
mined by ½oi�.

2.2. Standard monodromy variation operator. We assume that A0j,
and we fix a base point x0 A A. As hi leaves x0 fixed, it induces an automor-
phism

hia : p1ðXl; x0Þ !@ p1ðXl; x0Þ:
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This automorphism in turn induces a map

Varhi : p1ðXl; x0Þ ! p1ðXl; x0Þ

½a� 7! ½a��1
hiað½a�Þ ¼ ½a�1 � hi � a�

which only depends on the homotopy class ½oi� A p1ðP1�; lÞ.

Definition 2.4. The map Varhi is the standard monodromy variation
operator associated to ½oi�.

2.3. Relative monodromy variation operator. This operator was introduced
by D. Chéniot and the first author in [7, §4]. Again let x0 be a base point in
A0j. Pick a relative loop a A F 1ðXl;A; x0Þ, and consider the map a�1 � hi � a
defined on I by

a�1 � hi � aðtÞ :¼
a�1ð2tÞ :¼ að1� 2tÞ for 0a ta 1=2;

hi � að2t� 1Þ for 1=2a ta 1:

�
ð2:2Þ

As hi is the identity on A, this map is well defined and belongs to F 1ðXl; x0Þ, that
is, a�1 � hi � a is an absolute loop. Again observe that in the special case where a
is an absolute loop, the relation (2.2) is nothing but the standard composition of
the absolute loops a�1 and hi � a. By [7, Lemma 4.1], the correspondence

Varrelhi
: p1ðXl;A; x0Þ ! p1ðXl; x0Þ

½a�Xl;A;x0
7! ½a�1 � hi � a�Xl;x0

is well defined and only depends on the homotopy class ½oi� A p1ðP1�; lÞ.

Definition 2.5. The map Varrelhi
is the relative monodromy variation oper-

ator associated to ½oi�. (In [7], the map Varrelhi
is denoted by VARi;1.)

Remark 2.6. Relative variation operators can also be defined for higher
homotopy groups. For details we refer the reader to [7, §4].

3. Statements of the main results

By [11, Théorème 2.5 (applied with k ¼ 0)], if ðX ;XnSÞ is 1-connected1 and
ðXl;AÞ is 0-connected, then ðX ;XlÞ is 1-connected. In particular, the set A is

1 In the terminology of [11], the 1-connectivity of the pair ðX ;XnSÞ corresponds to the assumption

that the global rectified homotopical depth of X along S \ X is greater than or equal to 2. This

assumption is a measure of the degree of singularity of X . For example, [17, Corollary 3.2.2] and

[10, Théorème 3.11] show that if X is locally a complete intersection of pure dimension 2, then the

global rectified homotopical depth of X along S \ X is greater than or equal to 2.
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not empty, and for any base point x0 A A, the natural map

pqðXl; x0Þ ! pqðX ; x0Þ
is bijective for q ¼ 0 and surjective for q ¼ 1. Concerning the kernel of
p1ðXl; x0Þ ! p1ðX ; x0Þ, the first author also obtained—in [12]—the following
result which was the first generalization of the Zariski-van Kampen theorem to
singular (quasi-projective) varieties.

Theorem 3.1 (cf. [12, Theorem 5.1]). Assume that XnS0j. Further-
more, suppose that for any base point y0 A XnS, the following three conditions
hold:

(1) pqðXnS; y0Þ ! pqðX ; y0Þ is bijective for q A f0; 1g;
(2) p0ðAÞ ! p0ðXlÞ is bijective;
(3) p0ðAÞ ! p0ðXlinSiÞ is surjective for all 1a iaN.

Then, for any base point x0 A A, the map

pqðXl; x0Þ ! pqðX ; x0Þ
is bijective for q ¼ 0 and surjective for q ¼ 1 (as observed above under weaker
assumptions); moreover, the kernel of p1ðXl; x0Þ ! p1ðX ; x0Þ coincides with the
normal subgroup

S
1aiaN imðVarhiÞ of p1ðXl; x0Þ generated by the union of the

images of the standard monodromy variation operators. In particular, for any
x0 A A, there is an isomorphism

p1ðXl; x0Þ
� [

1aiaN

imðVarhiÞ !
@

p1ðX ; x0Þ:

In this theorem, all the maps are induced by inclusions. In the assumption
(1), for q ¼ 0, the bijectivity of p0ðXnS; y0Þ ! p0ðX ; y0Þ is equivalent to that of
p0ðXnSÞ ! p0ðX Þ. Indeed, by definition, p0ðXnS; y0Þ is nothing but the pointed
set of the path-connected components of XnS, where the ‘‘point’’ is the path-
connected component containing y0. Similarly for p0ðX ; y0Þ.

The conclusion of Theorem 3.1 still holds true (under the same assumptions)
with the relative operators Varrelhi

instead of the standard ones (cf. [12, §6]). Note
that, in general, the normal subgroup generated by the images of the standard
operators is (a priori) smaller than the normal subgroup generated by the images
of the relative operators.

The assumptions (1) and (2) in Theorem 3.1 are natural extensions of the
hypotheses of [11, Théorème 2.5 with k ¼ 0] that we have mentioned above.
Indeed, a pair ðU ;VÞ of topological spaces (where V is a non-empty subspace
of U) is q0-connected if and only if for every base point v A V the natural map
pqðV ; vÞ ! pqðU ; vÞ is bijective for 0a qa q0 � 1 and surjective for q ¼ q0.

In the special case of non-singular varieties, the statements of the above
mentioned results (i.e., [11, Théorème 2.5 for k ¼ 0] and [12, Theorem 5.1]) can
be simplified. Indeed, by [9, Théorème 4.3], if X is non-singular, then the pair
ðX ;XnSÞ is ð2d � 1Þ-connected, where d is the smallest dimension of the irre-
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ducible components of Y not contained in Z. Therefore, if furthermore db 1,
then [11, Théorème 2.5 for k ¼ 0] simplifies as follows: ‘‘If X is non-singular,
db 1 and the pair ðXl;AÞ is 0-connected, then the pair ðX ;XlÞ is 1-connected’’.
Note that if in addition db 2, then the smallest dimension of the irreducible
components of Yl not contained in Zl is greater than or equal to 1 (cf. [5,
Lemme 11.3]), and hence, by the non-singular version of the Lefschetz hyperplane
section theorem (cf. [11, 13, 14, 16]), the pair of non-singular spaces ðXl;AÞ is
always 0-connected. Moreover, in this case, Theorem 3.1 can also be simplified
as follows.

