A TECHNIQUE OF CONSTRUCTING PLANAR HARMONIC MAPPINGS AND THEIR PROPERTIES

OM P. AHUJA, SUMIT NAGPAL AND V. RAVICHANDRAN

Abstract

The analytic part of a planar harmonic mapping plays a vital role in shaping its geometric properties. For a normalized analytic function f defined in the unit disk, define an operator $\Phi[f](z) = f(z) + \overline{f(z) - z}$. In this paper, necessary and sufficient conditions on f are determined for the harmonic function $\Phi[f]$ to be univalent and convex in one direction. Similar results are obtained for $\Phi[f]$ to be starlike and convex in the unit disk. This results in the coefficient estimates, growth results and convolution properties of $\Phi[f]$. In addition, various radii constants associated with $\Phi[f]$ have been computed.

1. Introduction

Let \mathscr{A} denote the class of all analytic functions f defined in the open unit disk $\mathbf{D} := \{z \in \mathbf{C} : |z| < 1\}$ normalized by f(0) = 0 = f'(0) - 1 and \mathscr{S} be its subclass consisting of univalent functions. Let \mathscr{H} denote the class of all harmonic functions $f = h + \bar{g}$, where h and g are analytic in \mathbf{D} and normalized so that h(0) = g(0) = h'(0) - 1 = g'(0) = 0. Therefore, if $f = h + \bar{g} \in \mathscr{H}$, then

(1.1)
$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=2}^{\infty} b_n z^n, \quad z \in \mathbf{D}.$$

The functions h and g are called analytic and co-analytic parts of f respectively. By Lewy's theorem [9], we know that the Jacobian of a locally univalent harmonic function does not vanish. Thus the Jacobian of a locally univalent function $f \in \mathcal{H}$ is, in view of $|f_z(0)|^2 - |f_{\overline{z}}(0)|^2 = |h'(0)|^2 - |g'(0)|^2 = 1 > 0$, positive in **D**, and so f is sense-preserving in **D**. Let \mathscr{S}_H^0 be the subclass of \mathscr{H} consisting of sense-preserving univalent functions. Finally, let \mathscr{S}_H^{*0} , \mathscr{K}_H^0 and \mathscr{C}_H^0 be the subclasses of \mathscr{S}_H^0 consisting of functions mapping **D** onto starlike, convex and

²⁰¹⁰ Mathematics Subject Classification. Primary 31A05; Secondary 30C45.

Key words and phrases. Univalent harmonic mappings; sense-preserving; convex in one direction; convolution; radius of convexity; coefficient bounds; subordination.

Received April 20, 2016; revised October 3, 2016.

close-to-convex domains, respectively, just as \mathscr{S}^* , \mathscr{K} and \mathscr{C} are the subclasses of \mathscr{S} mapping **D** onto their respective domains.

The analytic part h of a harmonic mapping $f = h + \bar{g}$ plays a crucial role in shaping the geometric properties of f (for instance, see [5, Theorem 5.17, p. 20] and [3, Theorem 1, p. 768]). Consequently, univalent harmonic mappings can be constructed in such a manner that the co-analytic part is a slight modification of its analytic part. Motivated by these ideas and Shear Construction Theorem [5, Theorem 5.3, p. 14], we define an operator $\Phi : \mathcal{A} \to \mathcal{H}$ by

$$\Phi[f](z) = f(z) + \overline{f(z) - z}, \quad z \in \mathbf{D}, \ f \in \mathscr{A}.$$

If $f \in \mathscr{A}$ is of the form

(1.2)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in \mathbf{D})$$

then

$$\Phi[f](z) = z + \sum_{n=2}^{\infty} a_n z^n + \overline{\sum_{n=2}^{\infty} a_n z^n}, \quad z \in \mathbf{D}.$$

In this paper, we study the geometric properties of the operator Φ . In Section 2, necessary and sufficient conditions are obtained for $\Phi[f]$ to be univalent and convex in one direction. As a consequence, coefficient bounds and convolution properties are investigated. In the last section of the paper, the radius of convexity and other related radii constants are determined corresponding to the function $\Phi[f]$. The following lemma will be needed in our investigation which determines a sufficient coefficient condition for functions of the form $f = h + \bar{g} \in \mathscr{H}$ to be in the classes \mathscr{G}_{H}^{*0} and \mathscr{K}_{H}^{0} . It is worth to note that these conditions in fact yield the sufficient conditions for functions to be fully starlike and fully convex in **D** (see [1, 4, 16]).

