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A TECHNIQUE OF CONSTRUCTING PLANAR HARMONIC
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Abstract

The analytic part of a planar harmonic mapping plays a vital role in shaping its

geometric properties. For a normalized analytic function f defined in the unit disk,

define an operator F½ f �ðzÞ ¼ f ðzÞ þ f ðzÞ � z. In this paper, necessary and su‰cient

conditions on f are determined for the harmonic function F½ f � to be univalent and

convex in one direction. Similar results are obtained for F½ f � to be starlike and convex

in the unit disk. This results in the coe‰cient estimates, growth results and convolution

properties of F½ f �. In addition, various radii constants associated with F½ f � have been

computed.

1. Introduction

Let A denote the class of all analytic functions f defined in the open unit
disk D :¼ fz A C : jzj < 1g normalized by f ð0Þ ¼ 0 ¼ f 0ð0Þ � 1 and S be its sub-
class consisting of univalent functions. Let H denote the class of all harmonic
functions f ¼ hþ g, where h and g are analytic in D and normalized so that
hð0Þ ¼ gð0Þ ¼ h 0ð0Þ � 1 ¼ g 0ð0Þ ¼ 0. Therefore, if f ¼ hþ g A H, then

hðzÞ ¼ zþ
Xy
n¼2

anz
n and gðzÞ ¼

Xy
n¼2

bnz
n; z A D:ð1:1Þ

The functions h and g are called analytic and co-analytic parts of f respectively.
By Lewy’s theorem [9], we know that the Jacobian of a locally univalent har-
monic function does not vanish. Thus the Jacobian of a locally univalent func-
tion f A H is, in view of j fzð0Þj2 � j fzð0Þj2 ¼ jh 0ð0Þj2 � jg 0ð0Þj2 ¼ 1 > 0, positive
in D, and so f is sense-preserving in D. Let S0

H be the subclass of H consisting
of sense-preserving univalent functions. Finally, let S�0

H , K0
H and C0

H be the
subclasses of S0

H consisting of functions mapping D onto starlike, convex and
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close-to-convex domains, respectively, just as S�, K and C are the subclasses of
S mapping D onto their respective domains.

The analytic part h of a harmonic mapping f ¼ hþ g plays a crucial role in
shaping the geometric properties of f (for instance, see [5, Theorem 5.17, p. 20]
and [3, Theorem 1, p. 768]). Consequently, univalent harmonic mappings can
be constructed in such a manner that the co-analytic part is a slight modification
of its analytic part. Motivated by these ideas and Shear Construction Theorem
[5, Theorem 5.3, p. 14], we define an operator F : A ! H by

F½ f �ðzÞ ¼ f ðzÞ þ f ðzÞ � z; z A D; f A A:

If f A A is of the form

f ðzÞ ¼ zþ
Xy
n¼2

anz
n ðz A DÞð1:2Þ

then

F½ f �ðzÞ ¼ zþ
Xy
n¼2

anz
n þ

Xy
n¼2

anzn; z A D:

In this paper, we study the geometric properties of the operator F. In Section 2,
necessary and su‰cient conditions are obtained for F½ f � to be univalent and
convex in one direction. As a consequence, coe‰cient bounds and convolution
properties are investigated. In the last section of the paper, the radius of con-
vexity and other related radii constants are determined corresponding to the
function F½ f �. The following lemma will be needed in our investigation which
determines a su‰cient coe‰cient condition for functions of the form f ¼
hþ g A H to be in the classes S�0

H and K0
H . It is worth to note that these

conditions in fact yield the su‰cient conditions for functions to be fully starlike
and fully convex in D (see [1, 4, 16]).

Lemma 1.1 ([2]). Let f ¼ hþ g A H where h and g are given by (1.1). IfPy
n¼2 nðjanj þ jbnjÞa 1, then f A S�0

H and if
Py

n¼2 n
2ðjanj þ jbnjÞa 1, then f A K0

H .
Moreover, if an a 0 and bn b 0 for nb 2, then these conditions are also necessary
for f to be in S�0

H and K0
H .

