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CRITERIA FOR SINGULARITIES FOR MAPPINGS

FROM TWO-MANIFOLD TO THE PLANE.

THE NUMBER AND SIGNS OF CUSPS

Iwona Krzyżanowska and Aleksandra Nowel

Abstract

Let M � Rnþ2 be a two-dimensional complete intersection. We show how to

check whether a mapping f : M ! R2 is 1-generic with only folds and cusps as

singularities. In this case we give an e¤ective method to count the number of positive

and negative cusps of a polynomial f , using the signatures of some quadratic forms.

1. Introduction

In [13], Whitney investigated a smooth mapping between two surfaces. He
proved that for a generic mapping the only possible types of singular points are
folds and simple cusps. With smooth oriented 2-dimensional manifolds M and
N, and a smooth mapping f : M ! N with a simple cusp p A M one can
associate a sign mðpÞ ¼G1 defined as the local topological degree of the germ of
f at p.

In [6], the authors studied smooth mappings from the plane to the plane, and
they presented methods of checking whether a map is a generic one with only
folds and simple cusps as singular points. They also gave the e¤ective formulas
to determine the number of positive and negative cusps in therms of signatures of
quadratic forms.

Criteria for types of Morin singularities of mappings from Rm to Rn (in case
m0 n) were presented in [9, 10]. In case m ¼ n ¼ 2 Morin singularities are folds
and cusps. Some results concerning the algebraic sum of cusps are contained in
[2], [8], and in [3] in the complex case.

In this paper we investigate properties of mappings f ¼ ~ff jM : M ! R2,

where M ¼ h�1ð0Þ is a 2-dimensional complete intersection, h : Rnþ2 ! Rn,
~ff : Rnþ2 ! R2. We give methods for checking whether f is 1-generic (in sense
of [4]) and whether a given singular point p A M of f is a fold point or a simple
cusp (Theorem 3.3, Propositions 3.4, 3.5). We define F : Rnþ2 ! R2 associated
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with ~ff and h such that for a simple cusp p of f the sign of it mðpÞ ¼

sgn det
DF ðpÞ
DhðpÞ

� �
(Theorem 4.2).

In the case where ~ff and h are polynomial mappings, we construct an ideal
S � R½x� ¼ R½x1; . . . ; xnþ2� such that if S ¼ R½x� then f is 1-generic with only
folds and simple cusps as singular points (Proposition 5.1). Then we define
an ideal J such that the set of its real zeros VðJÞ is the set of simple cusps of
f . If S ¼ R½x� and dimR R½x�=J < y then the number of simple cusps and the
algebraic sum of them can be expressed in terms of signatures of some associated
quadratic forms (Proposition 5.2).

In the whole article by smooth we will mean Cy class.

2. Preliminaries

Let M, N be smooth manifolds such that m ¼ dim M and n ¼ dim N. Take
p A M. For smooth mappings f ; g : M ! N such that f ðpÞ ¼ gðpÞ ¼ q, we say
that f has first order contact with g at p if Df ðpÞ ¼ DgðpÞ, as mappings
TpM ! TqN. Then J 1ðM;NÞðp;qÞ denotes the set of equivalence classes of map-
pings f : M ! N, where f ðpÞ ¼ q, having the same first order contact at p. Let

J 1ðM;NÞ ¼
[

ðp;qÞ AM�N

J 1ðM;NÞðp;qÞ

denote the 1-jet bundle of smooth mappings from M to N.
With any smooth f : M ! N we can associate a canonical mapping

j1f : M ! J 1ðM;NÞ. Take s A J 1ðM;NÞ, represented by f . Then by corank s
we denote the corank Df ðpÞ. Put Sr ¼ fs A J 1ðM;NÞ j corank s ¼ rg. Accord-
ing to [4, II, Theorem 5.4], Sr is a submanifold of J 1ðM;NÞ, with codim Sr ¼
rðjm� nj þ rÞ. Put Srð f Þ ¼ fx A M j corank Df ðpÞ ¼ rg ¼ ð j1f Þ�1ðSrÞ.

Definition 2.1. We say that f : M ! N is 1-generic if j1f t Sr, for all r.

According to [4, II, Theorem 4.4], if j1f t Sr then either Srð f Þ ¼ j or Srð f Þ
is a submanifold of M, with codim Srð f Þ ¼ codim Sr.

In the remaining we will need the following useful fact.

Lemma 2.2. Let M, N and P be smooth manifolds, and let f : M ! N,
a : P ! M, b : P ! N be such that b ¼ f � a. If a is a smooth surjective sub-
mersion, b is smooth, then f is also smooth. If in addition b is a submersion, then
so is f .