LEMMA 1.1 ([2]). Let $f = h + \overline{g} \in \mathcal{H}$ where h and g are given by (1.1). If $\sum_{n=2}^{\infty} n(|a_n| + |b_n|) \leq 1$, then $f \in \mathcal{S}_H^{*0}$ and if $\sum_{n=2}^{\infty} n^2(|a_n| + |b_n|) \leq 1$, then $f \in \mathcal{K}_H^0$. Moreover, if $a_n \leq 0$ and $b_n \geq 0$ for $n \geq 2$, then these conditions are also necessary for f to be in \mathcal{S}_H^{*0} and \mathcal{K}_H^0 .

2. Properties of the operator Φ

If we consider the Koebe function $k(z) = z/(1-z)^2 \in \mathscr{S}$, then it is easy to see that the harmonic function $\Phi[k]$ is not univalent in **D**, since its Jacobian vanishes inside **D**. In particular, this shows that $\Phi[\mathscr{S}] \not\subset \mathscr{S}_H^0$, $\Phi[S^*] \not\subset \mathscr{S}_H^{*0}$ and $\Phi[\mathscr{C}] \not\subset \mathscr{C}_H^0$. Similarly, if $l(z) = z/(1-z) \in \mathscr{K}$, then the Jacobian of the function $\Phi[l](z) = z/(1-z) + \overline{z}^2/(1-\overline{z})$ vanishes at $z = 1 - \sqrt{2}$ and hence $\Phi[\mathscr{K}] \not\subset \mathscr{K}_H^0$. The following theorem determines a subclass of \mathscr{S} which is mapped into $\mathscr{C}_H^0 \subset \mathscr{S}_H^0$ by the operator Φ . THEOREM 2.1. Let $f \in \mathcal{A}$. Then we have the following:

(i) Φ[f] is sense-preserving in **D** if and only if Re f'(z) > 1/2 for all z ∈ **D**.
(ii) If Re f' > 1/2 in **D**, then Φ[f] ∈ ⁰_H and is convex in the direction of real axis. In particular, Φ[f] is close-to-convex in **D**.

Proof. (i) Write $\Phi[f] = h + \bar{g}$, where h(z) = f(z) and g(z) = f(z) - z are analytic functions in **D**. Then $\Phi[f]$ is sense-preserving in $\mathbf{D} \Leftrightarrow |h'(z)| > |g'(z)| \Leftrightarrow |f'(z)| > |f'(z) - 1| \Leftrightarrow \operatorname{Re} f'(z) > 1/2$ for all $z \in \mathbf{D}$.

(ii) If Re f' > 1/2 in **D**, then $\Phi[f] = h + \overline{g}$ is sense-preserving in **D** by part (i). Also, h(z) - g(z) = z is univalent and convex in the direction of real axis. Therefore, by Shear Construction Theorem [5, Theorem 5.3, p. 14], $\Phi[f]$ is univalent and is convex in the direction of real axis.

COROLLARY 2.2. If $f \in \mathcal{A}$ is given by (1.2) and $\Phi[f] \in \mathscr{S}_{H}^{0}$, then $|a_{n}| \leq 1/n$ for all $n = 2, 3, \ldots$ The bound 1/n is best possible. Moreover, the sharp inequality $|\Phi[f](z)| \leq -|z| - 2\log(1-|z|)$ holds for all $z \in \mathbf{D}$.

Proof. By Theorem 2.1(i), Re f' > 1/2 in **D** which gives $|a_n| \le 1/n$ for $n \ge 1$ and

$$|\Phi[f](z)| \le |z| + 2\sum_{n=2}^{\infty} |a_n| |z|^n \le |z| + 2\sum_{n=2}^{\infty} \frac{1}{n} |z|^n = -|z| - 2\log(1 - |z|)$$

for all $z \in \mathbf{D}$.

