A TECHNIQUE OF CONSTRUCTING PLANAR HARMONIC MAPPINGS AND THEIR PROPERTIES

Om P. Ahuja, Sumit Nagpal and V. Ravichandran

Abstract

The analytic part of a planar harmonic mapping plays a vital role in shaping its geometric properties. For a normalized analytic function f defined in the unit disk, define an operator $\Phi[f](z)=f(z)+\overline{f(z)-z}$. In this paper, necessary and sufficient conditions on f are determined for the harmonic function $\Phi[f]$ to be univalent and convex in one direction. Similar results are obtained for $\Phi[f]$ to be starlike and convex in the unit disk. This results in the coefficient estimates, growth results and convolution properties of $\Phi[f]$. In addition, various radii constants associated with $\Phi[f]$ have been computed.

1. Introduction

Let \mathscr{A} denote the class of all analytic functions f defined in the open unit disk $\mathbf{D}:=\{z \in \mathbf{C}:|z|<1\}$ normalized by $f(0)=0=f^{\prime}(0)-1$ and \mathscr{S} be its subclass consisting of univalent functions. Let \mathscr{H} denote the class of all harmonic functions $f=h+\bar{g}$, where h and g are analytic in \mathbf{D} and normalized so that $h(0)=g(0)=h^{\prime}(0)-1=g^{\prime}(0)=0$. Therefore, if $f=h+\bar{g} \in \mathscr{H}$, then

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=2}^{\infty} b_{n} z^{n}, \quad z \in \mathbf{D} . \tag{1.1}
\end{equation*}
$$

The functions h and g are called analytic and co-analytic parts of f respectively. By Lewy's theorem [9], we know that the Jacobian of a locally univalent harmonic function does not vanish. Thus the Jacobian of a locally univalent function $f \in \mathscr{H}$ is, in view of $\left|f_{z}(0)\right|^{2}-\left|f_{\bar{z}}(0)\right|^{2}=\left|h^{\prime}(0)\right|^{2}-\left|g^{\prime}(0)\right|^{2}=1>0$, positive in \mathbf{D}, and so f is sense-preserving in \mathbf{D}. Let \mathscr{S}_{H}^{0} be the subclass of \mathscr{H} consisting of sense-preserving univalent functions. Finally, let $\mathscr{S}_{H}^{* 0}, \mathscr{K}_{H}^{0}$ and \mathscr{C}_{H}^{0} be the subclasses of \mathscr{S}_{H}^{0} consisting of functions mapping \mathbf{D} onto starlike, convex and

[^0]close-to-convex domains, respectively, just as $\mathscr{S}^{*}, \mathscr{K}$ and \mathscr{C} are the subclasses of \mathscr{S} mapping D onto their respective domains.

The analytic part h of a harmonic mapping $f=h+\bar{g}$ plays a crucial role in shaping the geometric properties of f (for instance, see [5, Theorem 5.17, p. 20] and [3, Theorem 1, p. 768]). Consequently, univalent harmonic mappings can be constructed in such a manner that the co-analytic part is a slight modification of its analytic part. Motivated by these ideas and Shear Construction Theorem [5, Theorem 5.3, p. 14], we define an operator $\Phi: \mathscr{A} \rightarrow \mathscr{H}$ by

$$
\Phi[f](z)=f(z)+\overline{f(z)-z}, \quad z \in \mathbf{D}, f \in \mathscr{A}
$$

If $f \in \mathscr{A}$ is of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbf{D}) \tag{1.2}
\end{equation*}
$$

then

$$
\Phi[f](z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}+\overline{\sum_{n=2}^{\infty} a_{n} z^{n}}, \quad z \in \mathbf{D}
$$

In this paper, we study the geometric properties of the operator Φ. In Section 2, necessary and sufficient conditions are obtained for $\Phi[f]$ to be univalent and convex in one direction. As a consequence, coefficient bounds and convolution properties are investigated. In the last section of the paper, the radius of convexity and other related radii constants are determined corresponding to the function $\Phi[f]$. The following lemma will be needed in our investigation which determines a sufficient coefficient condition for functions of the form $f=$ $h+\bar{g} \in \mathscr{H}$ to be in the classes $\mathscr{S}_{H}^{* 0}$ and \mathscr{K}_{H}^{0}. It is worth to note that these conditions in fact yield the sufficient conditions for functions to be fully starlike and fully convex in \mathbf{D} (see $[1,4,16]$).