Let

h ¼ ðh1; . . . ; hnÞ : Rnþk ! Rn

f ¼ ð f1; . . . ; flÞ : Rnþk ! R l
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be C1 maps, M :¼ h�1ð0Þ. Suppose that each point p A M is a regular point of
h, i.e. rank DhðpÞ ¼ n in each p A M. Then M is an orientable C1 k-manifold
called a complete intersection. It is easy to verify that for each point p A M

rank Df jMðpÞ ¼ rank
Df ðpÞ
DhðpÞ

� �
� n:ð1Þ

Assume that N ¼ R2 and M ¼ h�1ð0Þ, where h : Rnþ2 ! Rn is a smooth
mapping such that rank DhðxÞ ¼ n for all x A M. In that case M is a smooth
2-manifold.

We have J 1ðRnþ2;R2ÞFRnþ2 � R2 �Mð2; nþ 2Þ, where Mð2; nþ 2Þ is the
space of real 2� ðnþ 2Þ-matrices.

Let us define

G ¼ fs ¼ ðx; y;AÞ A J 1ðRnþ2;R2Þ j x A Mg ¼
[

ðp;qÞ AM�R2

J 1ðRnþ2;R2Þðp;qÞ:

Then G is a submanifold of J 1ðRnþ2;R2Þ, and dim G ¼ 2nþ 8.
We define a relation @ in G : ðx1; y1;A1Þ ¼ s1 @ s2 ¼ ðx2; y2;A2Þ if and only

if x1 ¼ x2 and y1 ¼ y2, and A1jTx1
M ¼ A2jTx1

M considered as linear mappings on
Tx1M � Tx1R

nþ2.

Proposition 2.3. G=@ is a smooth manifold di¤eomorphic to J 1ðM;R2Þ such
that the projection pr : G ! G=@ is a submersion.

Proof. Using [11, Part II, Chap. III, Sec. 12, Th. 1 and Th. 2], to verify
that G=@ is a smooth manifold such that the projection pr : G ! G=@ is a
submersion, it is enough to show that

a) the set R ¼ fðs1; s2Þ A G � G j s1 @ s2g is a submanifold of G � G,
b) the projection p : R ! G is a submersion.

Take x A M, then in a neighbourhood of x in Rnþ2 there exists a smooth non-
vanishing vector field ðv1; v2Þ A Rnþ2 � Rnþ2 such that

Spanfv1; v2g ¼ Spanf‘h1; . . . ;‘hngð Þ?

at every point of this neighbourhood. Then at points of M vectors v1, v2 span
the tangent space to M.

Let us define g : J 1ðRnþ2;R2Þ � J 1ðRnþ2;R2Þ ! R2nþ8 by

gðs1; s2Þ ¼ gððx1; y1;A1Þ; ðx2; y2;A2ÞÞ
¼ ðx1 � x2; y1 � y2;A1v1ðx1Þ � A2v1ðx1Þ;A1v2ðx1Þ � A2v2ðx1Þ; hðx1ÞÞ:

Hence gðs1; s2Þ ¼ 0 if and only if ðs1; s2Þ A R. Then locally g�1ð0Þ ¼ R.
Moreover g is a submersion at points from R, so R is a submanifold of G � G,
and a) is proven.

Using equation (1) it is easy to see that rank Dp ¼ 2nþ 8 ¼ dim G, so p is a
submersion and we have b).
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Now we will prove that G=@ is di¤eomorphic to J 1ðM;R2Þ. Since M is a
submanifold of Rnþ2, there exists a tubular neighbourhood U of M in Rnþ2 with
a smooth retraction r : U ! M, which is also a submersion.

Let us define C : J 1ðM;R2Þ ! G=@ by

CðsÞ ¼ Cð½g�Þ ¼ ½g � r� A G=@:

Note that C is a well-defined bijection and C�1 is given by G=@ C ½g� 7! ½gjM � A
J 1ðM;R2Þ. The mapping C�1 � pr : G ! J 1ðM;R2Þ can be given by G C ½g� 7!
½gjM � A J 1ðM;R2Þ and we see that it is a smooth submersion. So according to

Lemma 2.2, C�1 is also a smooth submersion. Since C�1 is bijective, it is a
di¤eomorphism. r

3. Checking 1-genericity and recognizing folds and cusps

Let ~ff : Rnþ2 ! R2 be smooth and put f ¼ ~ff jM : M ! R2, where M ¼ h�1ð0Þ
is a 2-dimensional complete intersection. Using mappings h and ~ff defined on
Rnþ2, we will present an e¤ective method to check whether f is 1-generic.

Put F : G=@! R as

Fð½ðx; y;AÞ�Þ ¼ det
A

DhðxÞ

� �
:

Notice that if ½ðx; y;AÞ� A G=@ is represented by g defined near x A Rnþ2, then

Fð½g�Þ ¼ det
DgðxÞ
DhðxÞ

� �
.

