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Abstract

We prove some weighted inequalities for delta derivatives acting on products and

compositions of functions on time scales and apply them to obtain generalized dynamic

Opial-type inequalities. We also employ these inequalities to establish some new

dynamic Lyapunov-type inequalities, which are essential in studying disfocality, dis-

conjugacy, lower bounds of eigenvalues, and distance between generalized zeros for

half-linear dynamic equations. In particular, we solve an open problem posed by Saker

in [Math. Comput. Modelling 58 (2013), 1777–1790]. Moreover, the results presented

in this paper generalize, improve, extend, and unify most of known results not only in

the discrete and continuous analysis but also on time scales.

1. Introduction

Since its discovery more than five decades ago, Opial’s inequality has been
receiving non-diminishing attention and a large number of papers dealing with
new proofs, extensions, generalizations, variants, and discrete analogues have
appeared in the literature. Inequalities of Opial-type turn out to be useful
tools in the study of oscillation theory, disfocality, disconjugacy, eigenvalue
problems, and numerous other applications in the theory of both di¤erential and
di¤erence equations. A nice summary of continuous and discrete Opial-type
inequalities and their applications can be found in the book [3] by Agarwal and
Pang.

The calculus of time scales has been introduced by Hilger [12] in order to
unify discrete and continuous analysis. Since then, many authors have been
concerned with the theory of inequalities on time scales. The study of dynamic
inequalities of Opial-type was initiated by Bohner and Kaymakçalan [5] (see
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also [1]), in which they showed that if f : ½0; c�T ! R is D-di¤erentiable with
f ð0Þ ¼ 0, then ð c

0

j½ f ðxÞ þ f sðxÞ� f DðxÞjDxa c

ð c
0

j f DðxÞj2Dx:ð1:1Þ

Afterwards, numerous authors have studied variants of (1.1). Two most
natural extensions are the weighted Opial-type inequalitiesð b

a

j f ðxÞjgj f DðxÞjbjðxÞDxaC1

ð b
a

j f DðxÞjptðxÞDx
� �ðgþbÞ=p

ð1:2Þ

and ð b
a

j f ðxÞ þ f sðxÞjgj f DðxÞjbjðxÞDxaC2

ð b
a

j f DðxÞjptðxÞDx
� �ðgþbÞ=p

;ð1:3Þ

when f ðaÞ ¼ 0 or/and f ðbÞ ¼ 0, where p > 1, b > 0, g > 0, C1 and C2 are
constants. For contributions to inequalities (1.2) and (1.3) we refer the readers
to [6, 14, 15, 17, 22, 24, 25, 26, 29, 30, 31, 35, 36]. The best reference here is the
book by Agarwal, O’Regan and Saker [2, Chapter 3], where the most popular
articles on this subject are collected.

Motivated by these works, in this paper we consider inequalities of Opial-
type in the most general situation which demonstrate the usefulness in the field of
dynamic equations. We are concerned with two following extensions.

Notice first that the term ð f þ f sÞ f D in the left-hand side of (1.1) can
be written as ð f 2ÞD. So, it is more natural and general to replace the terms
j f ðxÞjgj f DðxÞjb and j f ðxÞ þ f sðxÞjgj f DðxÞjb in the left-hand sides of (1.2) and

(1.3), respectively, by jðG � f ÞDjb and jðG 0 � f Þ f Djb, where G belongs to a suitable
class of functions. Of course, our setting brings in complications and it is much
harder to handle than other inequalities obtained previously. The main di‰culty
in carrying on this construction is that for an arbitrary time scale T, it is di‰cult
to give an explicit formula for ðG � f ÞD. Fortunately, by modifying the tech-
nique suggested by the authors in [19, 20], utilizing the chain rules [7, Theorems
1.87 and 1.88] and Hölder’s inequality [7, Theorem 6.13], we establish surprising
results, which are essentially new, contain both the continuous case [19] and the
discrete case [20].

Next, in the time scale calculus the concept of a zero of a function is
replaced by the so-called generalized zero (GZ for short). Hence, for wider
applicability of the results, we consider Opial-type inequalities in the case when
the endpoints are not necessarily zeros but GZs.

In addition to their intrinsic interest, our extensions will be proven essential
in applications to dynamic equations. For illustration, we consider the following
D-di¤erential equation with a damping term

Lp f ¼ ðtGpð f DÞÞD þ cGpð f DÞ þ jGpð f sÞ ¼ 0;ð1:4Þ
where p > 1, GpðxÞ ¼ jxjp�1 signðxÞ, t, c, and j are real-valued rd-continuous
functions on T with t > 0. By a solution of (1.4), we mean a function
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f : T ! R such that all delta derivatives involved in Lp f exist and are rd-
continuous at each point in T, that satisfies equation (1.4). We say that f has
a GZ at some point c A T provided that f ðcÞ ¼ 0 or f ðcÞ f sðcÞ < 0. Equation
(1.4) is called disconjugate on ½a; b�T if there is no non-trivial solution of (1.4)
with at least two GZs in ½a; b�T, and (1.4) is said to be disfocal on ½a; sðbÞ�T
provided there is no non-trivial solution f of (1.4) with a GZ in ½a; sðbÞ�T
followed by a GZ of f D in ½a; b�T.

Two problems of interest associated with (1.4) are: (i) determining a lower
bound for the distance between the GZs of f and f D, i.e., obtaining su‰cient
conditions for disfocality of (1.4); and (ii) obtaining su‰cient conditions for
disconjugacy of (1.4). From this we are able to prove some new Lyapunov-
type inequalities, which provide some useful tools in the study of disfocality,
disconjugacy, counting number of GZs, lower bounds of eigenvalues, and distance
between GZs for the half-linear dynamic equation

ðtGpð f DÞÞD þ jGpð f sÞ ¼ 0:ð1:5Þ

In [27], Saker considered a special case of (1.4) when pb 2 is a quotient of
odd positive integers and posed an open problem for the case when 1 < p < 2.
Hence, our results, in particular, solve this problem. Moreover, we note that
(1.4) in its general form covers several di¤erent types of di¤erential and di¤erence
equations depending on the choice of the time scale T. For example, when
T ¼ R, (1.4) becomes

ðtGpð f 0ÞÞ0 þ cGpð f 0Þ þ jGpð f Þ ¼ 0:ð1:6Þ

Some special cases of (1.6) have been studied by some authors, we refer to the
papers by Brown and Hinton [8], Harris and Kong [11], Hong, Lian and Yeh
[13], Lee et al. [16], Lian, Yeh and Li [18], Saker [23], Saker, Agarwal and
O’Regan [28], Yan [33], and Yang [34]. Our results for the case when T ¼ R
cover most of results given in these works and are essentially new for the other
cases.

The rest of this paper is organized as follows. Section 2 contains some
definitions and preliminary lemmas of time scale calculus. Section 3 is devoted
to inequalities for products and compositions of functions on time scales, while
Section 4 is intended to motivate our investigations of dynamic Opial-type
inequalities. In Section 5, we proceed with the study of Lyapunov-type inequal-
ities and give some answers for problems (i) and (ii) presented above. The last
section works with solutions of equation (1.5).

2. Preliminaries

In this section, a brief list of essential lemmas, which are necessary for our
results, are given. For the most part, the reader is expected to be familiar with
the notion of time scales. See [7], [9], and [12] containing a lot of information on
time scale calculus. Nevertheless, we state some time scale concepts here since
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they are frequently used in the sequel. Let T, s, f s, m, f D, and
Ð b
a
f ðxÞDx stand

for time scale, forward jump operator, f � s, graininess, delta derivative of f ,
and delta integral of f from a to b, respectively. The notations ½a; b�T, ða; b�T,
and so on, will denote time scale intervals, for example, ða; b�T ¼ ða; b� \ T. In
particular, ½1; n�N ¼ f1; . . . ; ng, where n is a positive integer.