Lemma 1.1 ([2]). Let $f=h+\bar{g} \in \mathscr{H}$ where h and g are given by (1.1). If $\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq 1$, then $f \in \mathscr{S}_{H}^{* 0}$ and if $\sum_{n=2}^{\infty} n^{2}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq 1$, then $f \in \mathscr{K}_{H}^{0}$. Moreover, if $a_{n} \leq 0$ and $b_{n} \geq 0$ for $n \geq 2$, then these conditions are also necessary for f to be in $\mathscr{S}_{H}^{* 0}$ and \mathscr{K}_{H}^{0}.

2. Properties of the operator $\boldsymbol{\Phi}$

If we consider the Koebe function $k(z)=z /(1-z)^{2} \in \mathscr{S}$, then it is easy to see that the harmonic function $\Phi[k]$ is not univalent in \mathbf{D}, since its Jacobian vanishes inside D. In particular, this shows that $\Phi[\mathscr{S}] \not \subset \mathscr{S}_{H}^{0}, \Phi\left[S^{*}\right] \not \subset \mathscr{S}_{H}^{* 0}$ and $\Phi[\mathscr{C}] \not \subset \mathscr{C}_{H}^{0}$. Similarly, if $l(z)=z /(1-z) \in \mathscr{K}$, then the Jacobian of the function $\Phi[l](z)=z /(1-z)+\bar{z}^{2} /(1-\bar{z})$ vanishes at $z=1-\sqrt{2}$ and hence $\Phi[\mathscr{K}] \not \subset \mathscr{K}_{H}^{0}$. The following theorem determines a subclass of \mathscr{S} which is mapped into $\mathscr{C}_{H}^{0} \subset$ \mathscr{S}_{H}^{0} by the operator Φ.

Theorem 2.1. Let $f \in \mathscr{A}$. Then we have the following:
(i) $\Phi[f]$ is sense-preserving in \mathbf{D} if and only if $\operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$.
(ii) If $\operatorname{Re} f^{\prime}>1 / 2$ in \mathbf{D}, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ and is convex in the direction of real axis. In particular, $\Phi[f]$ is close-to-convex in \mathbf{D}.

Proof. (i) Write $\Phi[f]=h+\bar{g}$, where $h(z)=f(z)$ and $g(z)=f(z)-z$ are analytic functions in \mathbf{D}. Then $\Phi[f]$ is sense-preserving in $\mathbf{D} \Leftrightarrow\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right| \Leftrightarrow$ $\left|f^{\prime}(z)\right|>\left|f^{\prime}(z)-1\right| \Leftrightarrow \operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$.
(ii) If $\operatorname{Re} f^{\prime}>1 / 2$ in \mathbf{D}, then $\Phi[f]=h+\bar{g}$ is sense-preserving in \mathbf{D} by part (i). Also, $h(z)-g(z)=z$ is univalent and convex in the direction of real axis. Therefore, by Shear Construction Theorem [5, Theorem 5.3, p. 14], $\Phi[f]$ is univalent and is convex in the direction of real axis.

Corollary 2.2. If $f \in \mathscr{A}$ is given by (1.2) and $\Phi[f] \in \mathscr{S}_{H}^{0}$, then $\left|a_{n}\right| \leq 1 / n$ for all $n=2,3, \ldots$. The bound $1 / n$ is best possible. Moreover, the sharp inequality $|\Phi[f](z)| \leq-|z|-2 \log (1-|z|)$ holds for all $z \in \mathbf{D}$.

Proof. By Theorem 2.1(i), $\operatorname{Re} f^{\prime}>1 / 2$ in \mathbf{D} which gives $\left|a_{n}\right| \leq 1 / n$ for $n \geq 1$ and

$$
|\Phi[f](z)| \leq|z|+2 \sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \leq|z|+2 \sum_{n=2}^{\infty} \frac{1}{n}|z|^{n}=-|z|-2 \log (1-|z|)
$$

for all $z \in \mathbf{D}$.
Since the analytic function $f_{0}(z)=-\log (1-z)$ satisfies $\operatorname{Re} f_{0}^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$, therefore the harmonic function

$$
\begin{equation*}
\Phi\left[f_{0}\right](z)=-2 \log |1-z|-\bar{z}=z+\sum_{n=2}^{\infty} \frac{z^{n}}{n}+\sum_{n=2}^{\infty} \frac{\bar{z}^{n}}{n}, \quad z \in \mathbf{D} \tag{2.1}
\end{equation*}
$$

Figure 1. Image of the unit disk under $\Phi\left[f_{0}\right](z)=-2 \log |1-z|-\bar{z}$
belongs to the class \mathscr{S}_{H}^{0}. Figure 1 illustrates that the image domain $\Phi\left[f_{0}\right](\mathbf{D})$ is convex in the direction of real axis.