Lemma 3.1. F is well-defined.

Proof. Take ðx; y;A1Þ and ðx; y;A2Þ representing the same element in G=@.
Then A1v1 ¼ A2v1 and A1v2 ¼ A2v2, where v1; v2 A Rnþ2 span TxM, and so they
both are orthogonal to all vectors ‘hiðxÞ.

Hence we have

det
A1

DhðxÞ

� �
v1 v2 ‘h1ðxÞ � � � ‘hnðxÞ½ �

� �

¼ det
A1v1 A1v2 �

0 DhðxÞDhðxÞT
� �

¼ det
A2v1 A2v2 ��

0 DhðxÞDhðxÞT
� �

¼ det
A2

DhðxÞ

� �
v1 v2 ‘h1ðxÞ � � � ‘hnðxÞ½ �

� �
:

Since det½v1 v2 ‘h1ðxÞ � � � ‘hnðxÞ�0 0, we obtain

det
A1

DhðxÞ

� �
¼ det

A2

DhðxÞ

� �
: r
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Lemma 3.2. F is a submersion at every ½ðx; y;AÞ� A G=@ such that

rank
A

DhðxÞ

� �
d nþ 1.

Proof. Put ~FF : G ! R as ~FFðx; y;AÞ ¼ det
A

DhðxÞ

� �
. Then ~FFðx; y;AÞ can

be expressed as a linear combination of elements of one of rows of the matrix A,

whose coe‰cients are appropriates ðnþ 1Þ-minors of the matrix
A

DhðxÞ

� �
. Since

at least one of these minors is not 0, ~FF is a submersion at ðx; y;AÞ. Notice that
~FF ¼ F � pr, so by Lemma 2.2, F is a submersion at ½ðx; y;AÞ�. r

For a smooth mapping ~ff : Rnþ2 ! R2 we define d : Rnþ2 ! R as

dðxÞ ¼ det
D ~ff ðxÞ
DhðxÞ

� �
:

According to (1) for f ¼ ~ff jM : M ! R2 we have x A Sið f Þ if and only if

rank
D ~ff ðxÞ
DhðxÞ

� �
¼ nþ 2� i, for i ¼ 1; 2, and so S1ð f Þ [ S2ð f Þ ¼ d�1ð0Þ \M.

Theorem 3.3. A mapping f ¼ ~ff jM : M ! R2 is 1-generic if and only if

djM is a submersion at points from d�1ð0Þ \M, i.e. rank
DdðxÞ
DhðxÞ

� �
¼ nþ 1, for

x A d�1ð0Þ \M. If that is the case, then S1ð f Þ ¼ d�1ð0Þ \M.

Proof. Let x A S1ð f Þ. According to Lemma 3.2, F is a submersion at
Cð j1f ðxÞÞ. Notice that there exists a small enough neighbourhood U of
Cð j1f ðxÞÞ such that FjU is a submersion and

U \CðS1Þ ¼ Fj�1
U ð0Þ:

We have j1f t S1 at x if and only if Cð j1f Þ t CðS1Þ at x. According to [4, II,
Lemma 4.3], Cð j1f Þ t CðS1Þ at x if and only if FjU �C � j1f is a submersion
at x.

Let us see that FjU �C � j1f ðxÞ ¼ dðxÞ for x A M. We get that for x A
S1ð f Þ, j1f t S1 at x if and only if djM : M ! R is a submersion at x, i.e.

rank
DdðxÞ
DhðxÞ

� �
¼ nþ 1.

Note that since codim S2 ¼ 4, j1f t S2 if and only if S2ð f Þ ¼ j. On the
other hand, if x A S2ð f Þ, then

rank
D ~ff ðxÞ
DhðxÞ

� �
¼ n;
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the elements of DdðxÞ ¼ D det
D ~ff ðxÞ
DhðxÞ

� �� �
are linear combinations of ðnþ 1Þ-

minors of this matrix, and so DdðxÞ ¼ ð0; . . . ; 0Þ. We get that if djM is a
submersion at points from d�1ð0Þ \M, then S2ð f Þ ¼ j. r

From now on we assume that f ¼ ~ff jM : M ! R2 is 1-generic. Then by
Theorem 3.3, for x near S1ð f Þ, the vectors ‘h1ðxÞ; . . . ;‘hnðxÞ;‘dðxÞ are linearly
independent and S1ð f Þ is 1-dimensional submanifold of M.