Lemma 2.1. If f : T ! R is D-di¤erentiable at x A Tk, then

f sðxÞ ¼ f ðxÞ þ mðxÞ f DðxÞ:ð2:1Þ
For f : T ! R and a A Tk, we haveð sðaÞ

a

f ðxÞDx ¼ mðaÞ f ðaÞ:ð2:2Þ

Lemma 2.2 (Leibniz formula). If f D
j exists for j A ½1; n�N, then

Yn
j¼1

fj

 !D
¼
Xn
j¼1

Yj�1

i¼1

f s
i

 !
f D
j

Yn
k¼ jþ1

fk

 !
:ð2:3Þ

Lemma 2.3 (Integration by parts). If f Dgs and fgD are D-integrable on
½a; bÞT, thenð b

a

f DðxÞgsðxÞDxþ
ð b
a

f ðxÞgDðxÞDx ¼ f ðbÞgðbÞ � f ðaÞgðaÞ:ð2:4Þ

A function f : T ! R is said to be absolutely continuous on T if for every
e > 0 there exists a d > 0 such that if f½ak; bkÞTg

n
k¼1, with ak; bk A T, is a finite

pairwise disjoint family of subintervals of T satisfying
Pn

k¼1ðbk � akÞ < d, thenPn
k¼1 j f ðbkÞ � f ðakÞj < e. Let us denote by ACð½a; b�TÞ the class of all real-

valued absolutely continuous functions on ½a; b�T.

Lemma 2.4 (Fundamental theorem of calculus). For f AACð½a; b�TÞ, we have

f ðxÞ ¼ f ðaÞ þ
ð x
a

f DðtÞDt; x A ½a; b�Tð2:5Þ

and

f ðxÞ ¼ f ðbÞ �
ð b
x

f DðtÞDt; x A ½a; b�T:ð2:6Þ

A function t : ½a; b�T ! R is said to be a weight on ½a; b�T if t is positive
and rd-continuous on ½a; b�T. Let Wð½a; b�TÞ denote the set of all weights on
½a; b�T. The Lebesgue D-measure is defined over the Lebesgue measurable subsets
of T, i.e., a set E � T is D-measurable if and only if E is Lebesgue measurable.
For pb 1 and t A Wð½a; b�TÞ, we denote by L

p
Dð½a; b�T; tÞ the set of all D-

measurable functions f defined on ½a; b�T such that
Ð b
a
j f ðxÞjptðxÞDx < y and by
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Lp
a ð½a; b�T; tÞ the set of all functions f A ACð½a; b�TÞ for which f D A L

p
Dð½a; b�T; tÞ

and that f has a GZ at a. From now on, p > 1 and q > 1 are conjugate
exponents, i.e., 1=pþ 1=q ¼ 1.

Lemma 2.5 (Hölder’s inequality). Suppose that t A Wð½a; b�TÞ, f A
L

p
Dð½a; b�T; tÞ, and g A L

q
Dð½a; b�T; tÞ. Then fg A L1

Dð½a; b�T; tÞ andð b
a

j f ðxÞgðxÞjtðxÞDxa
ð b
a

j f ðxÞjptðxÞDx
� �1=p ð b

a

jgðxÞjqtðxÞDx
� �1=q

:ð2:7Þ

Lemma 2.6. For t A Wð½a; c�TÞ and f A Lp
a ð½a; c�T; tÞ, there exists a x A ½0; 1Þ

such that ð1� xÞ f ðaÞ þ x f sðaÞ ¼ 0. By setting wxðxÞ ¼ 1 if x A ½sðaÞ; c�T and

wxðaÞ ¼ 1� x, txðxÞ ¼
Ð x
a
wxðtÞt�q=pðtÞDt, and FxðxÞ ¼

Ð x
a
j f DðtÞjpwxðtÞtðtÞDt, we

have

j f ðxÞjaF
1=p
x ðxÞt1=qx ðxÞ; x A ½sðaÞ; c�T:ð2:8Þ

Similarly, for t A Wð½c; sðbÞ�TÞ and f A L
p
b ð½c; sðbÞ�T; tÞ, there exists an h A

½0; 1Þ such that ð1� hÞ f ðbÞ þ h f sðbÞ ¼ 0. Let lhðxÞ ¼ 1 if x A ½c; bÞT and lhðbÞ ¼
h, t̂thðxÞ ¼

Ð sðbÞ
x

lhðtÞt�q=pðtÞDt, and F̂FhðxÞ ¼
Ð sðbÞ
x

j f DðtÞjplhðtÞtðtÞDt. Then

j f ðxÞja F̂F 1=p
h ðxÞt̂t1=qh ðxÞ; x A ½c; b�T:ð2:9Þ

Proof. Since f ðaÞ ¼ 0 or f ðaÞ f sðaÞ < 0, it follows that there exists a
x A ½0; 1Þ such that ð1� xÞ f ðaÞ þ x f sðaÞ ¼ 0. Hence, using (2.1), (2.2), and
(2.5), we obtain

f ðxÞ ¼
ð x
a

wxðtÞ f DðtÞDt; x A ½sðaÞ; c�T:ð2:10Þ

Applying (2.7) to (2.10) yields (2.8) as required. The proof for (2.9) is similar.
r

We now recall a class of functions introduced by the authors in [20], which
will be required when we prove some inequalities for compositions of functions.

For 0 < Ray, let G1
R stand for the class of all functions G A C 1ð�R;RÞ

satisfying the following conditions: Gð0Þ ¼ 0; jG 0ðxÞjaG 0ðjxjÞ for all x A ð�R;RÞ;
and if xa yaz1�a, a A ½0; 1�, 0 < x; y; z < R, then G 0ðxÞa ½G 0ðyÞ�a½G 0ðzÞ�1�a, i.e.,
G 0 is geometrically convex on ð0;RÞ.

We have GðxÞ ¼ jxjp A G1
y for p > 1. If

Py
k¼0 akx

k is an absolutely con-
vergent power series with radius of convergence R, then GðxÞ ¼

Py
k¼0 jakjxkþ1=

ðk þ 1Þ belongs to G1
R. For example, ex � 1 A G1

y.

Lemma 2.7 ([20]). If G A G1
R, then the following statements hold:

(1) G 0 is non-negative and increasing on ð0;RÞ;
(2) G is increasing on ð0;RÞ and jGðxÞjaGðjxjÞ for all x A ð�R;RÞ;
(3) G is geometrically convex on ð0;RÞ.
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Lemma 2.8 (Chain rule). Let G A G1
R and f : T! ð�R;RÞ be D-di¤erentiable.

Then G � f is D-di¤erentiable and

ðG � f ÞDðxÞ ¼ f DðxÞ
ð1
0

G 0ðsf sðxÞ þ ð1� sÞ f ðxÞÞ ds; x A Tk:ð2:11Þ

Moreover, if f is non-negative and increasing on T, then

ðG � f ÞDðxÞb f DðxÞðG 0 � f ÞðxÞ; x A Tk:ð2:12Þ

3. Inequalities for products and compositions of functions

In what follows a, b and c belong to T such that sðaÞ < c < b. If tj A
Wð½a; c�TÞ and fj A Lp

a ð½a; c�T; tjÞ for j A ½1; n�N, then xj, wxj , txj , and Fxj are
defined as in Lemma 2.6. Similar considerations apply to the case when tj A
Wð½c; sðbÞ�TÞ and fj A L

p
b ð½c; sðbÞ�T; tjÞ. We first obtain weighted inequalities

for a product of functions.