Since the analytic function $f_0(z) = -\log(1-z)$ satisfies Re $f'_0(z) > 1/2$ for all $z \in \mathbf{D}$, therefore the harmonic function

(2.1)
$$\Phi[f_0](z) = -2\log|1-z| - \bar{z} = z + \sum_{n=2}^{\infty} \frac{z^n}{n} + \sum_{n=2}^{\infty} \frac{\bar{z}^n}{n}, \quad z \in \mathbf{D}$$

FIGURE 1. Image of the unit disk under $\Phi[f_0](z) = -2 \log|1-z| - \overline{z}$

belongs to the class \mathscr{G}_{H}^{0} . Figure 1 illustrates that the image domain $\Phi[f_{0}](\mathbf{D})$ is convex in the direction of real axis.

If $f \in \mathcal{A}$ is given by (1.2), then it is easily seen that if $\sum_{n=2}^{\infty} n|a_n| \leq 1/2$, then $\Phi[f] \in \mathscr{S}_H^{*0}$ and if $\sum_{n=2}^{\infty} n^2 |a_n| \leq 1/2$, then $\Phi[f] \in \mathscr{K}_H^0$ by Lemma 1.1. For the special case $f(z) = z + a_2 z^2 \in \mathcal{A}$, the following theorem determines the necessary and sufficient coefficient conditions for the function $\Phi[f]$ to belong to the classes \mathscr{S}_H^0 , \mathscr{S}_H^{*0} , \mathscr{K}_H^0 and \mathscr{C}_H^0 .

THEOREM 2.3. Let $f(z) = z + a_2 z^2 \in \mathcal{A}$. Then (a) $\Phi[f] \in \mathscr{S}_H^0 \Leftrightarrow |a_2| \le 1/4$; (b) $\Phi[f] \in \mathscr{S}_H^{*0}$ (or $\mathscr{C}_H^0) \Leftrightarrow |a_2| \le 1/4$; (c) $\Phi[f] \in \mathscr{K}_H^0 \Leftrightarrow |a_2| \le 1/8$. The constants 1/4 and 1/8 are best possible.

Proof. (a) If $a_2 = 0$, then we have nothing to prove. Therefore, assume that $a_2 \neq 0$. If $\Phi[f] \in \mathscr{G}_H^0$, then Re f' > 1/2 in **D** by Theorem 2.1(i). It is easy to deduce that $\operatorname{Re}(1 + 2a_2z) \ge 1/2$ on |z| = 1. In particular, for $z = -e^{-i \arg(a_2)}$, we have $1 - 2|a_2| \ge 1/2$ which simplifies to $|a_2| \le 1/4$. Conversely, if $|a_2| \le 1/4$, then $|f'(z) - 1| = 2|a_2| |z| < 2|a_2| \le 1/2$ so that Re f'(z) > 1/2 for all $z \in \mathbf{D}$. By Theorem 2.1(ii), $\Phi[f] \in \mathscr{G}_H^0$.

Theorem 2.1(ii), $\Phi[f] \in \mathscr{S}_{H}^{0}$ or \mathscr{C}_{H}^{0} , then by part (a), $|a_{2}| \leq 1/4$. Conversely, let $|a_{2}| \leq 1/4$. Then $\Phi[f] \in \mathscr{C}_{H}^{0}$ or \mathscr{C}_{H}^{0} , then by part (a), $|a_{2}| \leq 1/4$. Conversely, let $|a_{2}| \leq 1/4$. Then $\Phi[f] \in \mathscr{C}_{H}^{0}$ by Theorem 2.1(ii), since a domain convex in the direction of real axis is close-to-convex. Also, $\Phi[f] \in \mathscr{S}_{H}^{*0}$ since $2|a_{2}| \leq 1/2$ (by the discussion preceding Theorem 2.3).

cussion preceding Theorem 2.3). (c) Let $\Phi[f] \in \mathscr{K}_{H}^{0}$. Without loss of generality, we may assume that $a_{2} \geq 0$. Since $\Phi[f](\mathbf{D})$ is a convex set, we have

$$\frac{\partial}{\partial \theta} \left(\arg \left\{ \frac{\partial}{\partial \theta} \Phi[f](e^{i\theta}) \right\} \right) \ge 0, \quad 0 \le \theta < 2\pi.$$

By a straightforward calculation, the last expression reduces to

$$\operatorname{Re}\left(\frac{z+8a_2 \operatorname{Re}(z^2)}{z+4ia_2 \operatorname{Im}(z^2)}\right) \ge 0 \quad \text{for } |z|=1.$$

In particular, at z = -1, we have $1 - 8a_2 \ge 0$ which gives the desired result. As $4|a_2| \le 1/2$, the converse part is obvious.