2. Properties of the operator F

If we consider the Koebe function kðzÞ ¼ z=ð1� zÞ2 A S, then it is easy to
see that the harmonic function F½k� is not univalent in D, since its Jacobian
vanishes inside D. In particular, this shows that F½S� 6� S0

H , F½S �� 6� S�0
H and

F½C� 6� C0
H . Similarly, if lðzÞ ¼ z=ð1� zÞ A K, then the Jacobian of the function

F½l �ðzÞ ¼ z=ð1� zÞ þ z2=ð1� zÞ vanishes at z ¼ 1�
ffiffiffi
2

p
and hence F½K� 6� K0

H .
The following theorem determines a subclass of S which is mapped into C0

H �
S0
H by the operator F.
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Theorem 2.1. Let f A A. Then we have the following:
(i) F½ f � is sense-preserving in D if and only if Re f 0ðzÞ > 1=2 for all z A D.
(ii) If Re f 0 > 1=2 in D, then F½ f � A S0

H and is convex in the direction of real
axis. In particular, F½ f � is close-to-convex in D.

Proof. (i) Write F½ f � ¼ hþ g, where hðzÞ ¼ f ðzÞ and gðzÞ ¼ f ðzÞ � z are
analytic functions in D. Then F½ f � is sense-preserving in D , jh 0ðzÞj > jg 0ðzÞj ,
j f 0ðzÞj > j f 0ðzÞ � 1j , Re f 0ðzÞ > 1=2 for all z A D.

(ii) If Re f 0 > 1=2 in D, then F½ f � ¼ hþ g is sense-preserving in D by part
(i). Also, hðzÞ � gðzÞ ¼ z is univalent and convex in the direction of real axis.
Therefore, by Shear Construction Theorem [5, Theorem 5.3, p. 14], F½ f � is uni-
valent and is convex in the direction of real axis. r

Corollary 2.2. If f A A is given by (1.2) and F½ f � A S0
H , then janja 1=n

for all n ¼ 2; 3; . . . . The bound 1=n is best possible. Moreover, the sharp in-
equality jF½ f �ðzÞja�jzj � 2 logð1� jzjÞ holds for all z A D.

Proof. By Theorem 2.1(i), Re f 0 > 1=2 in D which gives janja 1=n for
nb 1 and

jF½ f �ðzÞja jzj þ 2
Xy
n¼2

janj jzjn a jzj þ 2
Xy
n¼2

1

n
jzjn ¼ �jzj � 2 logð1� jzjÞ

for all z A D.
Since the analytic function f0ðzÞ ¼ �logð1� zÞ satisfies Re f 0

0 ðzÞ > 1=2 for
all z A D, therefore the harmonic function

F½ f0�ðzÞ ¼ �2 logj1� zj � z ¼ zþ
Xy
n¼2

zn

n
þ
Xy
n¼2

zn

n
; z A Dð2:1Þ

Figure 1. Image of the unit disk under F½ f0�ðzÞ ¼ �2 logj1� zj � z
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belongs to the class S0
H . Figure 1 illustrates that the image domain F½ f0�ðDÞ is

convex in the direction of real axis. r

If f A A is given by (1.2), then it is easily seen that if
Py

n¼2 njanja 1=2, then
F½ f � A S�0

H and if
Py

n¼2 n
2janja 1=2, then F½ f � A K0

H by Lemma 1.1. For the
special case f ðzÞ ¼ zþ a2z

2 A A, the following theorem determines the necessary
and su‰cient coe‰cient conditions for the function F½ f � to belong to the classes
S0
H , S�0

H , K0
H and C0

H .

Theorem 2.3. Let f ðzÞ ¼ zþ a2z
2 A A. Then

(a) F½ f � A S0
H , ja2ja 1=4;

(b) F½ f � A S�0
H (or C0

H ) , ja2ja 1=4;

(c) F½ f � A K0
H , ja2ja 1=8.

The constants 1=4 and 1=8 are best possible.