Theorem 3.1. Let tj AWð½a; c�TÞ, fj ALp
a ð½a; c�T; tjÞ and u¼ ½ð

Qn
j¼1 txj Þ

D��p=q
.

Then u is a weight on ½sðaÞ; c�T and moreover,

ð c
sðaÞ

Yn
j¼1

fj

 !D
ðxÞ

������
������
p

uðxÞDxa
Yn
j¼1

Fxj ðcÞ �
Yn
j¼1

F s
xj
ðaÞ:ð3:1Þ

Likewise, let tj A Wð½c; sðbÞ�TÞ and fj A L
p
b ð½c; sðbÞ�T; tjÞ. Then the function

ûu ¼ ½�ð
Qn

j¼1 t̂thj Þ
D��p=q

is a weight on ½c; b�T and

ð b
c

Yn
j¼1

fj

 !D
ðxÞ

������
������
p

ûuðxÞDxa
Yn
j¼1

F̂Fhj ðcÞ �
Yn
j¼1

F̂Fhj ðbÞ:ð3:2Þ

Proof. Since tj A Wð½a; c�TÞ, we have txj ; t
D
xj
A Wð½sðaÞ; c�TÞ for j A ½1; n�N.

By Leibniz formula (2.3), u A Wð½sðaÞ; c�TÞ. Also, for x A ½sðaÞ; c�T, we have

Yn
j¼1

fj

 !D
ðxÞ

������
������a

Xn
j¼1

Yj�1

i¼1

j f s
i ðxÞj

 !
j f D

j ðxÞj
Yn

k¼ jþ1

j fkðxÞj
 !

:ð3:3Þ

Using j f D
j ðxÞj ¼ ½F D

xj
ðxÞ�1=p½tDxj ðxÞ�

1=q and (2.8) in (3.3) and then applying Hölder’s
inequality for the sum, we can assert that

Yn
j¼1

fj

 !D
ðxÞ

������
������
p

uðxÞa
Yn
j¼1

Fxj

 !D
ðxÞ; x A ½sðaÞ; c�T:ð3:4Þ
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Integrating (3.4) over ½sðaÞ; c�T and using (2.5), we get (3.1). The proof for (3.2)
is similar. r

Remark 3.2. If fjðaÞ ¼ 0 for j A ½1; n�N, then inequality (3.1) also holds
true when we replace sðaÞ by a. By taking T ¼ R, inequality (3.1) reduces to
[10, Theorem 1.6].

Next, let us consider some weighted inequalities for the transform f 7! G � f ,
where G A G1

R and 0 < Ray.

Theorem 3.3. Let t A Wð½a; c�TÞ and f A Lp
a ð½a; c�T; tÞ be such that FxðcÞ <

R and txðcÞ < R. Then Q ¼ ½ðG � txÞD��p=q A Wð½sðaÞ; c�TÞ andð c
sðaÞ

jðG � f ÞDðxÞjpQðxÞDxa ðG � FxÞðcÞ � ðG � F s
x ÞðaÞ:ð3:5Þ

Similarly, let t A Wð½c; sðbÞ�TÞ and f A L
p
b ð½c; sðbÞ�T; tÞ satisfy F̂FhðcÞ < R and

t̂thðcÞ < R. Then Q̂Q ¼ ½�ðG � t̂thÞD��p=q A Wð½c; b�TÞ and furthermore,ð b
c

jðG � f ÞDðxÞjpQ̂QðxÞDxa ðG � F̂FhÞðcÞ � ðG � F̂FhÞðbÞ:ð3:6Þ

Proof. We give the proof only for the case when f A Lp
a ð½a; c�T; tÞ; the

proof of the other case is similar and therefore omitted. From (2.11) we observe
that Q A Wð½sðaÞ; c�TÞ and

jðG � f ÞDðxÞja j f DðxÞj
ð1
0

jG 0ðsf sðxÞ þ ð1� sÞ f ðxÞÞj ds; x A ½sðaÞ; c�T:ð3:7Þ

According to Lemma 2.6, properties of G 0, and Hölder’s inequality, we have

jG 0ðsf sðxÞ þ ð1� sÞ f ðxÞÞjð3:8Þ

a ½G 0ðsF s
x ðxÞ þ ð1� sÞFxðxÞÞ�1=p½G 0ðstsx ðxÞ þ ð1� sÞtxðxÞÞ�1=q

for x A ½sðaÞ; c�T and s A ½0; 1�. Using j f DðxÞj ¼ ½F D
x ðxÞ�

1=p½tDx ðxÞ�
1=q and (3.8) in

(3.7) and then applying (2.7), we arrive at

jðG � f ÞDðxÞjpQðxÞa ðG � FÞDðxÞ; x A ½sðaÞ; c�T:ð3:9Þ

Integrate inequality (3.9) over ½sðaÞ; c�T and use (2.5) to obtain (3.5). r

Combining Theorems 3.1 and 3.3 yields the following corollary.

Corollary 3.4. Let Gj A G1
R, tj A Wð½a; c�TÞ and fj A Lp

a ð½a; c�T; tjÞ be such

that Fxj ðcÞ < R and txj ðcÞ < R for j A ½1; n�N. Then n ¼ ½ð
Qn

j¼1 Gj � txj Þ
D��p=q

is a
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weight on ½sðaÞ; c�T and

ð c
sðaÞ

Yn
j¼1

Gj � fj

 !D
ðxÞ

������
������
p

nðxÞDxa
Yn
j¼1

ðGj � Fxj ÞðcÞ �
Yn
j¼1

ðGj � F s
xj
ÞðaÞ:ð3:10Þ

Likewise, if tj A Wð½c; sðbÞ�TÞ and fj A L
p
b ð½c; sðbÞ�T; tjÞ satisfying F̂Fhj ðcÞ < R

and t̂thj ðcÞ < R for j A ½1; n�N, then n̂n ¼ ½�ð
Qn

j¼1 Gj � t̂thj Þ
D��p=q A Wð½c; b�TÞ and

ð b
c

Yn
j¼1

Gj � fj

 !D
ðxÞ

������
������
p

n̂nðxÞDxa
Yn
j¼1

ðGj � F̂Fhj ÞðcÞ �
Yn
j¼1

ðGj � F̂Fhj ÞðbÞ:ð3:11Þ

Remark 3.5. As special cases when T ¼ R and T ¼ Z, the results contained
in Corollary 3.4 reduce to the corresponding ones stated in [19] and [20],
respectively.

4. Opial-type inequalities on time scales

This section is devoted to establish generalized Opial-type inequalities on
time scales by using weighted inequalities obtained above. It is a new argument
that yields the most general version and we include it here since the technique
may be useful in the proof of other inequalities. Here and subsequently, a and b
are positive real numbers such that 1=pþ 1=a ¼ 1=b.