For sharpness of the results, consider the analytic functions $g(z) = z + z^2/4$ and $h(z) = z + z^2/8$. Figure 2 depicts that the harmonic functions

$$\Phi[g](z) = z + \frac{z^2}{4} + \frac{\overline{z}^2}{4}$$
 and $\Phi[h](z) = z + \frac{z^2}{8} + \frac{\overline{z}^2}{8}$

map **D** onto starlike and convex domain respectively.

FIGURE 2. Images of the unit disk under $\Phi[z + z^2/4]$ and $\Phi[z + z^2/8]$.

The study of convolution properties of harmonic mappings is a fairly active area of research (see [6–8, 15, 17]). Given two analytic functions $f(z) = \sum_{n=1}^{\infty} a_n z^n$ and $F(z) = \sum_{n=1}^{\infty} A_n z^n$, their analytic convolution is defined as $(f * F)(z) = \sum_{n=1}^{\infty} a_n A_n z^n$. In the harmonic case, with $f = h + \overline{g}$ and $F = H + \overline{G}$, their harmonic convolution is defined as $f * F = h * H + \overline{g} * \overline{G}$. The following theorem investigates the convolution properties of the function $\Phi[f]$.

THEOREM 2.4. (a) If $f_1, f_2 \in \mathcal{A}$ with $\operatorname{Re}(f_1 * f_2)' > 1/2$ in **D**, then $\Phi[f_1] * \Phi[f_2] \in \mathscr{S}_H^0$ and is convex in the direction of real axis. (b) If $f \in \mathcal{A}$ and L is the harmonic half-plane mapping defined as

$$L(z) = M(z) + \overline{N(z)}, \quad M(z) := \frac{z - \frac{1}{2}z^2}{(1 - z)^2}, \quad N(z) := \frac{-\frac{1}{2}z^2}{(1 - z)^2}, \quad z \in \mathbf{D}$$

then $L * \Phi[f]$ is univalent and convex in the direction of imaginary axis if and only if $f \in \mathcal{K}$.

Proof. (a) It is easy to see that $(\Phi[f_1] * \Phi[f_2])(z) = (f_1(z) + \overline{f_1(z) - z}) * (f_2(z) + \overline{f_2(z) - z}) = (f_1 * f_2)(z) + \overline{(f_1 * f_2)(z) - z} = \Phi[f_1 * f_2](z)$ so that the result follows by invoking Theorem 2.1(ii).

(b) Observe that

$$(L * \Phi[f])(z) = \frac{1}{2}(f(z) + zf'(z)) + \frac{1}{2}(f(z) - zf'(z)) = T_1[f](z), \quad z \in \mathbf{D}$$

where $T_c[f]$ (c > 0) is the operator defined by Muir [11]. By [11, Theorem 3.2, p. 225], it follows that $L * \Phi[f]$ is univalent and convex in the direction of imaginary axis if and only if $f \in \mathcal{K}$.

Note that Theorem 2.4(a) was independently proved by the last two authors [17, Corollary 2.2, p. 1330]. If $f = h + \bar{g} \in \mathcal{H}$, then the δ -neighborhood of f denoted by $N_{\delta}(f)$ (see [2]) is the set consisting of all harmonic functions

(2.2)
$$F(z) = z + \sum_{n=2}^{\infty} A_n z^n + \overline{\sum_{n=2}^{\infty} B_n z^n}, \quad z \in \mathbf{D}$$

satisfying $\sum_{n=2}^{\infty} n(|A_n - a_n| + |B_n - b_n|) \le \delta$. The last result of this section deals with the neighborhood of $\Phi[f]$.

THEOREM 2.5. If $f \in \mathscr{A}$ is given by (1.2) with $\sum_{n=2}^{\infty} n^2 |a_n| \leq 1/2$, then $N_{\delta}(\Phi[f]) \subset \mathscr{G}_H^{*0}$ for $0 < \delta \leq 1/2$.