Theorem 3.2 (cf. [12, Corollary 5.3]). Assume that X is non-singular and
db 2. Under these assumptions, if furthermore p0ðAÞ ! p0ðXlÞ is injective (and
hence bijective), then, for any base point x0 A A, there is an isomorphism

p1ðXl; x0Þ
� [

1aiaN

imðVarhiÞ !
@

p1ðX ; x0Þ:ð3:1Þ

Remark 3.3. In [12, Corollary 5.3], it is assumed that the maps p0ðAÞ !
p0ðXlinSiÞ are surjective for all 1a iaN. Actually, this assumption is redun-
dant (it is always satisfied). Indeed, when X is non-singular and db 2, the
subset XlinSi is non-singular and the smallest dimension of the irreducible com-
ponents of Yli not contained in ðZ [ SiÞli is greater than or equal to 1 (cf. [5,
Lemme 11.3]). Therefore, by the non-singular version of the Lefschetz hyper-
plane section theorem, the pair ðXlinSi;AÞ is always 0-connected.

Remark 3.4. In [23, 24], I. Shimada proves isomorphism (3.1) of Theorem
3.2 (i.e., the non-singular case) under di¤erent assumptions. Namely, he supposes
that X is connected and that the special sections Xli ð1a iaNÞ are irreducible.
In particular, [23, 24] already contain Theorem 3.2 in the special case where the
non-singular variety X is connected.

Note that, by the non-singular version of the Lefschetz hyperplane section
theorem, if X is non-singular, then the pair ðX ;XlÞ is ðd � 1Þ-connected. In
particular, if furthermore db 3, then there is an isomorphism p1ðXl; x0Þ !@
p1ðX ; x0Þ. Thus Theorem 3.2 gives new information only in the case where
d ¼ 2. Also, observe that in the special case where Y ¼ P2 and Z is an
algebraic curve, the spaces A and Xl are path-connected, and hence the map
p0ðAÞ ! p0ðXlÞ is always injective. Thus, in this case, Theorem 3.2 reduces to
the classical Zariski-van Kampen theorem [19, 27].

Now, if the map p0ðAÞ ! p0ðXlÞ involved in Theorem 3.2 is not injective,
then, in general, without any further assumption, it seems that the normal sub-
group generated by the standard monodromy variation operators is not big
enough to contain the entire kernel of the map p1ðXl; x0Þ ! p1ðX ; x0Þ. (How-
ever this should be contrasted with [21, Theorem 3.2].) Suppose, for instance,
that Xl has a (path-connected) component X 0

l that contains at least two compo-
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nents A0 and A1 of A. Pick points x0 A A0 and x1 A A1. By [7, Lemma 4.8], if a
is any relative loop of F 1ðXl;A; x0Þ such that að0Þ ¼ x1, then, for each 1a iaN,

its variation Varrelhi
ð½a�Þ must be in the kernel of the map p1ðXl; x0Þ ! p1ðX ; x0Þ.

It is unclear to the authors whether or not Varrelhi
ð½a�Þ can always be described in

terms of (a product of possibly negative powers of ) the standard monodromy
variation operators. In [7], D. Chéniot and the first author conjectured that the
conclusion of Theorem 3.2 still hold true—even when the map p0ðAÞ ! p0ðXlÞ
is not injective—provided that we replace the standard monodromy variation
operators by the relative ones. (In fact, the conjecture in [7] is much more
general, as it also includes a similar statement for higher homotopy groups.)
Our first result says that (the p1 part of ) this conjecture is true. More precisely,
we have the following statement.

Theorem 3.5. Assume that X is non-singular and db 2. Under these as-
sumptions, for any base point x0 A A, there is an isomorphism

p1ðXl; x0Þ
� [

1aiaN

imðVarrelhi
Þ !@ p1ðX ; x0Þ;

where
S

1aiaN imðVarrelhi
Þ is the normal subgroup of p1ðXl; x0Þ generated by the

union of the images of the relative monodromy variation operators.

Note that in the special case where Y ¼ P2 and Z is an algebraic curve, the
set A ¼ P0 \ ðP2nZÞ reduces to fx0g and the relative homotopy set p1ðXl; fx0g;
x0Þ is nothing but the fundamental group p1ðXl; x0Þ, so that in this case the
operators Varhi and Varrelhi

coincide. In other words, when Y ¼ P2 and Z is an
algebraic curve, Theorem 3.5 also reduces to the classical Zariski-van Kampen
theorem.

In fact, Theorem 3.5 is an immediate corollary of our main result, which
includes singular varieties. Here is the precise statement.

Theorem 3.6. Assume that XnS0j. Furthermore, suppose that for any
base point y0 A XnS, any q A f0; 1g and any integer 1a iaN, the map

pqðXnS; y0Þ ! pqðX ; y0Þ

is bijective, and the maps

p0ðAÞ ! p0ðXlÞ and p0ðAÞ ! p0ðXlinSiÞ

are surjective (i.e., the pairs ðXl;AÞ and ðXlinSi;AÞ are 0-connected ). Then, for
any base point x0 A A, there is an isomorphism

p1ðXl; x0Þ
� [

1aiaN

imðVarrelhi
Þ !@ p1ðX ; x0Þ:
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As in Theorems 3.1, 3.2 and 3.5, all maps involved in Theorem 3.6 are
induced by inclusions. Theorem 3.6 is a new generalization of the Zariski-van
Kampen theorem to singular varieties. It also generalizes Theorem 3.1.

The rest of the paper is entirely devoted to the proof of Theorem 3.6.

4. Proof of Theorem 3.6

Let x0 be a base point in A. As observed (under weaker assumptions) at
the beginning of Section 3, the bijectivity of p0ðXl; x0Þ ! p0ðX ; x0Þ and the sur-
jectivity of p1ðXl; x0Þ ! p1ðX ; x0Þ follow from [11, Théorème 2.5 (applied with
k ¼ 0)]. To prove Theorem 3.6, it remains to show that the kernel of p1ðXl; x0Þ
! p1ðX ; x0Þ is equal to the normal subgroup of p1ðXl; x0Þ generated by the union
of the images of the relative monodromy variation operators Varrelh1

; . . . ;VarrelhN
.