Theorem 4.1. Let Gj A G1
R, tj A Wð½a; c�TÞ and fj A Lp

a ð½a; c�T; tjÞ be such
that Fxj ðcÞ < R and txj ðcÞ < R for j A ½1; n�N. For j A Wð½a; c�TÞ such that

K :¼
ð c
sðaÞ

ja=bðxÞ
Yn
j¼1

Gj � txj

 !D
ðxÞ

2
4

3
5
�a=q

Dx

8><
>:

9>=
>;

b=a

< y;

we have

ð c
sðaÞ

Yn
j¼1

Gj � fj

 !D
ðxÞ

������
������
b

jðxÞDxð4:1Þ

aK
Yn
j¼1

ðGj � Fxj ÞðcÞ �
Yn
j¼1

ðGj � F s
xj
ÞðaÞ

" #b=p
:

Similarly, let tj A Wð½c; sðbÞ�TÞ and fj A L
p
b ð½c; sðbÞ�T; tjÞ satisfy F̂Fhj ðcÞ < R

and t̂thj ðcÞ < R for j A ½1; n�N. If j A Wð½c; sðbÞ�TÞ such that

K̂K :¼
ð b
c

ja=bðxÞ �
Yn
j¼1

Gj � t̂thj

 !D
ðxÞ

2
4

3
5
�a=q

Dx

8><
>:

9>=
>;

b=a

< y;
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then

ð b
c

Yn
j¼1

Gj � fj

 !D
ðxÞ

������
������
b

jðxÞDxð4:2Þ

a K̂K
Yn
j¼1

ðGj � F̂Fhj ÞðcÞ �
Yn
j¼1

ðGj � F̂Fhj ÞðbÞ
" #b=p

:

Proof. Let n ¼ ½ð
Qn

j¼1 Gj � txj Þ
D��p=q. Then n is a weight on ½sðaÞ; c�T.

Hence, (4.1) is derived by using (2.7) and (3.10). The same proof works for
(4.2). r

Corollary 4.2. Let t; j A Wð½a; c�TÞ and f A Lp
a ð½a; c�T; tÞ be such that

L :¼
ð c
sðaÞ

jqðxÞðtpx Þ
DðxÞDx

" #1=q
< y:

Then one has ð c
sðaÞ

jðj f jpÞDðxÞjjðxÞDxaL½F p
x ðcÞ � F

p
x ðsðaÞÞ�

1=p:ð4:3Þ

Similarly, if t; j A Wð½c; sðbÞ�TÞ and f A L
p
b ð½c; sðbÞ�T; tÞ, then

ð b
c

jðj f jpÞDðxÞjjðxÞDxa
ð b
c

jqðxÞð�t̂tph Þ
DðxÞDx

� �1=q
½F̂F p

h ðcÞ � F̂F p
h ðbÞ�

1=pð4:4Þ

as long as the right-hand side exists and is finite.

Remark 4.3. When f ðaÞ ¼ 0 or/and f ðbÞ ¼ 0, Corollary 4.2 derives various
known results in the literature:

(1) If p ¼ 2, a ¼ 0, j ¼ t1 1, then (4.3) reduces to (1.1), while (4.4) is new;
(2) Inequalities (4.3) and (4.4) are the same as inequalities given in Theorem

4.1 and Corollary 4.4 in [36], respectively, if we take p ¼ 2, a ¼ 0 and
j1 1;

(3) For p ¼ 2 and t1 1, (4.3) becomes a sharper version of [14, Theorem
3.1]. Similarly, (4.4) reduces to a sharpened version of [14, Theorem
3.2];

(4) Let p ¼ 2, a ¼ 0, t ¼ oc, j ¼ cs, where o and c are two weights on
½0; c�T such that

Ð c
0 Dt=oðtÞ < y and c is decreasing. Then inequality

(4.3) implies [5, Theorem 4.1]. In this case, inequality (4.4) is essentially
new;

(5) Inequality (4.3) reduces to [6, Corollary 3.2].
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Remark 4.4. In [24, Theorem 1], Saker proved an inequality similar to (4.3)
in the case when p ¼ 2 and f ðaÞ ¼ 0 with the term L being replaced by

M :¼ 2

ð c
a

ð x
a

Dt

tðtÞ

� �
j2ðxÞ
tðxÞ Dx

� �1=2
þ sup

aaxac
mðxÞ jðxÞ

tðxÞ :

In some cases we see that MbL, i.e., (4.3) gives a sharpened version of Saker’s
result. For example, if j is increasing on ½a; c�T, then

ð c
a

mðxÞ j
2ðxÞ

t2ðxÞ Dxa sup
x A ½a; c�T

mðxÞ jðxÞ
tðxÞ

 !
L;

which yields MbL. The same conclusion can be drawn for (4.4) which
corresponds to [24, Theorem 2].

The following corollary can be proved in view of Theorem 4.1 and the well-
known inequality of arithmetic and geometric means:

Yn
j¼1

aj a
1

n

Xn
j¼1

aj

 !n
; aj b 0 for j A ½1; n�N:ð4:5Þ

Corollary 4.5. Let m A N, j; tj A Wð½a; c�TÞ for j A ½1; n�N. If fj A
Lp

a ð½a; c�T; tjÞ with fjðaÞ ¼ 0 for j A ½1; n�N and

N :¼
ð c
a

jqðxÞ
Yn
j¼1

ð x
a

t
�q=p
j ðtÞDt

� �m !D
Dx

2
4

3
5
1=q

< y;

then

ð c
a

Yn
j¼1

f m
j

 !D
ðxÞ

������
������jðxÞDxaN

1

n

ð c
a

Xn
j¼1

j f D
j ðxÞjptjðxÞDx

 !mn=p

:ð4:6Þ

Likewise, if j; tj A Wð½c; b�TÞ, fj A L
p
b ð½c; b�T; tjÞ with fjðbÞ ¼ 0 for j A ½1; n�T,

and

N̂N :¼
ð b
c

jqðxÞ �
Yn
j¼1

ð b
x

t
�q=p
j ðtÞDt

� �m !D
Dx

2
4

3
5
1=q

< y;

then

ð b
c

Yn
j¼1

f m
j

 !D
ðxÞ

������
������jðxÞDxa N̂N

1

n

ð b
c

Xn
j¼1

j f D
j ðxÞjptjðxÞDx

 !mn=p

:ð4:7Þ
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Remark 4.6. (1) Note that when n ¼ 2, m ¼ 1, p ¼ 2, t1 ¼ t2 ¼ co, j ¼ cs,
where c;o A Wð½a; c�TÞ and c is decreasing on ½a; c�T, inequality (4.6)
improves [29, Theorem 3.5]. Similarly, [29, Theorem 3.6] can be derived
from (4.7).

(2) Inequality (4.6) implies [15, Theorem 3.2], and so is [15, Theorem 3.1]
if we take tj 1 1 for all j A ½1; n�N, j1 1 and p ¼ nm. Moreover, let
j ¼ cs and t ¼ cso, where c;o A Wð½a; c�TÞ with c decreasing on
½a; b�T. Then (4.6) improves the results contained in [15, Theorems 4.1
and 4.2] if we choose m ¼ 1, p ¼ n and p ¼ mn� 1, respectively.

We point out that it is not easy to give an explicit formula for ðG � f ÞD
in general. So, for wider applicability of the results, we would like to replace
ðGj � fjÞD appeared in Theorem 4.1 by f D

j ðG 0
j � fjÞ and obtain the following

theorem whose proof is based on Hölder’s inequality (2.7), Lemmas 2.6, 2.7 and
2.8, and a modification of the method used in the proof of Theorem 3.3.