If $f \in \mathscr{A}$ is given by (1.2), then it is easily seen that if $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1 / 2$, then $\Phi[f] \in \mathscr{S}_{H}^{* 0}$ and if $\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq 1 / 2$, then $\Phi[f] \in \mathscr{K}_{H}^{0}$ by Lemma 1.1. For the special case $f(z)=z+a_{2} z^{2} \in \mathscr{A}$, the following theorem determines the necessary and sufficient coefficient conditions for the function $\Phi[f]$ to belong to the classes $\mathscr{S}_{H}^{0}, \mathscr{S}_{H}^{* 0}, \mathscr{K}_{H}^{0}$ and \mathscr{C}_{H}^{0}.

Theorem 2.3. Let $f(z)=z+a_{2} z^{2} \in \mathscr{A}$. Then
(a) $\Phi[f] \in \mathscr{S}_{H}^{0} \Leftrightarrow\left|a_{2}\right| \leq 1 / 4$;
(b) $\Phi[f] \in \mathscr{S}_{H}^{* 0}\left(\right.$ or $\left.\mathscr{C}_{H}^{0}\right) \Leftrightarrow\left|a_{2}\right| \leq 1 / 4$;
(c) $\Phi[f] \in \mathscr{K}_{H}^{0} \Leftrightarrow\left|a_{2}\right| \leq 1 / 8$.

The constants $1 / 4$ and $1 / 8$ are best possible.
Proof. (a) If $a_{2}=0$, then we have nothing to prove. Therefore, assume that $a_{2} \neq 0$. If $\Phi[f] \in \mathscr{S}_{H}^{0}$, then $\operatorname{Re} f^{\prime}>1 / 2$ in \mathbf{D} by Theorem 2.1(i). It is easy to deduce that $\operatorname{Re}\left(1+2 a_{2} z\right) \geq 1 / 2$ on $|z|=1$. In particular, for $z=-e^{-i \arg \left(a_{2}\right)}$, we have $1-2\left|a_{2}\right| \geq 1 / 2$ which simplifies to $\left|a_{2}\right| \leq 1 / 4$. Conversely, if $\left|a_{2}\right| \leq 1 / 4$, then $\left|f^{\prime}(z)-1\right|=2\left|a_{2}\right||z|<2\left|a_{2}\right| \leq 1 / 2$ so that $\operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$. By Theorem 2.1(ii), $\Phi[f] \in \mathscr{S}_{H}^{0}$.
(b) If $\Phi[f] \in \mathscr{S}_{H}^{* 0}$ or \mathscr{C}_{H}^{0}, then by part (a), $\left|a_{2}\right| \leq 1 / 4$. Conversely, let $\left|a_{2}\right| \leq$ $1 / 4$. Then $\Phi[f] \in \mathscr{C}_{H}^{0}$ by Theorem 2.1(ii), since a domain convex in the direction of real axis is close-to-convex. Also, $\Phi[f] \in \mathscr{S}_{H}^{* 0}$ since $2\left|a_{2}\right| \leq 1 / 2$ (by the discussion preceding Theorem 2.3).
(c) Let $\Phi[f] \in \mathscr{K}_{H}^{0}$. Without loss of generality, we may assume that $a_{2} \geq 0$. Since $\Phi[f](\mathbf{D})$ is a convex set, we have

$$
\frac{\partial}{\partial \theta}\left(\arg \left\{\frac{\partial}{\partial \theta} \Phi[f]\left(e^{i \theta}\right)\right\}\right) \geq 0, \quad 0 \leq \theta<2 \pi
$$

By a straightforward calculation, the last expression reduces to

$$
\operatorname{Re}\left(\frac{z+8 a_{2} \operatorname{Re}\left(z^{2}\right)}{z+4 i a_{2} \operatorname{Im}\left(z^{2}\right)}\right) \geq 0 \quad \text { for }|z|=1
$$

In particular, at $z=-1$, we have $1-8 a_{2} \geq 0$ which gives the desired result. As $4\left|a_{2}\right| \leq 1 / 2$, the converse part is obvious.

For sharpness of the results, consider the analytic functions $g(z)=z+z^{2} / 4$ and $h(z)=z+z^{2} / 8$. Figure 2 depicts that the harmonic functions

$$
\Phi[g](z)=z+\frac{z^{2}}{4}+\frac{\bar{z}^{2}}{4} \quad \text { and } \quad \Phi[h](z)=z+\frac{z^{2}}{8}+\frac{\bar{z}^{2}}{8}
$$

map \mathbf{D} onto starlike and convex domain respectively.