Proof. Let $F \in N_{\delta}(\Phi[f])$ be given by (2.2). Then

$$\sum_{n=2}^{\infty} n(|A_n - a_n| + |B_n - b_n|) \le \delta,$$

so that

$$\sum_{n=2}^{\infty} n(|A_n| + |B_n|) \le \sum_{n=2}^{\infty} n(|A_n - a_n| + |B_n - a_n|) + 2\sum_{n=2}^{\infty} n|a_n|$$
$$\le \delta + \sum_{n=2}^{\infty} n^2 |a_n| \le \delta + \frac{1}{2} \le 1.$$

By Lemma 1.1, $F \in \mathscr{G}_{H}^{*0}$.

By Figure 1, it is evident that if a function $f \in \mathscr{A}$ satisfies Re f'(z) > 1/2 for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ need not map **D** onto a convex domain. Therefore it is interesting to determine the largest radius $\rho < 1$ for which the functions $\Phi[f]$ with the condition Re f'(z) > 1/2 map the subdisk $|z| < \rho$ onto a convex domain. This is achieved in the next theorem which makes use of the result that for every r > 0 and every harmonic mapping $f = h + \overline{g}$ in a disk $\{z \in \mathbf{C} : |z| < R\}$ with R > r, the curve $[0, 2\pi] \ni \theta \mapsto f(re^{i\theta})$ is convex if and only if for every $\theta \in [0, 2\pi]$,

$$\frac{\partial}{\partial \theta} \left(\arg \left(\frac{\partial}{\partial \theta} f(re^{i\theta}) \right) \right) = \operatorname{Re} \left(\frac{zh'(z) + z^2h''(z) + \overline{zg'(z) + z^2g''(z)}}{zh'(z) - \overline{zg'(z)}} \right) \ge 0$$

where $z = re^{i\theta}$.

THEOREM 3.1. Let $f \in \mathcal{A}$ with Re f'(z) > 1/2 for all $z \in \mathbf{D}$. Then $\Phi[f] \in \mathscr{S}^0_H$ and maps the disk $|z| < \sqrt{2} - 1$ onto a convex domain. The bound $\sqrt{2} - 1$ is best possible.

Proof. By Theorem 2.1(ii), $\Phi[f]$ is <u>univalent in</u> **D**. Consequently, it suffices to show that $\operatorname{Re}((zh'(z) + z^2h''(z) + zg'(z) + z^2g''(z))(zh'(z) - zg'(z))) > 0$ for $|z| < \sqrt{2} - 1$, where $\Phi[f] = h + \overline{g}$. Observe that

$$\begin{aligned} &\mathsf{Re}((zh'(z) + z^2h''(z) + \overline{zg'(z) + z^2g''(z)})(\overline{zh'(z)} - zg'(z))) \\ &= |z|^2 |h'(z)|^2 + |z|^2 \; \mathsf{Re} \; zh''(z)\overline{h'(z)} - \mathsf{Re} \; z^3h''(z)g'(z) \\ &- |z|^2 |g'(z)|^2 + \mathsf{Re} \; z^3h'(z)g''(z) - |z|^2 \; \mathsf{Re} \; zg''(z)\overline{g'(z)}. \end{aligned}$$

On substituting h(z) = f(z) and g(z) = f(z) - z, the last expression simplifies to

$$\begin{aligned} \operatorname{Re}((zh'(z) + z^{2}h''(z) + \overline{zg'(z) + z^{2}g''(z)})(\overline{zh'(z)} - zg'(z))) \\ &= |z|^{2}|f'(z)|^{2} + \operatorname{Re} z^{3}f''(z) - |z|^{2}|f'(z) - 1|^{2} + |z|^{2} \operatorname{Re} zf''(z) \\ &= 2|z|^{2} \operatorname{Re} f'(z) - |z|^{2} + |z|^{2} \operatorname{Re} zf''(z) + \operatorname{Re} z^{3}f''(z) \\ &\geq 2|z|^{2} \operatorname{Re} f'(z) - |z|^{2} - 2|z|^{3}|f''(z)| \\ &= |z|^{2}(2 \operatorname{Re} f'(z) - 1 - 2|z| |f''(z)|). \end{aligned}$$