To prove this assertion, as in [12], we first observe that it su‰ces to consider the
special case S � Z. Indeed, assume that the assertion holds true in this case.
Then, proceeding as in [5, §11] and [11, §9.2], we consider the proper closed
algebraic subset Z 0 :¼ Z [ S of Y and we look at the new Whitney stratification
X 0 of Y the strata of which consist of the points of S together with the traces on
YnS of the strata of X. Clearly, Z 0 is a union of such new strata. The axis P0

and the generic members of the pencil P transversely meet all the strata of X 0,
while for each 1a iaN, the hyperplane Li is transverse to all these strata except
to those consisting of the points of Si. Thus, if we consider Z 0 and X 0 instead
of Z and X, then we are in the situation of Theorem 3.6, taking the same pencil
P, the same special hyperplanes Li ð1a iaNÞ, and hence the same sets Si. As
P0, L and LinSi do not meet S, the assumptions of Theorem 3.6 imply the same
assumptions with the set Z 0 instead of Z, and the relative variation operators
Varrelh1

; . . . ;VarrelhN
remain unchanged. As S � Z 0 and since we have assumed

that the assertion is true in this case, it follows that the kernel of the map
p1ðXl; x0Þ ! p1ðYnZ 0; x0Þ is given by the normal subgroup generated by the
images of the relative variation operators Varrelhi

for all 1a iaN. Now, as
YnZ 0 ¼ XnS, the general case follows from the special case using the bijectivity
of the map p1ðXnS; x0Þ ! p1ðX ; x0Þ.

We must now prove that the kernel of the map p1ðXl; x0Þ ! p1ðX ; x0Þ is
actually equal to the normal subgroup of p1ðXl; x0Þ generated by the images of
the relative variation operators Varrelh1

; . . . ;VarrelhN
in the special case where S � Z.

This covers the rest of the paper. The proof follows the same pattern as that
of the classical Zariski-van Kampen theorem [3, 4, 19, 27] and its first singular
version [12]. However, as we do not assume here that the map p0ðAÞ ! p0ðXlÞ
is bijective, it requires essential new arguments which lead us, in particular, to the
relative monodromy variation. We shall also often refer to [11] for important
results on the topology of singular spaces used in the proof.

From now on, we assume that S � Z.

4.1. Blowing up and fibration outside the special hyperplanes. As in [1, 3–
6], in order to translate crucial isotopies within the generic members of the pencil
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P in terms of locally trivial fibrations, it is convenient to blow up the ambient
space Pn along the base locus P0 of P. By definition, the blow up of Pn along

P0 is the n-dimensional compact analytic submanifold of Pn � P1 given byfPnPn :¼ fðx; lÞ A Pn � P1 j x A PðlÞg;

where PðlÞ is the member of P with parameter l (cf. Section 2). The restric-

tions to fPnPn of the projections of Pn � P1 give proper analytic morphisms

f : fPnPn ! Pn and p : fPnPn ! P1

which are called the blowing up morphism and the projection morphism respec-
tively.

Notation 4.1. For any subsets E � Pn and L � P1, we set

~EE :¼ f �1ðEÞ and ~EEL :¼ ~EE \ p�1ðLÞ:

One must not confuse ~EEL with fELEL ¼ ~EEL [ gðE \P0ÞðE \P0Þ ¼ ~EEL [ ððE \P0Þ � P1Þ.
For instance, fXlXl ¼ ~XXl [ ðA� P1Þ, where, as above, we write ~XXl instead of ~XXflg.

Taking a suitable stratification of ~YY and applying the first isotopy theorem
of Thom-Mather [22, 26] shows that the restriction p� of p to

~XX � :¼ ~XX

� [
1aiaN

~XXli

 !
is a locally trivial fibration over P1� with fibre ~XXl homeomorphic to Xl. More-
over, this topological bundle has A� P1� as a trivial subbundle of it. For details
we refer the reader to [5, (11.1.5)].

Clearly, the blowing up morphism f induces an isomorphism

p1ð ~XXl; ðx0; lÞÞ !@ p1ðXl; x0Þ:

As ðXl;AÞ is 0-connected and S � Z, it also induces an isomorphism

p1ð ~XX ; ðx0; lÞÞ !@ p1ðX ; x0Þ:ð4:1Þ

This second assertion is far from being obvious. It is proved in [11, §8].
Roughly, the idea of the proof is as follows. The blowing up morphism f
induces an isomorphism ~XXn ~AA !@ XnA. Then by applying the homotopy exci-
sion theorem of Blakers-Massey (see e.g. [15, Corollary 16.27]) to a suitable exci-
sion in the mapping cylinder of the blowing up morphism, we can show that the
map

pqð ~XX ; ~AA; ðx0; lÞÞ ! pqðX ;A; x0Þ

(induced by f ) is bijective for q ¼ 1 and surjective for q ¼ 2. Then the bijec-
tivity of (4.1) can be obtained using properties of the projection morphism p.
For a complete and detailed proof, we refer the reader to [11, §8].
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In order to use the geometric setting described above, we include the natural
map p1ðXl; x0Þ ! p1ðX ; x0Þ into the following commutative diagram, where the
horizontal arrows are induced by inclusions and the vertical ones are induced by
the blowing up morphism:

p1ð ~XXl; ðx0; lÞÞ ���!fincla p1ð ~XX ; ðx0; lÞÞ

fa

???yo

m

???yo

p1ðXl; x0Þ p1ðX ; x0Þ

ð4:2Þ

������!incla

Note that, since incla is surjective, so is ginclincla. Clearly,

kerðinclaÞ ¼ faðkerðginclinclaÞÞ:
Thus in order to prove the theorem it su‰ces to compute kerðginclinclaÞ. For that
purpose, it is convenient to write ginclincla as the composite of the following maps
(both induced by inclusions):

p1ð ~XXl; ðx0; lÞÞ ! p1ð ~XX �; ðx0; lÞÞ ! p1ð ~XX ; ðx0; lÞÞ:
The plan for the rest of the proof is as follows. In §4.3, we study the relation-

ship between the groups p1ð ~XXl; ðx0; lÞÞ and p1ð ~XX �; ðx0; lÞÞ, and in §4.4 we com-
pare the groups p1ð ~XX �; ðx0; lÞÞ and p1ð ~XX ; ðx0; lÞÞ. To understand the relations
between these groups, we introduce in §4.2 the relative monodromy variation
operator on the blown up space.