Figure 2. Images of the unit disk under $\Phi\left[z+z^{2} / 4\right]$ and $\Phi\left[z+z^{2} / 8\right]$.

The study of convolution properties of harmonic mappings is a fairly active area of research (see $[6-8,15,17]$). Given two analytic functions $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $F(z)=\sum_{n=1}^{\infty} A_{n} z^{n}$, their analytic convolution is defined as $(f * F)(z)=\sum_{n=1}^{\infty} a_{n} A_{n} z^{n}$. In the harmonic case, with $f=h+\bar{g}$ and $F=$ $H+\bar{G}$, their harmonic convolution is defined as $f * F=h * H+\overline{g * G}$. The following theorem investigates the convolution properties of the function $\Phi[f]$.

Theorem 2.4. (a) If $f_{1}, f_{2} \in \mathscr{A}$ with $\operatorname{Re}\left(f_{1} * f_{2}\right)^{\prime}>1 / 2$ in \mathbf{D}, then $\Phi\left[f_{1}\right] *$ $\Phi\left[f_{2}\right] \in \mathscr{S}_{H}^{0}$ and is convex in the direction of real axis. (b) If $f \in \mathscr{A}$ and L is the harmonic half-plane mapping defined as

$$
L(z)=M(z)+\overline{N(z)}, \quad M(z):=\frac{z-\frac{1}{2} z^{2}}{(1-z)^{2}}, \quad N(z):=\frac{-\frac{1}{2} z^{2}}{(1-z)^{2}}, \quad z \in \mathbf{D}
$$

then $L * \Phi[f]$ is univalent and convex in the direction of imaginary axis if and only if $f \in \mathscr{K}$.

Proof. (a) It is easy to see that $\left(\Phi\left[f_{1}\right] * \Phi\left[f_{2}\right]\right)(z)=\left(f_{1}(z)+\overline{f_{1}(z)-z}\right) *$ $\left(f_{2}(z)+\overline{f_{2}(z)-z}\right)=\left(f_{1} * f_{2}\right)(z)+\overline{\left(f_{1} * f_{2}\right)(z)-z}=\Phi\left[f_{1} * f_{2}\right](z)$ so that the result follows by invoking Theorem 2.1 (ii).
(b) Observe that

$$
(L * \Phi[f])(z)=\frac{1}{2}\left(f(z)+z f^{\prime}(z)\right)+\overline{\frac{1}{2}\left(f(z)-z f^{\prime}(z)\right)}=T_{1}[f](z), \quad z \in \mathbf{D}
$$

where $T_{c}[f](c>0)$ is the operator defined by Muir [11]. By [11, Theorem 3.2, p. 225], it follows that $L * \Phi[f]$ is univalent and convex in the direction of imaginary axis if and only if $f \in \mathscr{K}$.

Note that Theorem 2.4(a) was independently proved by the last two authors [17, Corollary 2.2, p. 1330]. If $f=h+\bar{g} \in \mathscr{H}$, then the δ-neighborhood of f denoted by $N_{\delta}(f)$ (see [2]) is the set consisting of all harmonic functions

$$
\begin{equation*}
F(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}+\overline{\sum_{n=2}^{\infty} B_{n} z^{n}}, \quad z \in \mathbf{D} \tag{2.2}
\end{equation*}
$$

satisfying $\sum_{n=2}^{\infty} n\left(\left|A_{n}-a_{n}\right|+\left|B_{n}-b_{n}\right|\right) \leq \delta$. The last result of this section deals with the neighborhood of $\Phi[f]$.

Theorem 2.5. If $f \in \mathscr{A}$ is given by (1.2) with $\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq 1 / 2$, then $N_{\delta}(\Phi[f]) \subset \mathscr{S}_{H}^{* 0}$ for $0<\delta \leq 1 / 2$.

Proof. Let $F \in N_{\delta}(\Phi[f])$ be given by (2.2). Then

$$
\sum_{n=2}^{\infty} n\left(\left|A_{n}-a_{n}\right|+\left|B_{n}-b_{n}\right|\right) \leq \delta
$$

so that

$$
\begin{aligned}
\sum_{n=2}^{\infty} n\left(\left|A_{n}\right|+\left|B_{n}\right|\right) & \leq \sum_{n=2}^{\infty} n\left(\left|A_{n}-a_{n}\right|+\left|B_{n}-a_{n}\right|\right)+2 \sum_{n=2}^{\infty} n\left|a_{n}\right| \\
& \leq \delta+\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq \delta+\frac{1}{2} \leq 1 .
\end{aligned}
$$

By Lemma 1.1, $F \in \mathscr{S}_{H}^{* 0}$.