Proof. (a) If a2 ¼ 0, then we have nothing to prove. Therefore, assume
that a2 0 0. If F½ f � A S0

H , then Re f 0 > 1=2 in D by Theorem 2.1(i). It is easy
to deduce that Reð1þ 2a2zÞb 1=2 on jzj ¼ 1. In particular, for z ¼ �e�i argða2Þ,
we have 1� 2ja2jb 1=2 which simplifies to ja2ja 1=4. Conversely, if ja2ja 1=4,
then j f 0ðzÞ � 1j ¼ 2ja2j jzj < 2ja2ja 1=2 so that Re f 0ðzÞ > 1=2 for all z A D. By
Theorem 2.1(ii), F½ f � A S0

H .

(b) If F½ f � A S�0
H or C0

H , then by part (a), ja2ja 1=4. Conversely, let ja2ja
1=4. Then F½ f � A C0

H by Theorem 2.1(ii), since a domain convex in the direction
of real axis is close-to-convex. Also, F½ f � A S�0

H since 2ja2ja 1=2 (by the dis-
cussion preceding Theorem 2.3).

(c) Let F½ f � A K0
H . Without loss of generality, we may assume that a2 b 0.

Since F½ f �ðDÞ is a convex set, we have

q

qy
arg

q

qy
F½ f �ðeiyÞ

� �� �
b 0; 0a y < 2p:

By a straightforward calculation, the last expression reduces to

Re
zþ 8a2 Reðz2Þ
zþ 4ia2 Imðz2Þ

� �
b 0 for jzj ¼ 1:

In particular, at z ¼ �1, we have 1� 8a2 b 0 which gives the desired result. As
4ja2ja 1=2, the converse part is obvious.

For sharpness of the results, consider the analytic functions gðzÞ ¼ zþ z2=4
and hðzÞ ¼ zþ z2=8. Figure 2 depicts that the harmonic functions

F½g�ðzÞ ¼ zþ z2

4
þ z2

4
and F½h�ðzÞ ¼ zþ z2

8
þ z2

8

map D onto starlike and convex domain respectively. r
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The study of convolution properties of harmonic mappings is a fairly
active area of research (see [6–8, 15, 17]). Given two analytic functions
f ðzÞ ¼

Py
n¼1 anz

n and FðzÞ ¼
Py

n¼1 Anz
n, their analytic convolution is defined

as ð f � F ÞðzÞ ¼
Py

n¼1 anAnz
n. In the harmonic case, with f ¼ hþ g and F ¼

H þ G, their harmonic convolution is defined as f � F ¼ h �H þ g � G. The
following theorem investigates the convolution properties of the function F½ f �.

Theorem 2.4. (a) If f1; f2 A A with Reð f1 � f2Þ0 > 1=2 in D, then F½ f1� �
F½ f2� A S0

H and is convex in the direction of real axis. (b) If f A A and L is the
harmonic half-plane mapping defined as

LðzÞ ¼ MðzÞ þNðzÞ; MðzÞ :¼
z� 1

2 z
2

ð1� zÞ2
; NðzÞ :¼

� 1
2 z

2

ð1� zÞ2
; z A D

then L �F½ f � is univalent and convex in the direction of imaginary axis if and only
if f A K.

Proof. (a) It is easy to see that ðF½ f1� �F½ f2�ÞðzÞ ¼ ð f1ðzÞ þ f1ðzÞ � zÞ �
ð f2ðzÞ þ f2ðzÞ � zÞ ¼ ð f1 � f2ÞðzÞ þ ð f1 � f2ÞðzÞ � z ¼ F½ f1 � f2�ðzÞ so that the result
follows by invoking Theorem 2.1(ii).

(b) Observe that

ðL �F½ f �ÞðzÞ ¼ 1

2
ð f ðzÞ þ zf 0ðzÞÞ þ 1

2
ð f ðzÞ � zf 0ðzÞÞ ¼ T1½ f �ðzÞ; z A D

where Tc½ f � ðc > 0Þ is the operator defined by Muir [11]. By [11, Theorem 3.2,
p. 225], it follows that L �F½ f � is univalent and convex in the direction of
imaginary axis if and only if f A K. r

Figure 2. Images of the unit disk under F½zþ z2=4� and F½zþ z2=8�.
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Note that Theorem 2.4(a) was independently proved by the last two authors
[17, Corollary 2.2, p. 1330]. If f ¼ hþ g A H, then the d-neighborhood of f
denoted by Ndð f Þ (see [2]) is the set consisting of all harmonic functions

FðzÞ ¼ zþ
Xy
n¼2

Anz
n þ

Xy
n¼2

Bnzn; z A Dð2:2Þ

satisfying
Py

n¼2 nðjAn � anj þ jBn � bnjÞa d. The last result of this section deals
with the neighborhood of F½ f �.