For x A Rnþ2 and the matrix
DdðxÞ
DhðxÞ

� �
, by wiðxÞ we will denote its ðnþ 1Þ-

minors obtained by removing i-th column. We define a vector field v : Rnþ2 !
Rnþ2 as

vðxÞ ¼ ð�w1ðxÞ;w2ðxÞ; . . . ; ð�1Þnþ2
wnþ2ðxÞÞ:

Then for x A S1ð f Þ the vector vðxÞ is a generator of

TxS1ð f Þ ¼ Spanf‘h1ðxÞ; . . . ;‘hnðxÞ;‘dðxÞgð Þ?:
Put F ¼ ðF1;F2Þ : Rnþ2 ! R2 as

F ðxÞ ¼ D ~ff ðxÞðvðxÞÞ:
We will call p A S1ð f Þ a fold point if it is a regular point of f jS1ð f Þ.

Proposition 3.4. For a 1-generic f and a point p A S1ð f Þ the following are
equivalent:

(a) p is a fold point;

(b) rank

D ~ff ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2;

(c) F ðpÞ0 0.

Proof. Since f is 1-generic, S1ð f Þ ¼ ðh; dÞ�1ð0Þ is a complete intersection,
and so the equivalence of the first two conditions is a simple consequence of the
equation (1).

We see that FðpÞ0 0 i¤ h‘~ff1ðpÞ; vðpÞi0 0 or h‘~ff2ðpÞ; vðpÞi0 0 i¤ at least
one of ‘~ff1ðpÞ, ‘~ff2ðpÞ does not belong to Spanf‘h1ðxÞ; . . . ;‘hnðxÞ;‘dðxÞg i¤

rank

D ~ff ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2. So we get (b) , (c). r

If f ¼ ð f1; f2Þ : M ! R2 is 1-generic, then for p A S1ð f Þ one of the following
two conditions can occur.

TpS1ð f Þ þ ker Df ðpÞ ¼ R2;ð2Þ
TpS1ð f Þ ¼ ker Df ðpÞ:ð3Þ
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It is easy to see that p A S1ð f Þ satisfies (2) if and only if F ðpÞ0 0, and then p is a
fold point.

Assume that condition (3) holds at p A S1ð f Þ. By the previous Proposition
this is equivalent to the condition F ðpÞ ¼ 0.

Take a smooth function k on M such that k1 0 on S1ð f Þ and DkðpÞ0 0
(our mapping djM satisfies both these conditions). Let x be a non-vanishing
vector field along S1ð f Þ such that x is in the kernel of Df at each point of S1ð f Þ
near p. Then DkðxÞ is a function on S1ð f Þ having a zero at p. The order of
this zero does not depend on the choice of x or k (see [4, p. 146]), so in our
case it equals the order of DdjMðxÞ at p. Following [4] we will say that p is a
simple cusp (or cusp for short) if p is a simple zero of DdjMðxÞ. If this is the
case, then locally near p the mapping f has a form ðx1; x2Þ 7! ðx1; x3

2 þ x1x2Þ (see
[13], [4]).

Proposition 3.5. Assume that f is 1-generic and p A S1ð f Þ. Then p is a

simple cusp if and only if FðpÞ ¼ 0 and rank

DF ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2.

Proof. Take p A S1ð f Þ. Note that FðpÞ ¼ 0 is equivalent to the condition
TpS1ð f Þ ¼ ker Df ðpÞ. So we assume that FðpÞ ¼ 0.

Let us take a small neighbourhood U � Rnþ2 of p and a smooth vector field
w : U ! Rnþ2 such that

SpanfwðxÞg ¼ Spanf‘h1ðxÞ; . . . ;‘hnðxÞ; vðxÞgð Þ? and h‘dðxÞ;wðxÞi0 0;

for x A U . We define a smooth vector field xi : S1ð f Þ \U ! Rnþ2 for i ¼ 1; 2
by

xiðxÞ ¼
FiðxÞ

h‘dðxÞ;wðxÞiwðxÞ �
h‘~ffiðxÞ;wðxÞi
h‘dðxÞ;wðxÞi vðxÞ:

By our assumptions

rank
D ~ff ðpÞ
DhðpÞ

� �
¼ rank

DdðpÞ
DhðpÞ

� �
¼ rank

D ~ff ðpÞ
DdðpÞ
DhðpÞ

2
64

3
75¼ nþ 1;

and then there exist a; b A R such that a2 þ b2 0 0, ‘dðpÞ ¼ a‘~ff1ðpÞ þ b‘~ff2ðpÞþ
some linear combination of ‘hiðpÞ. So

00h‘dðpÞ;wðpÞi ¼ ah‘~ff1ðpÞ;wðpÞiþ bh‘~ff2ðpÞ;wðpÞi;

and then h‘~ff1ðpÞ;wðpÞi0 0 or h‘~ff2ðpÞ;wðpÞi0 0. Hence at least one of

xiðpÞ ¼ � h‘~ffiðpÞ;wðpÞi
h‘dðpÞ;wðpÞi vðpÞ is di¤erent from 0. Of course xiðpÞ A TpS1ð f Þ ¼