Making use of the fact that [13, Corollary 3, p. 213] an analytic function p in **D** with p(0) = 1 and Re $p(z) > \alpha$ for all $z \in \mathbf{D}$ and $\alpha \in [0, 1)$ satisfies

$$|p'(z)| \le \frac{2(\operatorname{Re} p(z) - \alpha)}{1 - |z|^2},$$

it is easy to deduce that

$$|f''(z)| \le \frac{2 \operatorname{Re} f'(z) - 1}{1 - |z|^2}$$

so that

$$\operatorname{Re}((zh'(z) + z^{2}h''(z) + \overline{zg'(z) + z^{2}g''(z)})(\overline{zh'(z)} - zg'(z)))$$

$$\geq |z|^{2} \left(2 \operatorname{Re} f'(z) - 1 - \frac{2|z|(2 \operatorname{Re} f'(z) - 1)}{1 - |z|^{2}}\right)$$

$$= |z|^{2} (2 \operatorname{Re} f'(z) - 1) \left(\frac{1 - 2|z| - |z|^{2}}{1 - |z|^{2}}\right)$$

for all $z \in \mathbf{D}$. The right hand side of the above expression is positive provided $|z| < \sqrt{2} - 1$. For the function $\Phi[f_0]$ given by (2.2), we have

$$\frac{\partial}{\partial \theta} \left(\arg \left\{ \frac{\partial}{\partial \theta} \Phi[f_0](re^{i\theta}) \right\} \right) \Big|_{\theta = \pi, r = \sqrt{2} - 1} = 0$$

which verifies the sharpness of the result.

285

For $f \in \mathcal{A}$, it is worth to note that all the following three conditions imply that Re f'(z) > 1/2 for all $z \in \mathbf{D}$ (see [18, Theorem 1, p. 64] and [18, Corollary 2, p. 67]):

(i) $\operatorname{Re}(1 + zf''(z)/f'(z)) > 1/2$ for all $z \in \mathbf{D}$;

(ii) |f'(z) - 1| < 1/2 for all $z \in \mathbf{D}$;

(iii) $|f''(z)| \le 1/4$ for all $z \in \mathbf{D}$.

Thus $\Phi[f] \in \mathscr{G}_{H}^{0}$ by Theorem 2.1(ii) and the next corollary determines the largest disk $|z| < \rho$ mapped by $\Phi[f]$ onto a convex domain in each case. In particular, Corollary 3.2(iii) determines a subclass of \mathscr{K} which is mapped by the operator Φ into \mathscr{K}_{H}^{0} .

- COROLLARY 3.2. Let $f \in \mathcal{A}$. (i) If $\operatorname{Re}(1 + zf''(z)/f'(z)) > 1/2$ for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ and maps the disk $|z| < \sqrt{2} 1$ onto a convex domain. The bound $\sqrt{2} 1$ is best possible.
- (ii) If |f'(z) 1| < 1/2 for all z ∈ **D**, then Φ[f] ∈ ⁰_H and maps the disk |z| < 1/2 onto a convex domain. The bound 1/2 is best possible.
 (iii) If |f''(z)| ≤ 1/4 for all z ∈ **D**, then Φ[f] ∈ ⁰_H.

Proof. (i) Since the function $f_0(z) = -\log(1-z)$ satisfies $\operatorname{Re}(1+zf''(z)/z)$ f'(z) > 1/2 for all $z \in \mathbf{D}$, therefore the result follows by invoking Theorem 3.1.

For the next two parts, write $\Phi[f] = h + \overline{g}$, where h(z) = f(z) and g(z) =f(z) - z. Let $F_{\varepsilon} = h + \varepsilon g$ for $|\varepsilon| = 1$.

(ii) Note that $|F'_{\varepsilon}(z) - 1| = |h'(z) + \varepsilon g'(z) - 1| = |(1 + \varepsilon)(f'(z) - 1)| \le$ 2|f'(z) - 1| < 1 for all $z \in \mathbf{D}$ and $|\varepsilon| = 1$. By [12, Theorem 5, p. 314], F_{ε} is convex in |z| < 1/2 for each $|\varepsilon| = 1$. Thus $\Phi[f]$ is convex in |z| < 1/2 by [16, Theorem 2.3, p. 89].