Theorem 2.5. If f A A is given by (1.2) with
Py

n¼2 n
2janja 1=2, then

NdðF½ f �Þ � S�0
H for 0 < da 1=2.

Proof. Let F A NdðF½ f �Þ be given by (2.2). Then

Xy
n¼2

nðjAn � anj þ jBn � bnjÞa d;

so that

Xy
n¼2

nðjAnj þ jBnjÞa
Xy
n¼2

nðjAn � anj þ jBn � anjÞ þ 2
Xy
n¼2

njanj

a dþ
Xy
n¼2

n2janja dþ 1

2
a 1:

By Lemma 1.1, F A S�0
H . r

3. Radii constants

By Figure 1, it is evident that if a function f A A satisfies Re f 0ðzÞ > 1=2 for
all z A D, then F½ f � A S0

H need not map D onto a convex domain. Therefore it
is interesting to determine the largest radius r < 1 for which the functions F½ f �
with the condition Re f 0ðzÞ > 1=2 map the subdisk jzj < r onto a convex domain.
This is achieved in the next theorem which makes use of the result that for every
r > 0 and every harmonic mapping f ¼ hþ g in a disk fz A C : jzj < Rg with
R > r, the curve ½0; 2p� C y 7! f ðreiyÞ is convex if and only if for every y A ½0; 2p�,

q

qy
arg

q

qy
f ðreiyÞ

� �� �
¼ Re

zh 0ðzÞ þ z2h 00ðzÞ þ zg 0ðzÞ þ z2g 00ðzÞ
zh 0ðzÞ � zg 0ðzÞ

 !
b 0

where z ¼ reiy.

Theorem 3.1. Let f A A with Re f 0ðzÞ > 1=2 for all z A D. Then F½ f � A
S0
H and maps the disk jzj <

ffiffiffi
2

p
� 1 onto a convex domain. The bound

ffiffiffi
2

p
� 1 is

best possible.

283a technique of constructing planar harmonic mappings



Proof. By Theorem 2.1(ii), F½ f � is univalent in D. Consequently, it
su‰ces to show that Reððzh 0ðzÞ þ z2h 00ðzÞ þ zg 0ðzÞ þ z2g 00ðzÞÞðzh 0ðzÞ � zg 0ðzÞÞÞ > 0
for jzj <

ffiffiffi
2

p
� 1, where F½ f � ¼ hþ g. Observe that

Reððzh 0ðzÞ þ z2h 00ðzÞ þ zg 0ðzÞ þ z2g 00ðzÞÞðzh 0ðzÞ � zg 0ðzÞÞÞ

¼ jzj2jh 0ðzÞj2 þ jzj2 Re zh 00ðzÞh 0ðzÞ �Re z3h 00ðzÞg 0ðzÞ

� jzj2jg 0ðzÞj2 þRe z3h 0ðzÞg 00ðzÞ � jzj2 Re zg 00ðzÞg 0ðzÞ:

On substituting hðzÞ ¼ f ðzÞ and gðzÞ ¼ f ðzÞ � z, the last expression simplifies to

Reððzh 0ðzÞ þ z2h 00ðzÞ þ zg 0ðzÞ þ z2g 00ðzÞÞðzh 0ðzÞ � zg 0ðzÞÞÞ

¼ jzj2j f 0ðzÞj2 þRe z3f 00ðzÞ � jzj2j f 0ðzÞ � 1j2 þ jzj2 Re zf 00ðzÞ

¼ 2jzj2 Re f 0ðzÞ � jzj2 þ jzj2 Re zf 00ðzÞ þRe z3f 00ðzÞ

b 2jzj2 Re f 0ðzÞ � jzj2 � 2jzj3j f 00ðzÞj

¼ jzj2ð2 Re f 0ðzÞ � 1� 2jzj j f 00ðzÞjÞ:

Making use of the fact that [13, Corollary 3, p. 213] an analytic function p in D
with pð0Þ ¼ 1 and Re pðzÞ > a for all z A D and a A ½0; 1Þ satisfies

jp 0ðzÞja 2ðRe pðzÞ � aÞ
1� jzj2

;

it is easy to deduce that

j f 00ðzÞja 2 Re f 0ðzÞ � 1

1� jzj2

so that

Reððzh 0ðzÞ þ z2h 00ðzÞ þ zg 0ðzÞ þ z2g 00ðzÞÞðzh 0ðzÞ � zg 0ðzÞÞÞ

b jzj2 2 Re f 0ðzÞ � 1� 2jzjð2 Re f 0ðzÞ � 1Þ
1� jzj2

 !

¼ jzj2ð2 Re f 0ðzÞ � 1Þ 1� 2jzj � jzj2

1� jzj2

 !

for all z A D. The right hand side of the above expression is positive provided
jzj <

ffiffiffi
2

p
� 1. For the function F½ f0� given by (2.2), we have

q

qy
arg

q

qy
F½ f0�ðreiyÞ

� �� �����
y¼p; r¼

ffiffi
2

p
�1

¼ 0

which verifies the sharpness of the result. r
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For f A A, it is worth to note that all the following three conditions imply
that Re f 0ðzÞ > 1=2 for all z A D (see [18, Theorem 1, p. 64] and [18, Corollary 2,
p. 67]):

(i) Reð1þ zf 00ðzÞ= f 0ðzÞÞ > 1=2 for all z A D;
(ii) j f 0ðzÞ � 1j < 1=2 for all z A D;
(iii) j f 00ðzÞja 1=4 for all z A D.

Thus F½ f � A S0
H by Theorem 2.1(ii) and the next corollary determines the largest

disk jzj < r mapped by F½ f � onto a convex domain in each case. In particular,
Corollary 3.2(iii) determines a subclass of K which is mapped by the operator
F into K0

H .

Corollary 3.2. Let f A A.
(i) If Reð1þ zf 00ðzÞ= f 0ðzÞÞ > 1=2 for all z A D, then F½ f � A S0

H and maps

the disk jzj <
ffiffiffi
2

p
� 1 onto a convex domain. The bound

ffiffiffi
2

p
� 1 is best

possible.
(ii) If j f 0ðzÞ � 1j < 1=2 for all z A D, then F½ f � A S0

H and maps the disk jzj <
1=2 onto a convex domain. The bound 1=2 is best possible.

(iii) If j f 00ðzÞja 1=4 for all z A D, then F½ f � A K0
H .

Proof. (i) Since the function f0ðzÞ ¼ �logð1� zÞ satisfies Reð1þ zf 00ðzÞ=
f 0ðzÞÞ > 1=2 for all z A D, therefore the result follows by invoking Theorem 3.1.

For the next two parts, write F½ f � ¼ hþ g, where hðzÞ ¼ f ðzÞ and gðzÞ ¼
f ðzÞ � z. Let Fe ¼ hþ eg for jej ¼ 1.

(ii) Note that jF 0
e ðzÞ � 1j ¼ jh 0ðzÞ þ eg 0ðzÞ � 1j ¼ jð1þ eÞð f 0ðzÞ � 1Þja

2j f 0ðzÞ � 1j < 1 for all z A D and jej ¼ 1. By [12, Theorem 5, p. 314], Fe

is convex in jzj < 1=2 for each jej ¼ 1. Thus F½ f � is convex in jzj < 1=2 by
[16, Theorem 2.3, p. 89].

For sharpness, consider the function h0ðzÞ ¼ zþ z2=4. Clearly, jh 0
0ðzÞ � 1j ¼

jzj=2 < 1=2 for all z A D and

q

qy
arg

q

qy
F½h0�ðreiyÞ

� �� �����
y¼p; r¼1=2

¼ 0

(iii) Since jF 00
e ðzÞj ¼ jð1þ eÞ f 00ðzÞja 2j f 00ðzÞja 1=2 for all z A D, therefore

Fe is convex in D for each jej ¼ 1 by [14, Theorem 2, p. 33] and hence
F½ f � A K0

H . r

If f A A with F½ f � A S0
H , then janja 1=n for n ¼ 1; 2; . . . by Corollary 2.2.