SpanfvðpÞg.
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Since for x A S1ð f Þ \U we have xiðxÞ A Spanf‘h1ðxÞ; . . . ;‘hnðxÞgð Þ?,

h‘~ffiðxÞ; xiðxÞi ¼ 0, and rank
D ~ff ðxÞ
DhðxÞ

� �
¼ nþ 1. It is easy to see that

D ~ff ðxÞ
DhðxÞ

� �
xiðxÞ ¼ 0;

and so xiðxÞ A kerðDf ðxÞÞ for i ¼ 1; 2.
Notice that DdjMðxÞxiðxÞ ¼ h‘dðxÞ; xiðxÞi ¼ FiðxÞ for x A S1ð f Þ \U . Take

i such that xiðpÞ0 0. We get that p is a simple cusp if and only if p is a simple

zero of FijS1ð f Þ, then rank

DF ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2.

On the other hand, if for j ¼ 1; 2, rank

DFjðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2, then p is a simple

zero of FijS1ð f Þ. So let us assume, that for example rank

DF2ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 1 and

rank

DF1ðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2. Since for x A S1ð f Þ \U , rank

D ~ff ðxÞ
DhðxÞ

� �
¼ nþ 1, there

exist smooth a, b such that a2ðxÞ þ b2ðxÞ0 0 and aðxÞF1ðxÞ þ bðxÞF2ðxÞ ¼ 0
for x A S1ð f Þ \U . Then di¤erentiating the above equality in S1ð f Þ \U we get
bðpÞ0 0 and we obtain h‘~ff2ðpÞ;wðpÞi ¼ 0. So x2ðpÞ ¼ 0, that means i must be

1, and rank

DFiðpÞ
DhðpÞ
DdðpÞ

2
64

3
75¼ nþ 2 implies that p is a simple zero of FijS1ð f Þ. r

4. Signs of cusps

Let f : M ! R2 be a smooth map on a smooth oriented 2-dimensional
manifold. For a simple cusp p of f we denote by mðpÞ the local topological
degree degp f of the germ f : ðM; pÞ ! ðR2; f ðpÞÞ. From the local form of
f near p it is easy to see that mðpÞ ¼G1. We will call it the sign of the
cusp p.

In [6], the authors investigated the algebraic sum of cusps of a 1-generic
mapping g ¼ ðg1; g2Þ : R2 ! R2. They defined G : R2 ! R2 as GðxÞ ¼ DgðxÞzðxÞ,

where zðxÞ ¼ ðz1ðxÞ; z2ðxÞÞ ¼ � q

qx2
det DgðxÞ; q

qx1
det DgðxÞ

� �
is tangent to

S1ðgÞ for x A S1ðgÞ.
According to [6, Proposition 1], for a simple cusp q A R2 of g, we have

det DGðqÞ0 0 and mðqÞ ¼ sgn det DGðqÞ.
Using the facts and proofs from [6, Section 3.] it is easy to show the

following.
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Lemma 4.1. Let h ¼ ðh1; h2Þ be a non-zero vector field on R2. Assume that
in some neighbourhood of the simple cusp q of g there exists a smooth non-
vanishing function s such that on S1ðgÞ we have sðxÞhðxÞ ¼ zðxÞ. Then for ~GGðxÞ ¼
DgðxÞhðxÞ

sgn det DGðqÞ ¼ sgn det D ~GGðqÞ:

Proof. Following [6, Section 3.] we can assume that q ¼ 0 and there exist
a; b0 0 such that

Dgð0Þ ¼ 0 a

0 0

� �
; zð0Þ ¼ b; 0ð Þ; q2g2

qx2
1

ð0Þ ¼ 0:

We can take a smooth j : ðR; 0Þ ! ðR; 0Þ such that locally S1ðgÞ ¼ fðt; jðtÞÞg.
Then j 0ð0Þ ¼ 0 and

d

dt
sðt; jðtÞÞh2ðt; jðtÞÞ ¼

d

dt
z2ðt; jðtÞÞ;

hence sð0Þ qh2
qx1

ð0Þ ¼ qz2
qx1

ð0Þ. Easy computations show that det DGð0Þ ¼

s2ð0Þ det D ~GGð0Þ. r

Let us recall that ~ff : Rnþ2 ! R2 is smooth and f ¼ ~ff jM : M ! R2 is
1-generic, M ¼ h�1ð0Þ is a complete intersection. In the previous section we
have defined a vector field v : Rnþ2 ! Rnþ2 such that for x A S1ð f Þ the vector
vðxÞ spans TxS1ð f Þ, and the mapping FðxÞ ¼ D ~ff ðxÞvðxÞ.