For sharpness, consider the function $h_0(z) = z + z^2/4$. Clearly, $|h'_0(z) - 1| =$ |z|/2 < 1/2 for all $z \in \mathbf{D}$ and

$$\frac{\partial}{\partial \theta} \left(\arg \left\{ \frac{\partial}{\partial \theta} \Phi[h_0](re^{i\theta}) \right\} \right) \bigg|_{\theta = \pi, r = 1/2} = 0$$

(iii) Since $|F_{\varepsilon}''(z)| = |(1+\varepsilon)f''(z)| \le 2|f''(z)| \le 1/2$ for all $z \in \mathbf{D}$, therefore F_{ε} is convex in \mathbf{D} for each $|\varepsilon| = 1$ by [14, Theorem 2, p. 33] and hence $\Phi[f] \in \mathscr{K}^0_H.$

If $f \in \mathscr{A}$ with $\Phi[f] \in \mathscr{G}_{H}^{0}$, then $|a_{n}| \leq 1/n$ for n = 1, 2, ... by Corollary 2.2. However, if $f \in \mathscr{A}$ is given by (1.2) with $|a_{n}| \leq 1/n$ for $n \geq 1$, then $\Phi[f]$ need not be univalent in **D**. If we consider the function $f(z) = z + z^2/2$, then it is easy to see that the harmonic function $\Phi[f](z) = 1 + z^2/2 + \overline{z^2}/2$ is not univalent in **D**, since its Jacobian vanishes at the point z = -1/2. The next result determines the radius of univalence of functions $\Phi[f]$ with the prescribed coefficient bounds.

THEOREM 3.3. If $f \in \mathcal{A}$ is given by (1.2) with $|a_n| \leq 1/n$ for $n \geq 1$, then $\Phi[f]$ is univalent in |z| < 1/3 and the radius 1/3 is best possible.

OM P. AHUJA, SUMIT NAGPAL AND V. RAVICHANDRAN

Proof. For $r \in (0,1)$, let $\Phi_r[f] : \mathbf{D} \to \mathbf{C}$ be defined by

$$\Phi_r[f](z) = \frac{\Phi[f](rz)}{r} = z + \sum_{n=2}^{\infty} a_n r^{n-1} z^n + \sum_{n=2}^{\infty} a_n r^{n-1} z^n$$

for all $z \in \mathbf{D}$. We shall show that $\Phi_r[f] \in \mathscr{S}_H^0$ for $r \le 1/3$. Since $|a_n| \le 1/n$ for $n = 2, 3, \ldots$, note that

$$S := 2\sum_{n=2}^{\infty} n|a_n|r^{n-1} \le 2\sum_{n=2}^{\infty} r^{n-1} = \frac{2r}{1-r}.$$

Thus $S \leq 1$ if r satisfies the inequality $r \leq 1/3$. By Lemma 1.1, $\Phi_r[f] \in \mathscr{G}_H^{*0}$ for $r \leq 1/3$. In particular $\Phi[f]$ is univalent in |z| < 1/3.

For sharpness of the bound 1/3, consider the function

$$f(z) = 2z + \log(1-z) = z - \sum_{n=2}^{\infty} \frac{1}{n} z^n, \quad z \in \mathbf{D}.$$

The Jacobian of the harmonic function $\Phi[f]$ is given by

$$J_{\Phi[f]}(z) = |f'(z)|^2 - |f'(z) - 1|^2 = 3 - 2 \operatorname{Re}\left(\frac{1}{1-z}\right)$$

which vanishes at z = 1/3. Therefore $\Phi[f]$ is not univalent in |z| < r if r > 1/3.

As observed earlier, if $f \in \mathcal{K}$, then $\Phi[f]$ need not be univalent in **D**. The last theorem of this section determines the radius of univalence of the class $\{\Phi[f] : f \in \mathcal{K}\}$.

THEOREM 3.4. If $f \in \mathcal{K}$, then $\Phi[f]$ is univalent in $|z| < \sqrt{2} - 1$ and the result is sharp for the function l(z) = z/(1-z).