However, if f A A is given by (1.2) with janja 1=n for nb 1, then F½ f � need not
be univalent in D. If we consider the function f ðzÞ ¼ zþ z2=2, then it is easy to
see that the harmonic function F½ f �ðzÞ ¼ 1þ z2=2þ z2=2 is not univalent in D,
since its Jacobian vanishes at the point z ¼ �1=2. The next result determines the
radius of univalence of functions F½ f � with the prescribed coe‰cient bounds.

Theorem 3.3. If f A A is given by (1.2) with janja 1=n for nb 1, then F½ f �
is univalent in jzj < 1=3 and the radius 1=3 is best possible.
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Proof. For r A ð0; 1Þ, let Fr½ f � : D ! C be defined by

Fr½ f �ðzÞ ¼
F½ f �ðrzÞ

r
¼ zþ

Xy
n¼2

anr
n�1zn þ

Xy
n¼2

anrn�1zn

for all z A D. We shall show that Fr½ f � A S0
H for ra 1=3. Since janja 1=n for

n ¼ 2; 3; . . . , note that

S :¼ 2
Xy
n¼2

njanjrn�1
a 2

Xy
n¼2

rn�1 ¼ 2r

1� r
:

Thus Sa 1 if r satisfies the inequality ra 1=3. By Lemma 1.1, Fr½ f � A S�0
H for

ra 1=3. In particular F½ f � is univalent in jzj < 1=3.
For sharpness of the bound 1=3, consider the function

f ðzÞ ¼ 2zþ logð1� zÞ ¼ z�
Xy
n¼2

1

n
zn; z A D:

The Jacobian of the harmonic function F½ f � is given by

JF½ f �ðzÞ ¼ j f 0ðzÞj2 � j f 0ðzÞ � 1j2 ¼ 3� 2 Re
1

1� z

� �

which vanishes at z ¼ 1=3. Therefore F½ f � is not univalent in jzj < r if r > 1=3.
r

As observed earlier, if f A K, then F½ f � need not be univalent in D. The
last theorem of this section determines the radius of univalence of the class
fF½ f � : f A Kg.

Theorem 3.4. If f A K, then F½ f � is univalent in jzj <
ffiffiffi
2

p
� 1 and the result

is sharp for the function lðzÞ ¼ z=ð1� zÞ.

Proof. Since f A K, f 0ðzÞ0 1=ð1� zÞ2 in D by Marx Strohhäcker theorem
[10, Theorem 2.6(b), p. 60]. Using subordination, it follows that for every r A
ð0; 1Þ, f 0ðfz A C : jzja rgÞ � gðfz A C : jzja rgÞ, where gðzÞ ¼ 1=ð1� zÞ2. Con-
sequently, for jzja r0 :¼

ffiffiffi
2

p
� 1, we have

Re f 0ðzÞb min
jzjar0

Re f 0ðzÞb min
jzjar0

Re gðzÞ ¼ min
jzj¼r0

Re gðzÞ:

In view of these inequalities and Theorem 2.1, it su‰ces to show that

min
jzj¼r0

Re gðzÞ ¼ 1

2
:
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For z ¼ r0e
iy, note that

Re gðzÞ ¼ 1� 2 Re zþRe z2

ð1� 2 Re zþ jzj2Þ2
¼ 1� 2r0 cos yþ r20 cos 2y

ð1� 2r0 cos yþ r20Þ
2

which attains its minimum at y ¼Gp. Therefore

min
jzj¼r0

Re gðzÞ ¼ 1

ð1þ r0Þ2
¼ 1

2
:

Thus Re f 0ðzÞ > 1=2 in jzj < r0 and hence F½ f � A S0
H in jzj <

ffiffiffi
2

p
� 1 by Theorem

2.1(ii). r
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