3. Radii constants

By Figure 1, it is evident that if a function $f \in \mathscr{A}$ satisfies $\operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ need not map \mathbf{D} onto a convex domain. Therefore it is interesting to determine the largest radius $\rho<1$ for which the functions $\Phi[f]$ with the condition $\operatorname{Re} f^{\prime}(z)>1 / 2$ map the subdisk $|z|<\rho$ onto a convex domain. This is achieved in the next theorem which makes use of the result that for every $r>0$ and every harmonic mapping $f=h+\bar{g}$ in a disk $\{z \in \mathbf{C}:|z|<R\}$ with $R>r$, the curve $[0,2 \pi] \ni \theta \mapsto f\left(r e^{i \theta}\right)$ is convex if and only if for every $\theta \in[0,2 \pi]$,

$$
\frac{\partial}{\partial \theta}\left(\arg \left(\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)\right)\right)=\operatorname{Re}\left(\frac{z h^{\prime}(z)+z^{2} h^{\prime \prime}(z)+\overline{z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}}{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}\right) \geq 0
$$

where $z=r e^{i \theta}$.
Theorem 3.1. Let $f \in \mathscr{A}$ with $\operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$. Then $\Phi[f] \in$ \mathscr{S}_{H}^{0} and maps the disk $|z|<\sqrt{2}-1$ onto a convex domain. The bound $\sqrt{2}-1$ is best possible.

Proof. By Theorem 2.1(ii), $\Phi[f]$ is univalent in D. Consequently, it suffices to show that $\operatorname{Re}\left(\left(z h^{\prime}(z)+z^{2} h^{\prime \prime}(z)+\overline{z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}\right)\left(\overline{z h^{\prime}(z)}-z g^{\prime}(z)\right)\right)>0$ for $|z|<\sqrt{2}-1$, where $\Phi[f]=h+\bar{g}$. Observe that

$$
\begin{aligned}
& \operatorname{Re}\left(\left(z h^{\prime}(z)+z^{2} h^{\prime \prime}(z)+\overline{z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}\right)\left(\overline{z h^{\prime}(z)}-z g^{\prime}(z)\right)\right) \\
&=|z|^{2}\left|h^{\prime}(z)\right|^{2}+|z|^{2} \operatorname{Re} z h^{\prime \prime}(z) \overline{h^{\prime}(z)}-\operatorname{Re} z^{3} h^{\prime \prime}(z) g^{\prime}(z) \\
& \quad-|z|^{2}\left|g^{\prime}(z)\right|^{2}+\operatorname{Re} z^{3} h^{\prime}(z) g^{\prime \prime}(z)-|z|^{2} \operatorname{Re} z g^{\prime \prime}(z) \overline{g^{\prime}(z)} .
\end{aligned}
$$

On substituting $h(z)=f(z)$ and $g(z)=f(z)-z$, the last expression simplifies to

$$
\begin{aligned}
& \operatorname{Re}\left(\left(z h^{\prime}(z)+z^{2} h^{\prime \prime}(z)+\overline{z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}\right)\left(\overline{z h^{\prime}(z)}-z g^{\prime}(z)\right)\right) \\
& \quad=|z|^{2}\left|f^{\prime}(z)\right|^{2}+\operatorname{Re} z^{3} f^{\prime \prime}(z)-|z|^{2}\left|f^{\prime}(z)-1\right|^{2}+|z|^{2} \operatorname{Re} z f^{\prime \prime}(z) \\
& \quad=2|z|^{2} \operatorname{Re} f^{\prime}(z)-|z|^{2}+|z|^{2} \operatorname{Re} z f^{\prime \prime}(z)+\operatorname{Re} z^{3} f^{\prime \prime}(z) \\
& \quad \geq 2|z|^{2} \operatorname{Re} f^{\prime}(z)-|z|^{2}-2|z|^{3}\left|f^{\prime \prime}(z)\right| \\
& \quad=|z|^{2}\left(2 \operatorname{Re} f^{\prime}(z)-1-2|z|\left|f^{\prime \prime}(z)\right|\right) .
\end{aligned}
$$