Theorem 4.7. Let Gj A G1
R, tj A Wð½a; c�TÞ and fj A Lp

a ð½a; c�T; tjÞ be such
that Fxj ðcÞ < R and txj ðcÞ < R for j A ½1; n�N. For j A Wð½a; c�TÞ such that

P :¼
ð c
sðaÞ

Xn
j¼1

½tDxj ðxÞðG
0
j � txj ÞðxÞ�

Y
k0j

ðGk � txk ÞðxÞ
 !a=q

ja=bðxÞDx

2
4

3
5
b=a

< y;

we obtain

ð c
sðaÞ

Xn
j¼1

j f D
j ðxÞðG 0

j � fjÞðxÞj
Y
k0j

jðGk � fkÞðxÞj
 !b

jðxÞDxð4:8Þ

aP
Yn
j¼1

ðGj � Fxj ÞðcÞ �
Yn
j¼1

ðGj � F s
xj
ÞðaÞ

" #b=p
:

Likewise, let tj A Wð½c; sðbÞ�TÞ and fj A L
p
b ð½c; sðbÞ�T; tjÞ satisfy F̂Fhj ðcÞ < R

and t̂thj ðcÞ < R for j A ½1; n�N. One has

ð b
c

Xn
j¼1

j f D
j ðxÞðG 0

j � fjÞðxÞj
Y
k0j

jðGk � fkÞðxÞj
 !b

jðxÞDxð4:9Þ

a P̂P
Yn
j¼1

ðGj � F̂Fhj ÞðcÞ �
Yn
j¼1

ðGj � F̂Fhj ÞðbÞ
" #b=p

if j A Wð½c; sðbÞ�TÞ such that

P̂P :¼
ð b
c

Xn
j¼1

½�t̂tDhj ðxÞðG
0
j � t̂thj ÞðxÞ�

Y
k0j

ðGk � t̂thk ÞðxÞ
 !a=q

ja=bðxÞDx

2
4

3
5
b=a

< y:
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Proof. We only prove (4.8), as the proof of (4.9) is similar. By Lemmas
2.6 and 2.7,

jðGj � fjÞðxÞja ½ðGj � Fxj ÞðxÞ�
1=p½ðGj � txj ÞðxÞ�

1=q

and

j f D
j ðxÞðG 0

j � fjÞðxÞja ½F D
xj
ðxÞðG 0

j � Fxj ÞðxÞ�
1=p½tDxj ðxÞðG

0
j � txj ÞðxÞ�

1=q

for x A ½sðaÞ; c�T and j A ½1; n�N. Thus, by Hölder’s inequality,

Xn
j¼1

j f D
j ðxÞðG 0

j � fjÞðxÞj
Y
k0j

jðGk � fkÞðxÞj
 !b

jðxÞð4:10Þ

a
Xn
j¼1

½F D
xj
ðxÞðG 0

j � Fxj ÞðxÞ�
Y
k0j

ðGk � Fxk ÞðxÞ
" #b=p

�
Xn
j¼1

½tDxj ðxÞðG
0
j � txj ÞðxÞ�

Y
k0j

ðGk � txk ÞðxÞ
" #b=q

jðxÞ;

for x A ½sðaÞ; c�T. Integrating both sides of (4.10) over ½sðaÞ; c�T and using
Hölder’s inequality with indices p=b and a=b, we get

ð c
sðaÞ

Xn
j¼1

j f D
j ðxÞðG 0

j � fjÞðxÞj
Y
k0j

jðGk � fkÞðxÞj
 !b

jðxÞDx

aP

ð c
sðaÞ

Xn
j¼1

½F D
xj
ðxÞðG 0

j � Fxj ÞðxÞ�
Y
k0j

ðGk � Fxk ÞðxÞDx
" #b=p

aP
Yn
j¼1

ðGj � Fxj ÞðcÞ �
Yn
j¼1

ðGj � F s
xj
ÞðaÞ

" #b=p
;

where we have used Leibniz formula (2.3) and the fact that

ðGj � Fxj ÞðxÞa ðGj � F s
xj
ÞðxÞ and F D

xj
ðxÞðG 0

j � Fxj ÞðxÞa ðGj � Fxj Þ
DðxÞ

for x A ½sðaÞ; c�T and j A ½1; n�N. Hence, (4.8) is verified. r

Remark 4.8. Taking n ¼ 2, b ¼ 1, G1ðxÞ ¼ G2ðxÞ ¼ x, f1ðaÞ ¼ f2ðaÞ ¼ 0 or/
and f1ðbÞ ¼ f2ðbÞ ¼ 0, j ¼ cs, t1 ¼ t2 ¼ o½cs�p=2, where o;c A Wð½a; b�TÞ and
c is decreasing on ½a; b�T, Theorem 4.7 improves and generalizes the results given
in [35].

Corollary 4.9. If t; j A Wð½a; c�TÞ, f A Lp
a ð½a; c�T; tÞ and

Q :¼ b

gþ b

� �b=p ð c
sðaÞ

½tDx ðxÞt
g=b
x ðxÞ�a=qja=bðxÞDx

" #b=a
< y;
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then ð c
sðaÞ

j f ðxÞjgj f DðxÞjbjðxÞDxaQ½F ðgþbÞ=b
x ðcÞ � F

ðgþbÞ=b
x ðsðaÞÞ�b=p:ð4:11Þ

Similarly, suppose that t; j A Wð½c; sðbÞ�TÞ, f A L
p
b ð½c; sðbÞ�T; tÞ and

Q̂Q :¼ b

gþ b

� �b=p ð b
c

½�t̂tDh ðxÞt̂tg=bh ðxÞ�a=qja=bðxÞDx
� �b=a

< y:

We have ð b
c

j f ðxÞjgj f DðxÞjbjðxÞDxa Q̂Q½F̂F ðgþbÞ=b
h ðcÞ � F̂F ðgþbÞ=b

h ðbÞ�b=p:ð4:12Þ

Remark 4.10. If f ðaÞ ¼ 0, then inequality (4.11) implies thatð c
a

j f ðxÞjgj f DðxÞjbjðxÞDxaQ1

ð c
a

j f DðxÞjptðxÞDx
� �ðgþbÞ=p

;ð4:13Þ

where

Q1 :¼
b

gþ b

� �b=p ð c
a

ja=bðxÞ
ta=pðxÞ

ð x
a

Dt

tq=pðtÞ

� �ga=ðbqÞ
Dx

" #b=a
:

From (4.13) we can deduce some existed Opial-type inequalities:
(1) If one sets p ¼ gþ b and j ¼ t, where t is decreasing on ½a; c�T, then

(4.13) improves [17, Theorem 3.1] and [30, Theorem 1];
(2) By setting b ¼ 1 and t ¼ ojp=ðgþ1Þ, where o A Wð½a; c�TÞ and j is

decreasing on ½a; c�T, (4.13) reduces to [2, Theorem 3.2.4] (see also [31]);
(3) If p ¼ gþ b, then inequality (4.13) becomes [29, Theorem 3.1] which

reduces to [22, Theorem 2.4].
Similar consideration applying to (4.12) yields other results given in [17, 22, 29,
30], and [31].

5. Disfocal problems and disconjugacy conditions

In this section we establish su‰cient conditions for disfocality and disconju-
gacy of equation (1.4). In the following, we assume that mðxÞjcðxÞj=tðxÞa d < 1
for all x A ½a; sðbÞ�T. Notice that this assumption is trivial in the case when
T ¼ R since m1 0. We first formulate our main results related to the spacing
between a GZ of the solution and a GZ of its derivative of equation (1.4), which
yields su‰cient conditions for disfocality of (1.4).