4.2. Relative monodromy variation operator on the blown up space. By [6,
Lemma 4.2], for each 1a iaN, there is an isotopy

~HHi : ~XXl � I ! ~XXqKi
; ðx; tÞ 7! ~HHiðx; tÞ;ð4:3Þ

satisfying the following properties:
(1) ~HHiððx; lÞ; 0Þ ¼ ðx; lÞ for any ðx; lÞ A ~XXl;

(2) ~HHiððx; lÞ; tÞ A ~XXoiðtÞ for any ðx; lÞ A ~XXl and any t A I ;
(3) for each t A I , the map ~XXl ! ~XXoiðtÞ, defined by ðx; lÞ 7! ~HHiððx; lÞ; tÞ, is a

homeomorphism;
(4) ~HHiððx; lÞ; tÞ ¼ ðx;oiðtÞÞ for any ðx; lÞ A ~AAl ¼ A� flg and any t A I .

Remark 4.2 (cf. [6, Lemma 4.2]). Any such isotopy ~HHi induces an isotopy
Hi as in (2.1) if we put Hiðx; tÞ :¼ f ð ~HHiððx; lÞ; tÞÞ for any ðx; tÞ A Xl � I . Con-
versely, any isotopy Hi given by (2.1) can be obtained using the above formula
from a unique isotopy ~HHi (as in (4.3)) defined by ~HHiððx; lÞ; tÞ :¼ ðHið f ðx; lÞ; tÞ;
oiðtÞÞ ¼ ðHiðx; tÞ;oiðtÞÞ for any ððx; lÞ; tÞ A ~XXl � I .

Clearly, the terminal homeomorphism ~hhi : ~XXl ! ~XXl of the above isotopy,
which is defined by

ðx; lÞ 7! ~hhiðx; lÞ :¼ ~HHiððx; lÞ; 1Þ;
leaves ~AAl ¼ A� flg pointwise fixed.
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Definition 4.3. The map ~hhi is called a monodromy of ~XXl relative to ~AAl

above oi. (A similar observation to that made in Remark 2.3 applies for ~hhi as
well.)

Now pick a relative loop a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ, and consider the map
a�1 � ~hhi � a defined on I by

a�1 � ~hhi � aðtÞ :¼
a�1ð2tÞ for 0a ta 1=2;
~hhi � að2t� 1Þ for 1=2a ta 1:

�
As ~hhi is the identity on ~AAl, this map is well defined and it belongs to
F 1ð ~XXl; ðx0; lÞÞ, that is, a�1 � ~hhi � a is an absolute loop. Then a similar argument
to that given in [7, Lemma 4.1] shows that the correspondence

gVarVarrel~hhi
: p1ð ~XXl; ~AAl; ðx0; lÞÞ ! p1ð ~XXl; ðx0; lÞÞ

½a� ~XXl; ~AAl; ðx0;lÞ 7! ½a�1 � ~hhi � a� ~XXl; ðx0;lÞ

is well defined and only depends on the homotopy class ½oi� A p1ðP1�; lÞ.
Operators Varrelhi

and gVarVarrel~hhi
are related to each other through (the homomor-

phism induced in homotopy by) the blowing up morphism. This is stated in the
next lemma.

Lemma 4.4. The following diagram, in which the vertical maps are induced
by the blowing up morphism f , commutes:

p1ð ~XXl; ~AAl; ðx0; lÞÞ ���!fVarrel~hhi
p1ð ~XXl; ðx0; lÞÞ???yo

m

???yo

p1ðXl;A; x0Þ p1ðXl; x0Þ������!Var relhi

This lemma immediately follows from Remarks 2.3 and 4.2.

4.3. The fundamental group p1ð ~XX �; ðx0; lÞÞ. The main result of this section
is Proposition 4.5. This proposition is already proved in [12, Lemma 7.3.3].
It is a singular version of [3, Proposition (4.1.1)] (and [4, Lemme (2.4)]). For
convenience of the reader, we briefly recall the idea.

The exact homotopy sequence of the locally trivial fibration

p� : ~XX � ! P1�

(induced by the projection morphism p) is written as follows:

� � � ! p2ðP1�; lÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
trivial group feg

! p1ð ~XXl; ðx0; lÞÞ !
ia

p1ð ~XX �; ðx0; lÞÞ !
p �
a
p1ðP1�; lÞ ! � � � ;
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where ia is induced by inclusion. As p induces an isomorphism

p1ðfx0g � P1�; ðx0; lÞÞ !@ p1ðP1�; lÞ;ð4:4Þ

we have the short exact sequence

feg ! p1ð ~XXl; ðx0; lÞÞ !
ia

p1ð ~XX �; ðx0; lÞÞ !
r
p1ðfx0g � P1�; ðx0; lÞÞ;ð4:5Þ

where r is the composite of p�
a with the inverse of isomorphism (4.4).

As ia is injective, we can identify p1ð ~XXl; ðx0; lÞÞ with its image by ia.
In other words, for any loop a A F 1ð ~XXl; ðx0; lÞÞ, we identify the homotopy
classes

½a� ~XXl; ðx0;lÞ and ½a� ~XX �; ðx0;lÞ:ð4:6Þ

With such an identification, p1ð ~XXl; ðx0; lÞÞ can be viewed as a normal subgroup
of p1ð ~XX �; ðx0; lÞÞ.

Now consider the natural map

ja : p1ðfx0g � P1�; ðx0; lÞÞ ! p1ð ~XX �; ðx0; lÞÞ:

We easily show that ja is a section of r, that is, the composite r � ja is the
identity. Moreover, as ja is injective, we can identify p1ðfx0g � P1�; ðx0; lÞÞ with
its image by ja. That is, for any loop a A F 1ðfx0g � P1�; ðx0; lÞÞ, we identify the
homotopy classes

½a�fx0g�P1�; ðx0;lÞ and ½a� ~XX �; ðx0;lÞ:ð4:7Þ

Combined with the exactness of (4.5), the existence of such a section ja of r
implies that p1ð ~XX �; ðx0; lÞÞ is the internal semi-direct product of its subgroups
p1ð ~XXl; ðx0; lÞÞ and p1ðfx0g � P1�; ðx0; lÞÞ. Then, by [18, Proposition 10.1 and
Corollary 10.1], we obtain the following presentation for the fundamental group
p1ð ~XX �; ðx0; lÞÞ.