Proof. Since $f \in \mathcal{K}$, $f'(z) < 1/(1-z)^2$ in **D** by Marx Strohhäcker theorem [10, Theorem 2.6(b), p. 60]. Using subordination, it follows that for every $r \in (0,1)$, $f'(\{z \in \mathbf{C} : |z| \le r\}) \subset g(\{z \in \mathbf{C} : |z| \le r\})$, where $g(z) = 1/(1-z)^2$. Consequently, for $|z| \le r_0 := \sqrt{2} - 1$, we have

$$\operatorname{Re} f'(z) \ge \min_{|z| \le r_0} \operatorname{Re} f'(z) \ge \min_{|z| \le r_0} \operatorname{Re} g(z) = \min_{|z| = r_0} \operatorname{Re} g(z).$$

In view of these inequalities and Theorem 2.1, it suffices to show that

$$\min_{|z|=r_0} \operatorname{Re} g(z) = \frac{1}{2}.$$

For $z = r_0 e^{i\theta}$, note that

Re
$$g(z) = \frac{1 - 2 \operatorname{Re} z + \operatorname{Re} z^2}{(1 - 2 \operatorname{Re} z + |z|^2)^2} = \frac{1 - 2r_0 \cos \theta + r_0^2 \cos 2\theta}{(1 - 2r_0 \cos \theta + r_0^2)^2}$$

which attains its minimum at $\theta = \pm \pi$. Therefore

$$\min_{|z|=r_0} \operatorname{Re} g(z) = \frac{1}{(1+r_0)^2} = \frac{1}{2}.$$

Thus Re f'(z) > 1/2 in $|z| < r_0$ and hence $\Phi[f] \in \mathscr{G}_H^0$ in $|z| < \sqrt{2} - 1$ by Theorem 2.1(ii).

Acknowledgement. The research work presented here is supported in part by a grant from University of Delhi, Delhi. The authors are thankful to the referee for his/her useful comments.

REFERENCES

- O. P. AHUJA, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (2005), Article 122 (electronic).
- [2] Y. AVCI AND E. ZLOTKIEWICZ, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A. 44 (1990), 1–7.
- [3] D. BSHOUTY AND A. LYZZAIK, Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory 5 (2011), 767–774.
- [4] M. CHUAQUI, P. DUREN AND B. OSGOOD, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 127–142.
- [5] J. CLUNIE AND T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I. Math. 9 (1984), 3–25.
- [6] M. DORFF, Convolutions of planar harmonic convex mappings, Comp. Var. Theory Appl. 45 (2001), 263–271.
- [7] M. DORFF, M. NOWAK AND M. WOLOSZKIEWICZ, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), 489–503.
- [8] M. GOODLOE, Hadamard products of convex harmonic mappings, Comp. Var. Theory Appl. 47 (2002), 81–92.
- [9] H. LEWY, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692.
- [10] S. S. MILLER AND P. T. MOCANU, Differential subordinations, Monographs and textbooks in pure and applied mathematics 225, Dekker, New York, 2000.
- [11] S. MUIR, Harmonic mappings convex in one or every direction, Comput. Methods Funct. Theory 12 (2012), 221–239.
- [12] T. H. MACGREGOR, A class of univalent functions, Proc. Amer. Math. Soc. 15, 1964, 311– 317.
- [13] C. P. MCCARTY, Functions with real part greater than α, Proc. Amer. Math. Soc. 35, 1972, 211–216.
- [14] P. T. MOCANU, Some simple criteria for starlikeness and convexity, Libertas Math. 13 (1993), 27–40.

- [15] S. NAGPAL AND V. RAVICHANDRAN, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), 204–216.
- [16] S. NAGPAL AND V. RAVICHANDRAN, Fully starlike and fully convex harmonic mappings of order α, Ann. Polon. Math. 108 (2013), 85–107.
- [17] S. NAGPAL AND V. RAVICHANDRAN, Univalence and convexity in one direction of the convolution of harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), 1328–1341.
- [18] S. OWA, M. NUNOKAWA, H. SAITOH AND H. M. SRIVASTAVA, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15 (2002), 63–69.

Om P. Ahuja Department of Mathematics Kent State University Burton, OH, USA E-mail: oahuja@kent.edu

Sumit Nagpal DEPARTMENT OF MATHEMATICS RAMANUJAN COLLEGE UNIVERSITY OF DELHI DELHI-110 019, INDIA E-mail: sumitnagpal.du@gmail.com

V. Ravichandran DEPARTMENT OF MATHEMATICS UNIVERSITY OF DELHI DELHI-110 007, INDIA E-mail: vravi68@gmail.com