Theorem 5.1. If equation (1.4) has a non-trivial solution f A Lp
a ð½a; c�T; tÞ

such that f DðcÞ f ðcÞa 0, then

Txðc;cÞ þWxða; c;FcÞ > 1� d;ð5:1Þ
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where FcðxÞ :¼
Ð c
x
jðtÞDt,

Txðc;cÞ :¼
1

p

� �1=p ð c
sðaÞ

tDx ðxÞt
p�1
x ðxÞjcðxÞjqDx

" #1=q

and

Wxða; c;FcÞ :¼
ð c
a

jFcðxÞjqðtpx Þ
DðxÞDx

� �1=q
:

Similarly, if f A L
p
b ð½c; sðbÞ�T; tÞ is a non-trivial solution of equation (1.4)

such that f DðcÞ f ðcÞb 0, then

T̂Thðc;cÞ þ ŴWhðc; sðbÞ; F̂FcÞ > 1� d;ð5:2Þ

where F̂FcðxÞ :¼
Ð x
c
jðtÞDt,

T̂Thðc;cÞ :¼
1

p

� �1=p
�
ð b
c

t̂tDh ðxÞt̂tp�1
h ðxÞjcðxÞjqDx

� �1=q
and

ŴWhðc; sðbÞ; F̂FcÞ :¼
ð sðbÞ
c

jF̂FcðxÞjqð�t̂tph Þ
DðxÞDx

" #1=q
:

Proof. We only prove (5.1), as the proof of (5.2) is similar. Multiplying
both sides of (1.4) by f s and integrating it over ½a; c�T, we get

�
ð c
a

ðtGpð f DÞÞDðxÞ f sðxÞDxð5:3Þ

¼
ð c
a

cðxÞGpð f DðxÞÞ f sðxÞDxþ
ð c
a

jðxÞj f sðxÞjpDx:

Using integration by parts formula (2.4) with f DðcÞ f ðcÞa 0 and f ðaÞ ¼
�xmðaÞ f DðaÞ, we obtain

�
ð c
a

ðtGpð f DÞÞDðxÞ f sðxÞDxbFxðcÞ:ð5:4Þ

By mðxÞjcðxÞj=tðxÞa d and (4.11),ð c
a

mðxÞcðxÞj f DðxÞjpwxðxÞDxa dFxðcÞ

and ð c
sðaÞ

cðxÞGpð f DðxÞÞ f ðxÞDxaTxðc;cÞFxðcÞ:

267opial and lyapunov inequalities on time scales



Therefore, due to (2.1),ð c
a

cðxÞGpð f DðxÞÞ f sðxÞDxa ðdþ Txðc;cÞÞFxðcÞ:ð5:5Þ

Since FD
c ðxÞ ¼ �jðxÞ and FcðcÞ ¼ 0, it follows from (2.4), (2.8), (4.3), and

Hölder’s inequality thatð c
a

jðxÞj f sðxÞjpDx ¼ FcðaÞj f sðaÞjp þ
ð c
sðaÞ

FcðxÞðj f jpÞDðxÞDxð5:6Þ

< Wxða; c;FcÞFxðcÞ:ð5:7Þ

Considering (5.4), (5.5) and (5.7) in (5.3) and canceling FxðcÞ, we get (5.1).
r

Remark 5.2. When f ðaÞ ¼ 0 or/and f ðbÞ ¼ 0, Theorem 5.1 solves [27,
Problem 1] and implies [14, Theorems 4.1 and 4.2]. In the special case when
T ¼ R, Theorem 5.1 generalizes [8, Theorem 3.1], [11, Theorems 2.1 and 2.2],
[23, Theorem 1], and [28, Theorem 2.1].

By using the maximum of jcj, jFcj, and jF̂Fcj in (5.1) and (5.2), we obtain the
following corollary.

Corollary 5.3. Suppose that f is a non-trivial solution of equation (1.4)
which belongs to Lp

a ð½a; c�T; tÞ and f DðcÞ f ðcÞa 0, then

Txðc; 1Þ sup
x A ½sðaÞ; c�T

jcðxÞj
 !

þ t
p�1
x ðcÞ sup

x A ½a; c�T
jFcðxÞj

 !
> 1� d:ð5:8Þ

Likewise, if f is a non-trivial solution of (1.4) which belongs to L
p
b ð½c; sðbÞ�T; tÞ

and f DðcÞ f ðcÞb 0, then

T̂Thðc; 1Þ sup
x A ½c;b�T

jcðxÞj
 !

þ t̂tp�1
h ðcÞ sup

x A ½c;sðbÞ�T
jF̂FcðxÞj

 !
> 1� d:ð5:9Þ

Remark 5.4. When f ðaÞ ¼ 0, (5.8) improves the results given in [24, Corol-
lary 14], [26, Corollary 3.8] and [27, Corollary 2.5]. Similar considerations apply
to (5.9). Also, if T ¼ R, then Corollary 5.3 coincides with [23, Theorem 2].

Theorem 5.5. Equation (1.4) is disfocal on ½a; sðbÞ�T if

maxfT0ðsðbÞ;cÞ þW0ða; sðbÞ;FsðbÞÞ; T̂T0ða;cÞ þ ŴW0ða; sðbÞ; F̂FaÞga 1� d:ð5:10Þ

Proof. Assume, to the contrary, that (5.10) holds and equation (1.4) is not
disfocal on ½a; sðbÞ�T. But then, by definition, there is a non-trivial solution f
of (1.4) with a GZ in ½a; sðbÞ�T followed by a GZ of f D in ½a; b�T. Without
loss of generality, we may assume that a is a GZ of f , b is a GZ of f D, and f
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has no GZs on ða; sðbÞ�T. Since f DðbÞ f DðsðbÞÞa 0, we have f ðbÞ f DðbÞa 0 or
f ðsðbÞÞ f DðsðbÞÞa 0. By (5.1),

1� d < TxðsðbÞ;cÞ þWxða; sðbÞ;FsðbÞÞaT0ðsðbÞ;cÞ þW0ða; sðbÞ;FsðbÞÞ;
which contradicts (5.10). The proof is complete. r

Application of Theorem 5.1 enables us to establish some new Lyapunov-type
inequalities on time scales which lead immediately to disconjugacy criteria for
(1.4).

Theorem 5.6. Suppose that equation (1.4) has a non-trivial solution f with
two consecutive GZs a and b, then there are c; sðdÞ A ½a; b�T, ca sðdÞ, for which

Txðc;cÞ þWxða; c;FcÞ > 1� dð5:11Þ
and

T̂Thðd;cÞ þ ŴWhðd; sðbÞ; F̂FdÞ > 1� d:ð5:12Þ

Proof. Since f has no GZs on ða; bÞT, it follows that f does not change
sign on ða; bÞT. We can certainly assume that f ðxÞ > 0 on ða; bÞT, since other-
wise we can replace f by �f . Let c and sðdÞ denote the least and the greatest
extreme points of f on ½a; b�T, respectively. If there is only one extreme point
of f , then c and sðdÞ coincide. Since a is a GZ of f and f ðcÞ f DðcÞa 0, it
follows that (5.11) holds due to (5.1). As it is shown in [7, Theorem 6.54] one
can see that if sðdÞ ¼ d, then f DðdÞ ¼ 0 and if sðdÞ > d, we have f ðdÞ f DðdÞ
b 0. Hence, (5.12) follows by (5.2). r

Corollary 5.7. Suppose that for all c; sðdÞ A ½a; b�T, ca sðdÞ, we have

maxfT0ðc;cÞ þW0ða; c;FcÞ; T̂T0ðd;cÞ þ ŴW0ðd; sðbÞ; F̂FdÞga 1� d:ð5:13Þ
Then equation (1.4) is disconjugate on ½a; b�T.

6. The distance between consecutive generalized zeros

In this section, we proceed with the study of disfocality, disconjugacy, lower
bounds of eigenvalues, and the distance between GZs for dynamic equation (1.5).

Theorem 6.1. Suppose that f A Lp
a ð½a; c�T; tÞ is a non-trivial solution of

equation (1.5) and f DðcÞ f ðcÞa 0, then

t
p�1
x ðcÞ sup

x A ½a; c�T

ð c
x

jðtÞDt
����

����
 !