Proposition 4.5 (cf. [12, Lemma 7.3.3]). Fix a presentation of p1ð ~XXl; ðx0; lÞÞ
as in [18, Proposition 4.1]. Then the fundamental group p1ð ~XX �; ðx0; lÞÞ is pre-
sented by the generators of p1ð ~XXl; ðx0; lÞÞ, the generators

½ðx0;o1Þ�; . . . ; ½ðx0;oNÞ�

of p1ðfx0g � P1�; ðx0; lÞÞ, and by the relations of p1ð ~XXl; ðx0; lÞÞ together with the
following additional relations:

(i) ½ðx0;o1Þ� � � � ½ðx0;oNÞ� ¼ e;
(ii) ½a� � ½ðx0;oiÞ� ¼ ½ðx0;oiÞ� � ~hhiað½a�Þ for any 1a iaN and any ½a� A p1ð ~XXl;

ðx0; lÞÞ;
where ~hhia : p1ð ~XXl; ðx0; lÞÞ !@ p1ð ~XXl; ðx0; lÞÞ is the automorphism induced by the

monodromy ~hhi (cf. Definition 4.3) and N is the number of special hyperplanes.

Here, ðx0;oiÞ denotes the loop I ! fx0g � P1� defined by t 7! ðx0;oiÞðtÞ :¼
ðx0;oiðtÞÞ.

88 christophe eyral and peter petrov



4.4. The fundamental group p1ð ~XX ; ðx0; lÞÞ. In this section, we prove the
following proposition, which extends Proposition (4.2.1) of [3] and Lemma 7.4.1
of [12]. This proposition is the main point in the proof of Theorem 3.6.

Proposition 4.6. Choose a presentation of p1ð ~XXl; ðx0; lÞÞ as in Proposition
4.5. Then the fundamental group p1ð ~XX ; ðx0; lÞÞ is presented by the generators and
the relations of p1ð ~XXl; ðx0; lÞÞ together with the additional relationsgVarVarrel~hhi

ð½a�Þ ¼ e

for any 1a iaN and any ½a� A p1ð ~XXl; ~AAl; ðx0; lÞÞ. In other words, the kernel of
the natural epimorphism

p1ð ~XXl; ðx0; lÞÞ ! p1ð ~XX ; ðx0; lÞÞ

coincides with the normal subgroup of p1ð ~XXl; ðx0; lÞÞ generated by the images of
operators gVarVarrel~hh1

; . . . ;gVarVarrel~hhN
defined in Section 4.2.

We divide the proof of this proposition into two key observations. For any
1a iaN and any relative loop a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ, the composition of paths

a�1 � ð f � að0Þ;oiÞ � að4:8Þ

defines an element of F 1ð ~XX �; ðx0; lÞÞ which is null-homotopic in ð ~XX ; ðx0; lÞÞ.
(We recall that f is the blowing up morphism and that ð f � að0Þ;oiÞ denotes the
loop t A I 7! ð f � að0Þ;oiðtÞÞ A ~XX �.) In other words, the normal subgroup G of
p1ð ~XX �; ðx0; lÞÞ generated by the (homotopy classes of ) loops of the form (4.8) is
contained in the kernel of the natural map

p1ð ~XX �; ðx0; lÞÞ ! p1ð ~XX ; ðx0; lÞÞ:ð4:9Þ

The first crucial observation says that G is actually equal to the kernel of this
map.

Lemma 4.7. The normal subgroup G coincides with the kernel of the map
(4.9).

In order to state the second key lemma, we consider the normal subgroup G 0

of p1ð ~XX �; ðx0; lÞÞ generated by the loops

t A I 7! ðx0;oiðtÞÞ A A� P1� and t A I 7! ða�1 � ~hhi � aÞðtÞ A ~XXl

for any 1a iaN and any a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ.

Lemma 4.8. The normal subgroups G and G 0 coincide.

Combined with [11, Corollaire 5.3], these lemmas imply Proposition 4.6.
Indeed, by [11, Corollaire 5.3], p1ð ~XX ; ~XX �; ðx0; lÞÞ ¼ feg. Therefore, by the exact

homotopy sequence of the pointed pair ð ~XX ; ~XX �Þ (with base point ðx0; lÞ), the
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natural map (4.9) is surjective. Now, by Lemmas 4.7 and 4.8, its kernel is G 0.
Therefore, there is a natural isomorphism

p1ð ~XX �; ðx0; lÞÞ=G 0 !@ p1ð ~XX ; ðx0; lÞÞ;
and a presentation of p1ð ~XX ; ðx0; lÞÞ is obtained from the presentation of
p1ð ~XX �; ðx0; lÞÞ given in Proposition 4.5 only by adding the relations

½ðx0;oiÞ� ~XX �; ðx0;lÞ ¼ e and gVarVarrel~hhi
ð½a�Þ :¼ ½a�1 � ~hhi � a� ~XX �; ðx0;lÞ ¼ e

for any 1a iaN and any ½a� A p1ð ~XXl; ~AAl; ðx0; lÞÞ. (Remind the identifications
(4.6) and (4.7).) Proposition 4.6 follows.

To complete the proof of the proposition, we must now prove the key
lemmas 4.7 and 4.8. Let us start with the proof of Lemma 4.7.

4.4.1. Proof of Lemma 4.7. It only remains to prove that the kernel of the
natural map (4.9) is contained in G. Precisely, we must show that if a is any
element of F 1ð ~XX �; ðx0; lÞÞ which is null-homotopic in ð ~XX ; ðx0; lÞÞ (i.e., ½a� ~XX ; ðx0;lÞ ¼
e), then

½a� ~XX �; ðx0;lÞ A G:

Let a A F 1ð ~XX �; ðx0; lÞÞ with ½a� ~XX ; ðx0;lÞ ¼ e. By the exact homotopy sequence

of the pointed pair ð ~XX ; ~XX �Þ, we have

½a� ~XX �; ðx0;lÞ ¼ ½qb� ~XX �; ðx0;lÞ;

where b is a relative homotopy 2-cell of ð ~XX ; ~XX �; ðx0; lÞÞ and qb is its boundary.
(By a relative homotopy 2-cell of ð ~XX ; ~XX �; ðx0; lÞÞ, we mean a map from the
square I 2 to ~XX with the face fðt1; t2Þ A I 2 j t2 ¼ 0g sent into ~XX � and all other faces
sent to the base point ðx0; lÞ. As usual, the boundary qb of a relative homotopy
2-cell b is the absolute loop defined by the formula qbðtÞ :¼ bðt; 0Þ for any t A I .
See [25, §15].) By [11, Proposition 5.2], we may assume that the set

b�1
[

1aiaN

~XXli

 !
is either empty or consists of finitely many points P1; . . . ;Pk0 . Clearly, if this set
is empty, then ½a� ~XX �; ðx0;lÞ ¼ e A G and we are done. Now, if

j0 b�1
[

1aiaN

~XXli

 !
¼ fPk A I 2; 1a ka k0g;

then, for each k, we pick a small closed disc Dk centred at Pk such that
Dk \ Dk 0 ¼ j whenever k0 k 0, and we consider a loop gk : I ! qDk which runs
once counterclockwise in the boundary qDk of Dk.

The following observation is crucial in the proof of Lemma 4.7.

Sublemma 4.9. Fix an index k ð1a ka k0Þ, and suppose that the corre-
sponding point Pk belongs to the subset b�1ð ~XXliðkÞ Þ for some 1a iðkÞaN depend-
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ing on k. If Dk is small enough, then the loop b � gk is freely homotopic in ~XX � to
a loop g 0k based at ðxk; liðkÞÞ and the image of which is contained in fxkg � qDiðkÞ �
~AA� :¼ A� P1�, where xk is a point of A and where liðkÞ and qDiðkÞ are as in
Section 2.

Here, by a free homotopy between b � gk and g 0k, we mean a homotopy

j : I � I ! ~XX �; ðt; tÞ 7! jðt; tÞ;
from the map b � gk : I ! ~XX � to the map g 0k : I ! ~XX � such that for each
parameter t A I , the map

t A I 7! jtðtÞ :¼ jðt; tÞ A ~XX �

is a loop (i.e., jtð0Þ ¼ jtð1Þ).

Remark 4.10. Sublemma 4.9 corresponds to Lemma 7.4.2 of [12]. How-
ever, unlike the latter, since we do not assume that the map p0ðAÞ ! p0ðXlÞ is
injective, the point xk may be di¤erent from the base point x0. This is a crucial
di¤erence with [12] and the reason which leads us to the relative variation.

Before proving Sublemma 4.9, let us show how it implies Lemma 4.7. By
Sublemma 4.9, b � gk is freely homotopic in ~XX � to a loop g 0k based at ðxk; liðkÞÞ
and such that imðg 0kÞ � fxkg � qDiðkÞ. It immediately follows that b � gk is homo-
topic in ð ~XX �; b � gkð0ÞÞ to a loop of the form

zkg
0
kz

�1
k ;ð4:10Þ

where zk is a path in ~XX � such that zkð0Þ ¼ b � gkð0Þ and zkð1Þ ¼ g 0kð0Þ ¼
ðxk; liðkÞÞ. Clearly, the fundamental group

p1ðI 2nfP1; . . . ;Pk0g;OÞ;
where O is the origin in I 2, is generated by loops of the form

xkgkx
�1
k for 1a ka k0;

where xk is a simple path from O to gkð0Þ A qDk such that:
(1) imðxkÞ \ Dk ¼ fgkð0Þg;
(2) imðxkÞ \ imðxk 0 Þ ¼ j whenever k0 k 0;
(3) imðxkÞ \ Dk 0 ¼ j whenever k0 k 0.

Taking a counterclockwise parametrization of the boundary of I 2 gives a loop
based at O and homotopic in ðI 2nfP1; . . . ;Pk0g;OÞ to the loopY

1akak0

xkgkx
�1
k :¼ x1g1x

�1
1 � � � xk0gk0x

�1
k0

(by reordering if necessary). It follows that a is homotopic in ð ~XX �; ðx0; lÞÞ to
the loop Y

1akak0

b � ðxkgkx�1
k Þ;
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and hence, by (4.10), to the loopY
1akak0

ðb � xkÞ � zkg 0kz
�1
k � ðb � xkÞ�1:

Claim 4.11. For each k, there exists a path sk : I ! ~XXl such that skð0Þ ¼
ðxk; lÞ and skð1Þ ¼ ðx0; lÞ.

Proof. This claim is far from being obvious. It follows from the hyper-
plane section theorem for pencils [11, Théorème 2.5]. More precisely, let
yk : I ! fxkg � P1� be the path defined by

ykðtÞ :¼ ðxk; riðkÞðtÞÞ;
where riðkÞ is the tail of the loop oiðkÞ, that is, riðkÞ is the simple path in P1�

joining l to liðkÞ as defined in Section 2. Thus, ykð0Þ ¼ ðxk; lÞ and ykð1Þ ¼
ðxk; liðkÞÞ ¼ g 0kð0Þ. Then

b � xk � zk � y�1
k

is a path in ~XX � � ~XX starting at b � xkð0Þ ¼ að0Þ ¼ ðx0; lÞ and ending at y�1
k ð1Þ ¼

ðxk; lÞ. It follows that f ðx0; lÞ ¼ x0 A A � Xl can be joined to f ðxk; lÞ ¼ xk A A
by a path in X . Now, by [11, Théorème 2.5], the natural map p0ðXlÞ ! p0ðX Þ
is bijective. Therefore x0 can be joined to xk in Xl. The claim follows
immediately. r

Clearly, the loop a is homotopic in ð ~XX �; ðx0; lÞÞ to the loopY
1akak0

ððb � xkÞzky�1
k skÞ � ðs�1

k � ykg 0ky
�1
k � skÞ � ððb � xkÞzky�1

k skÞ�1;

which is an element of the normal subgroup G of p1ð ~XX �; ðx0; lÞÞ. Indeed, the
loop s�1

k � ykg 0ky
�1
k � sk is homotopic in ð ~XX �; ðx0; lÞÞ to a (possibly negative) power

of the loop

s�1
k � ð f � skð0Þ;oiðkÞÞ � sk:

Note that sk A F 1ð ~XXl; ~AAl; ðx0; lÞÞ, and hence the above loop is one of the gen-
erators (4.8) of the normal subgroup G.

To complete the proof of Lemma 4.7, it remains to prove Sublemma 4.9.