Making use of the fact that [13, Corollary 3, p. 213] an analytic function p in \mathbf{D} with $p(0)=1$ and $\operatorname{Re} p(z)>\alpha$ for all $z \in \mathbf{D}$ and $\alpha \in[0,1)$ satisfies

$$
\left|p^{\prime}(z)\right| \leq \frac{2(\operatorname{Re} p(z)-\alpha)}{1-|z|^{2}},
$$

it is easy to deduce that

$$
\left|f^{\prime \prime}(z)\right| \leq \frac{2 \operatorname{Re} f^{\prime}(z)-1}{1-|z|^{2}}
$$

so that

$$
\begin{aligned}
& \operatorname{Re}\left(\left(z h^{\prime}(z)+z^{2} h^{\prime \prime}(z)+\overline{z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}\right)\left(\overline{z h^{\prime}(z)}-z g^{\prime}(z)\right)\right) \\
& \quad \geq|z|^{2}\left(2 \operatorname{Re} f^{\prime}(z)-1-\frac{2|z|\left(2 \operatorname{Re} f^{\prime}(z)-1\right)}{1-|z|^{2}}\right) \\
& \quad=|z|^{2}\left(2 \operatorname{Re} f^{\prime}(z)-1\right)\left(\frac{1-2|z|-|z|^{2}}{1-|z|^{2}}\right)
\end{aligned}
$$

for all $z \in \mathbf{D}$. The right hand side of the above expression is positive provided $|z|<\sqrt{2}-1$. For the function $\Phi\left[f_{0}\right]$ given by (2.2), we have

$$
\left.\frac{\partial}{\partial \theta}\left(\arg \left\{\frac{\partial}{\partial \theta} \Phi\left[f_{0}\right]\left(r e^{i \theta}\right)\right\}\right)\right|_{\theta=\pi, r=\sqrt{2}-1}=0
$$

which verifies the sharpness of the result.

For $f \in \mathscr{A}$, it is worth to note that all the following three conditions imply that $\operatorname{Re} f^{\prime}(z)>1 / 2$ for all $z \in \mathbf{D}$ (see [18, Theorem 1, p. 64] and [18, Corollary 2, p. 67]):
(i) $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>1 / 2$ for all $z \in \mathbf{D}$;
(ii) $\left|f^{\prime}(z)-1\right|<1 / 2$ for all $z \in \mathbf{D}$;
(iii) $\left|f^{\prime \prime}(z)\right| \leq 1 / 4$ for all $z \in \mathbf{D}$.

Thus $\Phi[f] \in \mathscr{S}_{H}^{0}$ by Theorem 2.1(ii) and the next corollary determines the largest disk $|z|<\rho$ mapped by $\Phi[f]$ onto a convex domain in each case. In particular, Corollary 3.2(iii) determines a subclass of \mathscr{K} which is mapped by the operator Φ into \mathscr{K}_{H}^{0}.

Corollary 3.2. Let $f \in \mathscr{A}$.
(i) If $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>1 / 2$ for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ and maps the disk $|z|<\sqrt{2}-1$ onto a convex domain. The bound $\sqrt{2}-1$ is best possible.
(ii) If $\left|f^{\prime}(z)-1\right|<1 / 2$ for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{S}_{H}^{0}$ and maps the disk $|z|<$ $1 / 2$ onto a convex domain. The bound $1 / 2$ is best possible.
(iii) If $\left|f^{\prime \prime}(z)\right| \leq 1 / 4$ for all $z \in \mathbf{D}$, then $\Phi[f] \in \mathscr{K}_{H}^{0}$.

Proof. (i) Since the function $f_{0}(z)=-\log (1-z)$ satisfies $\operatorname{Re}\left(1+z f^{\prime \prime}(z) /\right.$ $\left.f^{\prime}(z)\right)>1 / 2$ for all $z \in \mathbf{D}$, therefore the result follows by invoking Theorem 3.1.

For the next two parts, write $\Phi[f]=h+\bar{g}$, where $h(z)=f(z)$ and $g(z)=$ $f(z)-z$. Let $F_{\varepsilon}=h+\varepsilon g$ for $|\varepsilon|=1$.
(ii) Note that $\left|F_{\varepsilon}^{\prime}(z)-1\right|=\left|h^{\prime}(z)+\varepsilon g^{\prime}(z)-1\right|=\left|(1+\varepsilon)\left(f^{\prime}(z)-1\right)\right| \leq$ $2\left|f^{\prime}(z)-1\right|<1$ for all $z \in \mathbf{D}$ and $|\varepsilon|=1$. By [12, Theorem 5, p. 314], F_{ε} is convex in $|z|<1 / 2$ for each $|\varepsilon|=1$. Thus $\Phi[f]$ is convex in $|z|<1 / 2$ by [16, Theorem 2.3, p. 89].