> 1:ð6:1Þ

Moreover, if there are no extreme values of f on ða; cÞT, then

t
p�1
x ðcÞ sup

x A ½a; c�T

ð c
x

jðtÞDt
 !

> 1:ð6:2Þ
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If instead f A L
p
b ð½c; sðbÞ�T; tÞ and f DðcÞ f ðcÞb 0, then

t̂tp�1
h ðcÞ sup

x A ½c;sðbÞ�T

ð x
c

jðtÞDt
����

����
 !

> 1:ð6:3Þ

Moreover, if there are no extreme values of f on ðc; b�T, then

t̂tp�1
h ðcÞ sup

x A ½c;sðbÞ�T

ð x
c

jðtÞDt
 !

> 1:ð6:4Þ

Proof. Inequalities (6.1) and (6.3) hold due to (5.8) and (5.9), respectively.
We now prove (6.2). Suppose that there are no extreme values of f on ða; cÞT.
Since a is a GZ of f , we can assume that f ðcÞ ¼ maxx A ½a; c�T f ðxÞ. Then

f ðxÞ > 0, f DðxÞ > 0 and thus ðj f jpÞDðxÞ > 0 for x A ða; cÞT. By (5.4) and (5.6),
supx A ½a; c�T

Ð c
x
jðtÞDt > 0 and so,

FxðcÞ < sup
x A ½a; c�T

ð c
x

jðtÞDt
 !

t
p�1
x ðcÞFxðcÞ;

which yields (6.2). The proof for (6.4) follows in a way similar to the above.
r

Remark 6.2. Observe that [11, Theorems 2.1 and 2.2], [13, Theorems 2.3
and 2.4], and [28, Theorem 2.3] are consequences of Theorem 6.1 if one sets
T ¼ R.

Corollary 6.3. Equation (1.5) is disfocal on ½a; sðbÞ�T if

max sup
x A ½a;b�T

ð sðbÞ
x

jðtÞDt
�����

�����; sup
x A ½a;sðbÞ�T

ð x
a

jðtÞDt
����

����
( )

ð6:5Þ

a

ð sðbÞ
a

Dx

tq=pðxÞ

 !1�p

:

The following theorem gives more su‰cient conditions for disconjugacy of
(1.5) when j is oscillatory and this behavior a¤ects the bounds.

Theorem 6.4. Let a and b denote two consecutive GZs of a non-trivial
solution f of (1.5). Then there exist two disjoint subintervals of ½a; b�T, I1 and I2,
satisfying ð

I1[I2
jðxÞDx > 2p

ð sðbÞ
a

wxðxÞlhðxÞt�q=pðxÞDx
 !1�p

ð6:6Þ

and ð
½a;sðbÞ�TnðI1[I2Þ

jðxÞDxa 0:ð6:7Þ
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Proof. Since f has no GZs on ða; bÞT, we may assume that f ðxÞ > 0 on
ða; bÞT. Let c and sðdÞ denote the least and the greatest extreme points of f on
½a; b�T, respectively. If there is only one extreme point of f , then c and sðdÞ
coincide.

Case 1. Suppose that c < sðdÞ. Thus ca d, and there exists c1 A ½a; cÞT
such that ð c

c1

jðxÞDx > t
1�p
x ðcÞ and

ð c
c1

jðxÞDxb
ð c
a

jðxÞDx;

by (6.2). Similarly, we can choose d1 A ðd; sðbÞ�T for whichð d1
d

jðxÞDx > t̂t1�p
h ðdÞ and

ð d1
d

jðxÞDxb
ð sðbÞ
d

jðxÞDx:

Let I1 ¼ ½c1; c�T and I2 ¼ ½d; d1�T. We thus getð
I1[I2

jðxÞDx > t
1�p
x ðcÞ þ t̂t1�p

h ðdÞb 2pðtxðcÞ þ t̂thðdÞÞ1�p

b 2p

ð sðbÞ
a

wxðxÞlhðxÞt�q=pðxÞDx
 !1�p

;

where we have used Jensen’s inequality for the convex function x1�p. So, (6.6) is

verified. Obviously,
Ð c1
a
jðxÞDxa 0 and

Ð sðbÞ
d1

jðxÞDxa 0. To prove (6.7) it is

su‰cient to show that
Ð d
c
jðxÞDxa 0. Dividing both sides of (1.5) by Gpð f sðxÞÞ,

integrating it over ½c; d�T, and using (2.4) with f DðdÞ f ðdÞb 0 and f DðcÞ f ðcÞa 0,
we have ð d

c

jðxÞDxa
ð d
c

tðxÞGpð f DðxÞÞ 1

Gpð f Þ

� �D
ðxÞDx:

By [7, Theorem 1.20 (iv)] and (2.11),

Gpð f DðxÞÞ 1

Gpð f Þ

� �D
ðxÞa 0; x A ½c; d�T:

Therefore, we conclude that
Ð d
c
jðxÞDxa 0.

Case 2. Assume that there is only one extreme point c of f . Then
f DðxÞ > 0 for x A ða; cÞT and f DðxÞ < 0 for x A ðc; b�T. We choose FðxÞ ¼
C �

Ð x
a
jðtÞDt, where C is some constant. Set

M ¼ max
x A ½a;sðbÞ�

ð x
a

jðtÞDt ¼
ð d1
a

jðxÞDx;

m ¼ min
x A ½a;sðbÞ�

ð x
a

jðtÞDt ¼
ð c1
a

jðxÞDx;
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and take C ¼ ðM þmÞ=2. Since
Ð x
a
jðtÞDt A ½m;M�, we see that

jFðxÞja 1

2

ð d1
c1

jðxÞDx:ð6:8Þ

Multiply both sides of (1.5) by f s and integrate it over ½a; b�T to give

�
ð b
a

ðtGpð f DÞÞDðxÞ f sðxÞDx ¼
ð b
a

jðxÞj f sðxÞjpDx:ð6:9Þ

Since f ðaÞ ¼ �xmðaÞ f DðaÞ and f ðbÞ ¼ �hmðbÞ f DðbÞ, integrating by parts yields

�
ð b
a

ðtGpð f DÞÞDðxÞ f sðxÞDx ¼ FxðcÞ þ F̂FhðcÞ:ð6:10Þ

By integration by parts formula (2.4), Lemma 2.6 and Hölder’s inequality,ð b
a

jðxÞj f sðxÞjpDxa max
x A ½a;sðbÞ�T

jFðxÞj
� �

2j f ðcÞjpð6:11Þ

<

ð d1
c1

jðxÞDx
� �

2�pðFxðcÞ þ F̂FhðcÞÞðtxðcÞ þ t̂thðcÞÞp�1:

Considering (6.10) and (6.11) in (6.9) and dividing two sides by FxðcÞ þ F̂FhðcÞ, we
get ð d1

c1

jðxÞDx > 2p

ð sðbÞ
a

wxðxÞlhðxÞt�q=pðxÞDx
 !1�p

;

which implies (6.6). Finally, inequality (6.7) follows by
Ð c1
a
jðxÞDxa 0 andÐ sðbÞ

d1
jðxÞDxa 0. r

Corollary 6.5. Equation (1.5) is disconjugate on ½a; b�T if for every sub-
intervals I1 and I2 of ½a; sðbÞ�T,ð

I1[I2
jðxÞDxa 2p

ð sðbÞ
a

t�q=pðxÞDx
 !1�p

:ð6:12Þ

Remark 6.6. Our results contained in Theorem 6.4 and Corollary 6.5 reduce
to the ones known not only on time scales (see [2, Theorems 4.2.1 and 4.2.2],
[4, Theorems 1.3 and 3.6], [32, Theorem 2D], and [21]) but also in R (see [8,
Corollary 4.1], [11, Theorem 2.3 and Corollary 2.2], [13, Theorem 2.6 and
Corollary 2.8], [16, Lemma 1], and [34, Theorems 2.1 and 2.4]).