Proof of Sublemma 4.9. To simplify, hereafter we write ‘‘i’’ instead of
‘‘iðkÞ’’. For each s A f �1ðSiÞ, pick a small closed ball BeðsÞ � fPnPn with centre s
and radius e > 0 such that the following four conditions hold true:

(1) BeðsÞ \ Beðs 0Þ ¼ j whenever s0 s 0;

(2) BeðsÞ \ fP0P0 ¼ j;
(3) BeðsÞ \ p�1ðljÞ ¼ j, where lj is the parameter of a special hyperplane Lj

of P such that Lj 0Li;
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(4) BeðsÞ \ imðbÞ ¼ j (this is possible as imðbÞ is compact and does not
intersect the set f �1ðSiÞ, which is contained in ~ZZ).

Take an open disc Ui with centre li and radius ri such that Ui � Di, and set

Ei :¼
[

s A f �1ðSiÞ
ðBeðsÞ \ ~XXUi

Þ;

where BeðsÞ is the open ball with centre s and radius e.

Claim 4.12. There exist a point xk A A together with a path mk : I ! ~XXlinEi

such that mkð0Þ ¼ bðPkÞ and mkð1Þ ¼ ðxk; liÞ.

Proof. Since Si � Z, by applying the local conic structure lemma of D.
Burghelea and A. Verona (cf. [2, Lemma 3.2]) to the set ~YYli (equipped with an
appropriate Whitney stratification), it follows that if e is small enough, then the
set ~XXlinEi is a strong deformation retract of ~XXli ¼ ~XXlinðSi � fligÞ. Combined
with the surjectivity of

p0ð ~AAliÞ ! p0ð ~XXliÞ
(which follows from that of p0ðAÞ ! p0ðXliÞ ¼ p0ðXlinSiÞ), this implies the sur-
jectivity of

p0ð ~AAliÞ ! p0ð ~XXlinEiÞ;
where all the maps are induced by inclusions. The claim follows immediately.

r

By [11, Proposition 5.4] and [12, Remark 7.4.5] (applied with xk instead of
x0), if e is small enough and if ri f e, then there is a trivialization

ci : ~XXUi
nEi !@ Ui � Fi

of the restriction of the projection morphism p to the set ~XXUi
nEi such that:

(1) cið ~XXðUinfligÞnEiÞ ¼ ðUinfligÞ � Fi;
(2) ciðA�UiÞ ¼ Ui � F 0

i ;
(3) ciðfxkg �UiÞ ¼ Ui � fp2 � ciðxk; liÞg;

where the pair ðFi;F
0
i Þ is homeomorphic to the pair

ð ~XXlinEi; ~AAlinEiÞ ¼ ð ~XXlinEi; ~AAliÞ;
and where p2 is the second projection of Ui � Fi. By Claim 4.12, the image of
the path

p2 � ci � mk
is contained in Fi, it starts at p2 � ci � bðPkÞ and ends at p2 � ciðxk; liÞ. Clearly,
we may assume that the disc Dk is small enough so that

bðDknfPkgÞ � ~XXUinflignEi:

Then, as Pk is a strong deformation retract of Dk, the loop ci � b � gk is freely
homotopic in the product Ui � Fi to the constant loop based at ci � bðPkÞ,
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and hence the loop p2 � ci � b � gk is freely homotopic in Fi to the constant loop
based at p2 � ci � bðPkÞ. It follows that the loop b � gk is freely homotopic in
~XXUinflignEi � ~XX � to the loop nk defined by

t A I 7! nkðtÞ :¼ c�1
i ðp1 � ci � b � gkðtÞ; p2 � ci � bðPkÞÞ;

where p1 and p2 are the first and second projections of Ui � Fi respectively.
Now it is easy to see that this loop nk is freely homotopic in ~XXUinflignEi to a loop
g 0k the image of which is contained in

fxkg � ðUinfligÞ � fxkg � ðDinfligÞ � ~AA� :¼ A� P1�:

For instance, the map

I � I ! ~XXUinflignEi

defined by

ðt; tÞ 7! c�1
i ðp1 � ci � b � gkðtÞ; p2 � ci � mkðtÞÞ

is a free homotopy from nk to such a loop g 0k. The inclusion imðg 0kÞ � fxkg �
ðUinfligÞ follows from properties (1)–(3) of the trivialization ci. Moreover,
as we are dealing here with free homotopies, by using the standard strong
deformation retraction from Dinflig to qDi, we may always assume that imðg 0kÞ
is actually contained in fxkg � qDi and that g 0k starts (and ends) at ðxk; liÞ as
desired.

This completes the proof of Sublemma 4.9, and hence, the proof of Lemma
4.7. r

We now prove Lemma 4.8.

4.4.2. Proof of Lemma 4.8. Let a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ and let 1a iaN.

Claim 4.13. The relative loops a and ð f � að0Þ;oiÞ � ~hhi � a � ð f � að1Þ;oiÞ�1

are homotopic in ð ~XX �; ~AAl; ðx0; lÞÞ. Moreover, if

T : I � I ! ~XX �; ðt; tÞ 7! Tðt; tÞ;

denotes such a homotopy, then we can always choose it so that Tð0; tÞ ¼
ð f � að0Þ; lÞ for any parameter t A I .

Proof. It is similar to the proof of [12, Lemma 7.3.3]. The only di¤erence
is that, in [12], loops are absolute whereas we are dealing here with relative loops.
Let ~HHi be an isotopy underlying the monodromy ~hhi (cf. Section 4.2). Then the

map T : I � I ! ~XX � defined by

ðt; tÞ 7!
ð f � að0Þ;oið3ttÞÞ for 0a ta 1=3
~HHiðað3t� 1Þ; tÞ for 1=3a ta 2=3

ð f � að1Þ;oið3tð1� tÞÞÞ for 2=3a ta 1

8><>:
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is a homotopy in ð ~XX �; ~AAl; ðx0; lÞÞ from the relative loop

t 7!
ð f � að0Þ; lÞ for 0a ta 1=3

að3t� 1Þ for 1=3a ta 2=3

ðx0; lÞ for 2=3a ta 1

8><>:
(which is clearly homotopic to a in ð ~XX �; ~AAl; ðx0; lÞÞ) to the relative loop

t 7!
ð f � að0Þ;oið3tÞÞ for 0a ta 1=3
~hhi � að3t� 1Þ for 1=3a ta 2=3

ðx0;oið3ð1� tÞÞÞ for 2=3a ta 1

8><>:
(which is obviously homotopic to the relative loop ð f � að0Þ;oiÞ � ~hhi � a � ð f � að1Þ;
oiÞ�1 in ð ~XX �; ~AAl; ðx0; lÞÞ). Clearly, the homotopy T is such that Tð0; tÞ ¼
ð f � að0Þ; lÞ for any t A I .