For sharpness, consider the function $h_{0}(z)=z+z^{2} / 4$. Clearly, $\left|h_{0}^{\prime}(z)-1\right|=$ $|z| / 2<1 / 2$ for all $z \in \mathbf{D}$ and

$$
\left.\frac{\partial}{\partial \theta}\left(\arg \left\{\frac{\partial}{\partial \theta} \Phi\left[h_{0}\right]\left(r e^{i \theta}\right)\right\}\right)\right|_{\theta=\pi, r=1 / 2}=0
$$

(iii) Since $\left|F_{\varepsilon}^{\prime \prime}(z)\right|=\left|(1+\varepsilon) f^{\prime \prime}(z)\right| \leq 2\left|f^{\prime \prime}(z)\right| \leq 1 / 2$ for all $z \in \mathbf{D}$, therefore F_{ε} is convex in \mathbf{D} for each $|\varepsilon|=1$ by [14, Theorem 2, p. 33] and hence $\Phi[f] \in \mathscr{K}_{H}^{0}$.

If $f \in \mathscr{A}$ with $\Phi[f] \in \mathscr{S}_{H}^{0}$, then $\left|a_{n}\right| \leq 1 / n$ for $n=1,2, \ldots$ by Corollary 2.2. However, if $f \in \mathscr{A}$ is given by (1.2) with $\left|a_{n}\right| \leq 1 / n$ for $n \geq 1$, then $\Phi[f]$ need not be univalent in \mathbf{D}. If we consider the function $f(z)=z+z^{2} / 2$, then it is easy to see that the harmonic function $\Phi[f](z)=1+z^{2} / 2+\bar{z}^{2} / 2$ is not univalent in \mathbf{D}, since its Jacobian vanishes at the point $z=-1 / 2$. The next result determines the radius of univalence of functions $\Phi[f]$ with the prescribed coefficient bounds.

Theorem 3.3. If $f \in \mathscr{A}$ is given by (1.2) with $\left|a_{n}\right| \leq 1 / n$ for $n \geq 1$, then $\Phi[f]$ is univalent in $|z|<1 / 3$ and the radius $1 / 3$ is best possible.

Proof. For $r \in(0,1)$, let $\Phi_{r}[f]: \mathbf{D} \rightarrow \mathbf{C}$ be defined by

$$
\Phi_{r}[f](z)=\frac{\Phi[f](r z)}{r}=z+\sum_{n=2}^{\infty} a_{n} r^{n-1} z^{n}+\overline{\sum_{n=2}^{\infty} a_{n} r^{n-1} z^{n}}
$$

for all $z \in \mathbf{D}$. We shall show that $\Phi_{r}[f] \in \mathscr{S}_{H}^{0}$ for $r \leq 1 / 3$. Since $\left|a_{n}\right| \leq 1 / n$ for $n=2,3, \ldots$, note that

$$
S:=2 \sum_{n=2}^{\infty} n\left|a_{n}\right| r^{n-1} \leq 2 \sum_{n=2}^{\infty} r^{n-1}=\frac{2 r}{1-r} .
$$

Thus $S \leq 1$ if r satisfies the inequality $r \leq 1 / 3$. By Lemma 1.1, $\Phi_{r}[f] \in \mathscr{S}_{H}^{* 0}$ for $r \leq 1 / 3$. In particular $\Phi[f]$ is univalent in $|z|<1 / 3$.

For sharpness of the bound $1 / 3$, consider the function

$$
f(z)=2 z+\log (1-z)=z-\sum_{n=2}^{\infty} \frac{1}{n} z^{n}, \quad z \in \mathbf{D} .
$$

The Jacobian of the harmonic function $\Phi[f]$ is given by

$$
J_{\Phi[f]}(z)=\left|f^{\prime}(z)\right|^{2}-\left|f^{\prime}(z)-1\right|^{2}=3-2 \operatorname{Re}\left(\frac{1}{1-z}\right)
$$

which vanishes at $z=1 / 3$. Therefore $\Phi[f]$ is not univalent in $|z|<r$ if $r>1 / 3$.

As observed earlier, if $f \in \mathscr{K}$, then $\Phi[f]$ need not be univalent in \mathbf{D}. The last theorem of this section determines the radius of univalence of the class $\{\Phi[f]: f \in \mathscr{K}\}$.