Theorem 4.2. Let us assume that p is a simple cusp of a 1-generic map
f : M ! R2, where f ¼ ~ff jM and M ¼ h�1ð0Þ is a complete intersection. Then

mðpÞ ¼ sgn det
DF ðpÞ
DhðpÞ

� �
.

Proof. We can choose a chart f of Rnþ2 defined in some neighbourhood
of p such that both f and the corresponding chart fM of M, i.e. fjM ¼
ðfM ; 0Þ : M ! R2 � f0g, preserve the orientations. Put q ¼ fMðpÞ and take G
as above for the mapping g ¼ f � f�1

M : ðR2; qÞ ! R2.
For x A M we define h ¼ ðh1; h2Þ as DfðxÞvðxÞ ¼ ðh1ðxÞ; h2ðxÞ; 0; . . . ; 0Þ. Let

y A R2 be such that fðxÞ ¼ ðy; 0; . . . ; 0Þ, i.e. fMðxÞ ¼ y. Since hðxÞ ¼ hðf�1
M ðyÞÞ

is a non-zero vector in the tangent space at y of fMðS1ð f ÞÞ ¼ S1ðgÞ � R2, as well
as zðyÞ, there exists a smooth non-vanishing mapping s : ðR2; qÞ ! R such that
zðyÞ ¼ sðyÞhðf�1

M ðyÞÞ for y A fMðS1ð f ÞÞ.
According to [6, Proposition 1.],

mðpÞ ¼ degp f ¼ degq g ¼ sgn det DGðqÞ0 0:

Define ~GGðyÞ ¼ DgðyÞhðf�1
M ðyÞÞ. Then from Lemma 4.1

sgn det DGðqÞ ¼ sgn det D ~GGðqÞ:
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Notice that

F ðf�1
M ðyÞÞ ¼ D ~ff ðf�1ðy; 0ÞÞDf�1ðy; 0ÞDfðf�1ðy; 0ÞÞvðf�1ðy; 0ÞÞ

¼ Dð ~ff � f�1Þðy; 0Þðhðf�1ðy; 0ÞÞ; 0Þ ¼ DgðyÞðhðf�1
M ðyÞÞ ¼ ~GGðyÞ:

According to [12, Lemma 3.1.]

sgn det D ~GGðqÞ ¼ sgn det DðF � f�1
M ÞðqÞ ¼ sgn det

DF ðpÞ
DhðpÞ

� �
: r

5. Algebraic sum of cusps of a polynomial mapping

Now we recall a well-known fact. Take an ideal J � R½x� ¼ R½x1; . . . ; xm�
such that the R-algebra A¼ R½x�=J is finitely generated over R, i.e. dimR A<y.
Denote by VðJÞ the set of real zeros of the ideal J.

For h A A, we denote by TðhÞ the trace of the R-linear endomorphism
A C a 7! h � a A A. Then T : A ! R is a linear functional. Take d A R½x�. Let
Y : A ! R be the quadratic form given by YðaÞ ¼ Tðd � a2Þ.

According to [1], [7], the signature sðYÞ of Y equals

sðYÞ ¼
X

p AVðJÞ
sgn dðpÞ;ð4Þ

and if Y is non-degenerate then dðpÞ0 0 for each p A VðJÞ.
In this Section we will present that the results from Sections 3, 4 can be

applied to compute the number and the algebraic sum of cusps in the polyno-
mial case. So take polynomial mappings ~ff : Rnþ2 ! R2 and h ¼ ðh1; . . . ; hnÞ :
Rnþ2 ! Rn such that M ¼ h�1ð0Þ is a complete intersection. Put f ¼ ~ff jM :

M ! R2. Let us recall that dðxÞ ¼ det
D ~ff ðxÞ
DhðxÞ

� �
, vðxÞ ¼ ð�w1ðxÞ;w2ðxÞ; . . . ;

ð�1Þnþ2
wnþ2ðxÞÞ, where wiðxÞ are ðnþ 1Þ-minors obtained by removing i-th

column from the matrix
DdðxÞ
DhðxÞ

� �
, and F ðxÞ ¼ D ~ff ðxÞvðxÞ.

Let us define ideals I ;S � R½x� ¼ R½x1; . . . ; xnþ2� as

I ¼ h1; . . . ; hn; d;w1; . . . ;wnþ2h i;

S ¼ h1; . . . ; hn; d;F1;F2; det

DF1

Dd

Dh

2
64

3
75; det DF2

Dd

Dh

2
64

3
75

* +
:

One may check that S � I .