Claim 4.14. The absolute loop a�1 � ð f � að0Þ;oiÞ � ~hhi � a � ð f � að1Þ;oiÞ�1
is

null-homotopic in ð ~XX �; ðx0; lÞÞ. In other words, the absolute loops

a�1 � ð f � að0Þ;oiÞ � ~hhi � a and ð f � að1Þ;oiÞ ¼ ðx0;oiÞ

define the same homotopy class in p1ð ~XX �; ðx0; lÞÞ.

Proof. If T is a homotopy as in Claim 4.13, then the map I � I ! ~XX �

defined by

ðt; tÞ 7! a�1ð2tÞ for 0a ta 1=2

Tð2t� 1; tÞ for 1=2a ta 1

�
is a homotopy in ð ~XX �; ðx0; lÞÞ from the loop

t 7!

a�1ð2tÞ for 0a ta 1=2

ð f � að0Þ; lÞ for 1=2a ta 2=3

að3ð2t� 1Þ � 1Þ for 2=3a ta 5=6

ðx0; lÞ for 5=6a ta 1

8>>><>>>:
(which is homotopic in ð ~XXl; ðx0; lÞÞ to the constant loop t A I 7! ðx0; lÞ A ~XXl) to
the loop

t 7!

a�1ð2tÞ for 0a ta 1=2

ð f � að0Þ;oið3ð2t� 1ÞÞÞ for 1=2a ta 2=3
~hhi � að3ð2t� 1Þ � 1Þ for 2=3a ta 5=6

ðx0;oið3ð1� ð2t� 1ÞÞÞ for 5=6a ta 1

8>>><>>>:
(which is obviously homotopic to the loop a�1 � ð f � að0Þ;oiÞ � ~hhi � a � ð f � að1Þ;
oiÞ�1 in ð ~XX �; ðx0; lÞÞ). r
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Clearly, for any 1a iaN and any a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ, the compositions

a�1 � ð f � að0Þ;oiÞ � ~hhi � a and a�1 � ~hhi � að4:11Þ
define elements of F 1ð ~XX �; ðx0; lÞÞ and F 1ð ~XXl; ðx0; lÞÞ � F 1ð ~XX �; ðx0; lÞÞ respec-
tively. Consider the normal subgroup G 00 of p1ð ~XX �; ðx0; lÞÞ generated by (the
homotopy classes in ð ~XX �; ðx0; lÞÞ of ) all the elements of this form.

Claim 4.15. The subgroups G 00 and G coincide.

Proof. By Lemma 4.7, to show that G 00 � G, we must prove that the
loops (4.11) are null-homotopic in ð ~XX ; ðx0; lÞÞ. For loops of the form a�1 � ~hhi � a,
this is proved in [7, Lemma 4.8]. Now, since ð f � að0Þ;oiÞ is null-homotopic in
ð ~XX ; ð f � að0Þ; lÞÞ, it immediately follows that any loop of the form a�1 � ð f � að0Þ;
oiÞ � ~hhi � a is null-homotopic in ð ~XX ; ðx0; lÞÞ too.

To prove that G � G 00, we observe that any element of G is written as a
product of elements of the following form and their inverses:

½b��1
~XX �; ðx0;lÞ � ½a

�1 � ð f � að0Þ;oiÞ � a� ~XX �; ðx0;lÞ � ½b� ~XX �; ðx0;lÞ;ð4:12Þ
where b A F 1ð ~XX �; ðx0; lÞÞ, a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ and 1a iaN. Clearly, any
representative of the homotopy class (4.12) is homotopic in ð ~XX �; ðx0; lÞÞ to
the loop

b�1 � ða�1 � ð f � að0Þ;oiÞ � ð~hhi � a � ð~hhi � aÞ�1Þ � aÞ � b;
which is the product of the following absolute loops:

b�1 � ða�1 � ð f � að0Þ;oiÞ � ~hhi � a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
loop in F 1ð ~XX �; ðx0;lÞÞ

Þ � b � b�1 � ð ð~hhi � aÞ�1 � a|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
loop in F 1ð ~XXl; ðx0;lÞÞ

Þ � b:ð4:13Þ

Any product of homotopy classes in ð ~XX �; ðx0; lÞÞ of loops of the form (4.13) and
their inverses is an element of G 00. r

We can now conclude the proof of Lemma 4.8. By Claim 4.15, it su‰ces to
show G 0 ¼ G 00. The inclusion G 0 � G 00 is obvious. Conversely, any element of
G 00 is written as a product of elements of the following forms and their inverses:

½b��1 � ½a�1 � ð f � að0Þ;oiÞ � ~hhi � a� � ½b� and ½b��1 � ½a�1 � ~hhi � a� � ½b�;
that is, by Claim 4.14,

½b��1 � ½ðx0;oiÞ� � ½b� and ½b��1 � ½a�1 � ~hhi � a� � ½b�;
where b A F 1ð ~XX �; ðx0; lÞÞ, a A F 1ð ~XXl; ~AAl; ðx0; lÞÞ and 1a iaN, all the homotopy
classes being in p1ð ~XX �; ðx0; lÞÞ. The inclusion G 00 � G 0 follows, and Lemma 4.8
is proved.

4.5. Conclusion. Since the maps

p1ð ~XXl; ðx0; lÞÞ ! p1ðXl; x0Þ and p1ð ~XX ; ðx0; lÞÞ ! p1ðX ; x0Þ
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(induced by the blowing up morphism f ) are both isomorphisms (cf. Section 4.1),
Theorem 3.6 follows from Proposition 4.6, Lemma 4.4 and the commutativity of
diagram (4.2).
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hypersurface projective et du théorème de van Kampen sur le groupe fondamental du

complémentaire d’une courbe projective plane, Compositio Math. 27 (1973), 141–158.
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[16] H. A. Hamm and D. T. Lê, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math.

France 113 (1985), 123–142.
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