Theorem 6.4 also allows for a counting of the number of GZs.

Theorem 6.7. Assume that a non-trivial solution of (1.5) has ðnþ 1Þ GZs on
½a; b�T. Then there exist 2n disjoint subintervals of ½a; b�T, Ij1 and Ij2, such that

n <
1

2

ð sðbÞ
a

t�q=pðxÞDx
 !1=p ð

I

jðxÞDx
� �1=p

ð6:13Þ
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and ð
½a;sðbÞ�TnI

jðxÞDxa 0;ð6:14Þ

where I ¼
Sn

j¼1ðIj1 [ Ij2Þ.

Proof. If a solution f of (1.5) has consecutive GZs a1 < � � � < anþ1 on
½a; b�T, then Theorem 6.4 yields that for each j A ½1; n�N, there are two disjoint
subintervals of ½aj; ajþ1�T, Ij1 and Ij2, withð

Ij1[Ij2
jðxÞDx > 2p

ð sðajþ1Þ

aj

wxj ðxÞlxjþ1
ðxÞt�q=pðxÞDx

 !1�p

ð6:15Þ

and ð
½aj ;sðajþ1Þ�TnðIj1[Ij2Þ

jðxÞDxa 0;ð6:16Þ

where xi A ½0; 1Þ such that ð1� xiÞ f ðaiÞ þ xi f
sðaiÞ ¼ 0 for i A ½1; nþ 1�N. Sum

(6.15) for j from 1 to n and use Jensen’s inequality for the convex function x1�p

to obtain

ð
I

jðxÞDx > 2pnp
Xn
j¼1

ð sðajþ1Þ

aj

wxj ðxÞlxjþ1
ðxÞt�q=pðxÞDx

 !1�p

:ð6:17Þ

Since

Xn
j¼1

ð sðajþ1Þ

aj

wxj ðxÞlxjþ1
ðxÞt�q=pðxÞDxa

ð sðbÞ
a

t�q=pðxÞDx;

inequality (6.17) yields (6.13) as required. Finally, from (6.16) it is easy to
deduce (6.14). r

Theorem 6.4 also gives a clear relationship between Lyapunov-type inequal-
ities and eigenvalue problems. Let us note that changing j to lj in (1.5) we
easily obtain a lower bound for the eigenvalues using the fact that the eigen-
function fn associated with the nth eigenvalue, has exactly ðnþ 1Þ GZs.

Theorem 6.8. Let ln be the nth eigenvalue of

�ðtGpð f DÞÞDðxÞ ¼ ljðxÞGpð f sðxÞÞ; x A ða; bÞT;ð6:18Þ

where a and b are GZs of f . Then there exist 2n disjoint subintervals of ½a; b�T,
Ij1 and Ij2, such that

ln > 2pnp

ð sðbÞ
a

t�q=pðxÞDx
 !1�p ð

I

jðxÞDx
� ��1

ð6:19Þ

273opial and lyapunov inequalities on time scales



and ð
½a;sðbÞ�TnI

jðxÞDxa 0;ð6:20Þ

where I ¼
Sn

j¼1ðIj1 [ Ij2Þ.

For any x A T, d > 0, xþ d A T, we denote by ðI1 [ I2Þðx; dÞ the union of two
disjoint subintervals of ½x; xþ d�T, I1 and I2. We can now obtain the distance
between consecutive GZs of solutions of (1.5). A non-trivial solution of (1.5) is
called oscillatory if it has infinitely many (isolated) GZs in ½a;yÞT.

Theorem 6.9. If f is an oscillatory solution of (1.5), tbK > 0 on ½a;yÞT,
and

lim sup
x!y

dp�1

K

ð
ðI1[I2Þðx; dÞ

jðtÞDt
 !

< 2pð6:21Þ

for all d > 0 and for every two disjoint subintervals I1 and I2 of ½x; xþ d�T, then
the distance between consecutive GZs of f is unbounded as x ! y.

Proof. Assume, for a contradiction, that equation (1.5) has an oscillatory
solution f whose GZs contain a subsequence fxnkg

y
k¼1 such that 0 < sðxnkþ1

Þ�
xnk a d for some d and all k. By Theorem 6.4, there are disjoint subintervals
I1ðxnk ; dÞ and I2ðxnk ; dÞ of ½xnk ; xnk þ d�T satisfyingð

ðI1[I2Þðxnk ; dÞ
jðxÞDx > 2p

ð sðxnkþ1
Þ

xnk

K�q=pDx

 !1�p

b 2pKd1�p > 0

for any k, since tbK > 0 on ½a;yÞT. We thus have

lim sup
k!y

dp�1

K

ð
ðI1[I2Þðxnk ; dÞ

jðtÞDt
 !

b 2p;

which contradicts (6.21). r

Remark 6.10. For the time scale T ¼ R, Theorem 6.9 generalizes [11,
Theorem 3.1], [13, Theorem 3.1], [18, Theorem 2], and [33, Theorem 1].

Theorem 6.11. Let f be an oscillatory solution of (1.5). If tbK > 0 on
½a;yÞT and there exists a d0 > 0 such that for every two disjoint subintervals of
½x; xþ d0�T, I1 and I2,

lim
x!y

ð
ðI1[I2Þðx; d0Þ

jðtÞDt
 !

¼ 0;ð6:22Þ

then the distance between consecutive GZs of f must become infinite as x ! y.
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Proof. We first claim that for all d > 0 and any disjoint subintervals of
½x; xþ d�T, I1 and I2,

lim
x!y

ð
ðI1[I2Þðx; dÞ

jðtÞDt
 !

¼ 0:ð6:23Þ

Let k denote the least integer with kd0 b d, xj ¼ xþ jd0, j ¼ 0; 1; . . . ; k � 1,
and xk ¼ d. By taking Ijiðxj; d0Þ ¼ Iiðx; dÞ \ ½xj; xjþ1�T for j ¼ 0; 1; . . . ; k � 1 and
i ¼ 1; 2, we get

ð
ðI1[I2Þðx; dÞ

jðtÞDt ¼
Xk�1

j¼0

ð
ðIj1[Ij2Þðxj ; d0Þ

jðtÞDt:ð6:24Þ

Since xj ! y as x ! y, we have from (6.22) that

lim
x!y

ð
ðIj1[Ij2Þðxj ; d0Þ

jðtÞDt
 !

¼ 0 for j ¼ 0; 1; . . . ; k � 1:ð6:25Þ

Combining (6.25) and (6.24) we obtain (6.23). As a consequence of (6.23), for
d > 0 and any disjoint subintervals I1 and I2 of ½x; xþ d�T, we have

lim
x!y

dp�1

K

ð
ðI1[I2Þðx; dÞ

jðtÞDt
 !

¼ 0:

Thus, the result follows by Theorem 6.9. r

Remark 6.12. The results given in [11, Theorem 3.2], [13, Theorem 3.2], and
[33, Theorem 2] are special cases of Theorem 6.11 obtained by setting T ¼ R.

Remark 6.13. Most of our results are essentially new even in the well-
studied di¤erence equation setting, as far as the authors are aware.

Acknowledgement. The authors would like to thank the anonymous referee
for valuable comments and suggestions.
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