Proposition 5.1. (a) If I ¼ R½x� then f is 1-generic.
(b) If S ¼ R½x� then f is 1-generic, and has only folds and simple cusps

as singular points. If that is the case, then the set of simple cusps
fx A Rnþ2 j h1ðxÞ ¼ � � � ¼ hnðxÞ ¼ dðxÞ ¼ F1ðxÞ ¼ F2ðxÞ ¼ 0g is an alge-
braic set of isolated points, so it is finite.
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Proof. If I ¼ R½x� then the set VðIÞ of real zeros of I is empty. We have
VðIÞ ¼ fx A M j dðxÞ ¼ w1ðxÞ ¼ � � � ¼ wnþ2ðxÞ ¼ 0g. Since the dimension of the

matrix
DdðxÞ
DhðxÞ

� �
is ðnþ 1Þ � ðnþ 2Þ, we obtain

j ¼ VðIÞ ¼ fx A M j dðxÞ ¼ 0; rank
DdðxÞ
DhðxÞ

� �
< nþ 1g:

So we get that for all x A d�1ð0Þ \M, rank
DdðxÞ
DhðxÞ

� �
¼ nþ 1. According to

Theorem 3.3, f is 1-generic, so we get (a).
Since S � I , if S ¼ R½x�, then I ¼ R½x�, and so by (a) f is 1-generic. By

Theorem 3.3, S1ð f Þ ¼ d�1ð0Þ \M ¼ d�1ð0Þ \ h�1ð0Þ. Moreover if S ¼ R½x�,
then VðSÞ ¼ j, and we obtain

j ¼ VðSÞ � x A S1ð f Þ jF1ðxÞ ¼ F2ðxÞ ¼ 0; rank

DF ðxÞ
DdðxÞ
DhðxÞ

2
64

3
75< nþ 2

8><
>:

9>=
>;:

Hence for x A S1ð f Þ we have either

FðxÞ0 0

or

FðxÞ ¼ 0 and rank

DF ðxÞ
DdðxÞ
DhðxÞ

2
64

3
75¼ nþ 2:

According to Propositions 3.4, 3.5, f has only folds and simple cusps as singular
points. If that is the case, for x A S1ð f Þ, the point x is a simple cusp if and only
if FðxÞ ¼ 0, so we get (b). r

Let us assume that S ¼ R½x�. Put J ¼ hh1; . . . ; hn; d;F1;F2i, and A ¼
R½x�=J, and assume that dimR A < y. Then according to the previous Prop-
osition, f is 1-generic, and has only folds and simple cusps as singular points.
Moreover VðJÞ is the set of simple cusps of f , it is finite, and so we can
count the algebraic sum of cusps, i.e.

P
p AVðJÞ mðpÞ. Let us define quadratic

forms Y1;Y2 : A ! R by Y1ðaÞ ¼ Tð1 � a2Þ, Y2ðaÞ ¼ Tðd � a2Þ, where dðxÞ ¼

det
DF ðxÞ
DhðxÞ

� �
.

Proposition 5.2. Assume that S ¼ R½x� and dimR A < y. Then for the
mapping f

(a) the number of cusps aVðJÞ ¼ sðY1Þ,
(b) the algebraic sum of cusps

P
p AVðJÞ mðpÞ ¼ sðY2Þ.
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Proof. Since S ¼ R½x�, according to Proposition 5.1, f is 1-generic, has only
folds and simple cusps as singular points, and the set VðJÞ of simple cusps of f is
finite.

By the formula (4) we get

sðY1Þ ¼
X

p AVðJÞ
sgnð1Þ ¼aVðJÞ:

Let us notice that by Theorem 4.2 for a simple cusp p of f , sgn dðpÞ ¼ mðpÞ.
Then using once again the formula (4) we obtain

sðY2Þ ¼
X

p AVðJÞ
sgn dðpÞ ¼

X
p AVðJÞ

mðpÞ: r

Using Propositions 5.1, 5.2, and Singular ([5]) we computed the following
examples.

The first example we will present in details.

Example 5.3. Put ~ff ¼ ðx2 � 2xyþ x; 2zÞ : R3 ! R2 and h ¼ x2 þ y2 þ
z2 � 1 : R3 ! R. Then h�1ð0Þ is a 2-dimensional sphere.

In this case the ideal S is generated by

h ¼ x2 þ y2 þ z2 � 1;

d ¼ �8x2 � 8xyþ 8y2 � 4y;

F1 ¼ 96x2z� 64xyzþ 64y2zþ 32xz� 48yzþ 8z;

F2 ¼ �32x2 þ 128xyþ 32y2 � 16x;

det

DF1

Dd

Dh

2
64

3
75¼ 1536x4 � 7168x3yþ 3584x2y2 � 3072xy3 � 1024y4 � 5120x2z2

þ 10240xyz2 þ 1280x3 � 3328x2yþ 3072xy2 þ 768y3 � 3584xz2

þ 768yz2 þ 384x2 � 896xy� 128y2 � 256z2 þ 64x;

det

DF2

Dd

Dh

2
64

3
75¼ 5120x2zþ 5120y2zþ 768xz� 1536yzþ 128z:

Using Singular we compute the standard basis of S, which is f1g, i.e. S is the
whole R½x�.