Theorem 3.4. If $f \in \mathscr{K}$, then $\Phi[f]$ is univalent in $|z|<\sqrt{2}-1$ and the result is sharp for the function $l(z)=z /(1-z)$.

Proof. Since $f \in \mathscr{K}, f^{\prime}(z) \prec 1 /(1-z)^{2}$ in \mathbf{D} by Marx Strohhäcker theorem [10, Theorem 2.6(b), p. 60]. Using subordination, it follows that for every $r \in$ $(0,1), f^{\prime}(\{z \in \mathbf{C}:|z| \leq r\}) \subset g(\{z \in \mathbf{C}:|z| \leq r\})$, where $g(z)=1 /(1-z)^{2}$. Consequently, for $|z| \leq r_{0}:=\sqrt{2}-1$, we have

$$
\operatorname{Re} f^{\prime}(z) \geq \min _{|z| \leq r_{0}} \operatorname{Re} f^{\prime}(z) \geq \min _{|z| \leq r_{0}} \operatorname{Re} g(z)=\min _{|z|=r_{0}} \operatorname{Re} g(z) .
$$

In view of these inequalities and Theorem 2.1, it suffices to show that

$$
\min _{|z|=r_{0}} \operatorname{Re} g(z)=\frac{1}{2} .
$$

For $z=r_{0} e^{i \theta}$, note that

$$
\operatorname{Re} g(z)=\frac{1-2 \operatorname{Re} z+\operatorname{Re} z^{2}}{\left(1-2 \operatorname{Re} z+|z|^{2}\right)^{2}}=\frac{1-2 r_{0} \cos \theta+r_{0}^{2} \cos 2 \theta}{\left(1-2 r_{0} \cos \theta+r_{0}^{2}\right)^{2}}
$$

which attains its minimum at $\theta= \pm \pi$. Therefore

$$
\min _{|z|=r_{0}} \operatorname{Re} g(z)=\frac{1}{\left(1+r_{0}\right)^{2}}=\frac{1}{2}
$$

Thus $\operatorname{Re} f^{\prime}(z)>1 / 2$ in $|z|<r_{0}$ and hence $\Phi[f] \in \mathscr{S}_{H}^{0}$ in $|z|<\sqrt{2}-1$ by Theorem 2.1(ii).

Acknowledgement. The research work presented here is supported in part by a grant from University of Delhi, Delhi. The authors are thankful to the referee for his/her useful comments.

References

[1] O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (2005), Article 122 (electronic).
[2] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae CurieSkłodowska Sect. A. 44 (1990), 1-7.
[3] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory 5 (2011), 767-774.
[4] M. Chuaqui, P. Duren and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 127-142.
[5] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I. Math. 9 (1984), 3-25.
[6] M. Dorff, Convolutions of planar harmonic convex mappings, Comp. Var. Theory Appl. 45 (2001), 263-271.
[7] M. Dorff, M. Nowak and M. Woloszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), 489-503.
[8] M. Goodloe, Hadamard products of convex harmonic mappings, Comp. Var. Theory Appl. 47 (2002), 81-92.
[9] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
[10] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and textbooks in pure and applied mathematics 225, Dekker, New York, 2000.
[11] S. Muir, Harmonic mappings convex in one or every direction, Comput. Methods Funct. Theory 12 (2012), 221-239.
[12] T. H. Macgregor, A class of univalent functions, Proc. Amer. Math. Soc. 15, 1964, 311317.
[13] C. P. Mccarty, Functions with real part greater than α, Proc. Amer. Math. Soc. 35, 1972, 211-216.
[14] P. T. Mocanu, Some simple criteria for starlikeness and convexity, Libertas Math. 13 (1993), 27-40.
[15] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), 204-216.
[16] S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order α, Ann. Polon. Math. 108 (2013), 85-107.
[17] S. Nagpal and V. Ravichandran, Univalence and convexity in one direction of the convolution of harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), 1328-1341.
[18] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15 (2002), 63-69.

Om P. Ahuja
Department of Mathematics
Kent State University
Burton, OH, USA
E-mail: oahuja@kent.edu
Sumit Nagpal
Department of Mathematics
Ramanujan College
University of Delhi
Delhi-110 019, India
E-mail: sumitnagpal.du@gmail.com
V. Ravichandran

Department of Mathematics
University of Delhi
Delhi-110 007, India
E-mail: vravi68@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 31A05; Secondary 30C45.
 Key words and phrases. Univalent harmonic mappings; sense-preserving; convex in one direction; convolution; radius of convexity; coefficient bounds; subordination.

 Received April 20, 2016; revised October 3, 2016.