From Proposition 5.1, f ¼ ~ff jh�1ð0Þ is 1-generic, and has only folds and
simple cusps as singular points.
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The ideal J ¼ hx2 þ y2 þ z2 � 1;�8x2 � 8xyþ 8y2 � 4y; 96x2z� 64xyzþ
64y2zþ 32xz� 48yzþ 8z;�32x2 þ 128xyþ 32y2 � 16xi.

Singular computations shows that: the algebra A ¼ R½x�=J has dimension
6, its basis has a form e1 ¼ xz, e2 ¼ yz, e3 ¼ x, e4 ¼ y, e5 ¼ z, e6 ¼ 1, the
matrices of the forms Y1, Y2 are

�33=500 �81=500 0 0 �57=100 0

�81=500 297=1000 0 0 21=20 0

0 0 �3=50 �9=50 0 �3=5

0 0 �9=50 9=25 0 6=5

�57=100 21=20 0 0 57=10 0

0 0 �3=5 6=5 0 6

2
666666664

3
777777775
;

339408=3125 709344=3125 0 0 527616=625 0

709344=3125 �1178928=3125 0 0 �891072=625 0

0 0 12672=125 31104=125 0 21888=25

0 0 31104=125 �57024=125 0 �8064=5

527616=625 �891072=625 0 0 �1050048=125 0

0 0 21888=25 �8064=5 0 �43776=5

2
666666664

3
777777775
;

and their signatures are 2 and �2 respectively. According to Proposition 5.2 it
means that the mapping f has 2 simple cusps, both of them are negative.

The other examples are computed similarly and we present just the final
results.

Example 5.4. Put ~ff ¼ ðxz2 � z2 � 2z; 2x3z� y3 þ z3 þ 3yz� z2 � yÞ : R3 !
R2 and h ¼ x2 þ y2 þ z2 � 1 : R3 ! R. Then h�1ð0Þ is a 2-dimensional sphere,
and dimR A ¼ 68. The mapping f ¼ ~ff jh�1ð0Þ is 1-generic, has 6 simple cusps, 3
of them are negative.

Example 5.5. Put ~ff ¼ ð2xz2 � y2 þ 2xz;�z3 þ 2xy� y2 � xÞ : R3 ! R2

and h ¼ x2 þ y2 þ z2 � 1 : R3 ! R. In this case dimR A ¼ 44, and the mapping
f ¼ ~ff jh�1ð0Þ is 1-generic, has 8 simple cusps, 6 of them are negative.

Example 5.6. Put ~ff ¼ ðzw� 2w2 � 2x; 3x3 � 2yz2 � ywþ 2zw� xÞ : R4 ! R2

and h ¼ ðx2 þ y2 � 1; z2 þ w2 � 1Þ : R4 ! R2. Then h�1ð0Þ is a 2-dimensional
torus, and dimR A ¼ 52. The mapping f ¼ ~ff jh�1ð0Þ is 1-generic, has 16 simple
cusps, 8 of them are negative.

Example 5.7. Put ~ff ¼ ð3z3 þ x2 � xy; 2y2z� 2z3 þ xy� 2y2 � xÞ : R3 ! R2

and h ¼ x2 þ y2 � z : R3 ! R. Then h�1ð0Þ is a 2-dimensional paraboloid, and
dimR A ¼ 47. The mapping f ¼ ~ff jh�1ð0Þ is 1-generic, has 3 simple cusps, all of
them are negative.
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B55, 2016, 205–224.

[10] K. Saji, Criteria for Morin singularities for maps into lower dimensions, and applications, Real

and complex singularities, Contemp. Math. 675, Amer. Math. Soc., Providence, RI, 2016,

315–336.

[11] J.-P. Serre, Lie algebras and Lie groups: 1964 lectures given at Harvard University, Second

edition, Lecture notes in mathematics, 1500, Springer-Verlag, Berlin, 1992.

[12] Z. Szafraniec, Topological degree and quadratic forms, Journal of Pure and Applied

Algebra 141 (1999), 299–314.

[13] H. Whitney, On singularities of mapping of Euclidean spaces, I, Mappings of the plane

into the plane, Annals of Mathematics 62 (1955), 374–410.

Iwona Krzyżanowska
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Institute of Mathematics
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80-952 Gdańsk, Wita Stwosza 57

Poland

E-mail: Aleksandra.Nowel@mat.ug.edu.pl

213singularities for mappings from two-manifold to the plane


