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Abstract

Let M ¼ GnH be a geometrically finite hyperbolic surface, realized as the quotient

of the hyperbolic upper half plane H by a geometrically finite discrete group of

isometries acting on H. To a parabolic element of the uniformizing group G, there is

an associated 1-form parabolic Eisenstein series. To a primitive hyperbolic element,

then, following ideas due to Kudla–Millson, there is a corresponding 1-form hyperbolic

Eisenstein series. In this article, we study the limiting behavior of these hyperbolic

Eisenstein series on a degenerating family of hyperbolic Riemann surfaces of finite type,

using basically the limiting behavior of counting functions associated to degenerating

hyperbolic Riemann surfaces. In this sense, we generalize the results obtained in

Garbin, Jorgenson and Munn (Comment Math Helv 83:701–721, 2008) to the case of

geometrically finite hyperbolic surfaces of infinite volume and form-valued parabolic

and hyperbolic Eisenstein series.

1. Introduction

There is a vast literature addressing problems in the study of spectral theory
degenerating hyperbolic Riemann surfaces and within, on degeneration of
Poincaré series and Eisenstein series, see [3], [7], [8], [15], [18], [19], [20] to
cite some examples.

Our context and our aim are the following. Let G contained in PSLð2;RÞ
be a Fuchsian group finitely generated of the first or second kind acting on the
upper half plane H without elliptic elements. The quotient GnH is a hyperbolic
geometrically finite surface. This means that G admits a finite sided polygonal
fundamental domain in H. Throughout this article we refer to parabolic Eisen-
stein series p̂ps associated to a parabolic element of the uniformizing group G
or equivalently to a cusp p and hyperbolic Eisenstein series ĉcs associated to a
primitive hyperbolic element or equivalently to a simple closed oriented geodesic
c.
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Precise definitions and references to all concepts will be given in Section 2
below. However, with these comments made, we are able to state the main
result of the paper.

Main Theorem

Let Ml be a degenerating family of geometrically finite hyperbolic surfaces
with limit surface M0.

(1) Let ĉcsl be the hyperbolic Eisenstein series on Ml associated to a non-
separating simple closed geodesic of length l, then

lim
l!0

1

l s
ĉcsl ¼ p̂ps � q̂qs;

where p and q are the cusps arising from the pinching geodesic cl .
(2) Let ĉcsl be the hyperbolic Eisenstein series on Ml associated to the boundary

of a funnel then

lim
l!0

1

l s
ĉcsl ¼ p̂ps:

In all instances, the convergence is uniform on compact subsets of M0 bounded
away from the developing cusps, and in half-planes of the form ReðsÞb 1þ d for
any d > 0.

Remark 1.1. The main tool of the demonstration is the study of the limiting
behavior of counting functions as in [7].

In the cited article the authors are working with scalar-values hyperbolic
Eisenstein series. Casually we point out that there is a di¤erence between scalar-
values Eisenstein series and form-valued Eisenstein series studied in [17] an in [3]:
if the degenerating Riemann surface has a single pinching geodesic which is non-
separating, then the associated hyperbolic Eisenstein series does not converge to
the sum of two parabolic Eisenstein series corresponding to the two newly formed
cusps but to the di¤erence.

At the end of this paper, we make the remark that a same result occurs in
the general infinite volume case.

2. Background material

2.1. Geometrically finite hyperbolic surface. Let us recall the standard
geometric notations which will be used.

A topologically finite (i.e. finite Euler characteristic) surface is a surface
homeomorphic to a compact surface with finitely many points excised and a
geometrically finite hyperbolic surface M is a topologically finite, complete
Riemann surface of constant curvature �1. It can be decomposed into a
compact core K plus cusps Ci and funnels Fj ([1]):

M ¼ K [ ðC1 [ � � � [ CncÞ [ ðF1 [ � � � [ Fnf Þ:
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The boundary of K consists of nf closed geodesics (uniquely determined) and
nc horocycles (the choice of which is not unique) along which K is glued to the
funnel and cusp ends, respectively.

A hyperbolic transformation T A PSLð2;RÞ generates a cyclic hyperbolic
group hTi. The quotient Cl ¼ hTinH is a hyperbolic cylinder of diameter l ¼
lðTÞ. By conjugation we can identify the generator T with the map sl : z 7! elz,
and we define Gsl to be the corresponding cyclic group. A natural fundamental
domain for Gsl would be the region Fl ¼ fz A H; 1a jzja elg. The y-axis is
the lift of the only simple closed geodesic on Cl , whose length is l. The stan-
dard funnel of diameter l > 0, Fl , is the half hyperbolic cylinder GslnH, Fl ¼
ðRþÞr � ðRnZÞx with the metric ds2 ¼ dr2 þ l2 cosh2ðrÞ dx2.

We can always conjugate a parabolic cyclic group hTi to the group Gy

generated by z 7! zþ 1, so the parabolic cylinder is unique up to isometry. A
natural fundamental domain for Gy is Fy ¼ f0aRe za 1g � H. The stan-
dard cusp Cy is the half parabolic cylinder GynH, Cy ¼ ð½0;y½Þr � ðRnZÞx with
the metric ds2 ¼ dr2 þ e�2r dx2. The funnels Fj and the cusps Ci are isometric
to the preceding standard models.

2.2. Hodge operator. We define the Hodge operator (or conjugation oper-
ator) on smooth di¤erential forms on a Riemann surface M as follows: for a
1-form w given in local coordinate z ¼ xþ iy on M by o ¼ f dxþ g dy, we
associate �o ¼ �g dxþ f dy. To define the operator � on functions and 2-forms,

we denote by vH ¼ y�2 dx5dy the volume form. If f is a function, we set
� f ¼ f ðzÞvH . For a 2-form W, we set �W ¼ W=vH .

We are interested primarily in 1-forms. If o is given in complex notation by
uðzÞ dzþ vðzÞ dz, then �o ¼ �iuðzÞ dzþ ivðzÞ dz. We define a pointwise scalar
product at z of two 1-forms j and c by j5�c ¼ hj;civH and the pointwise
norm of a 1-form o is defined by o5�o ¼ kok2vH .

2.3. Hyperbolic and parabolic Eisenstein series. The study of parabolic
Eisenstein series is a classical part of mathematical literature (see [16] just to cite
one reference) and more precisely in the case of infinite area hyperbolic Riemann
surfaces the study of such series can be found also in [1], p. 102.

As underlined by Gérardin in [9], an explicit construction of hyperbolic
Eisenstein series can be found in [6] and the convergence of these Eisenstein series
can be found in [6], p. 184. Kudla and Millson give an invariant construction
of hyperbolic Eisenstein series that we follow here (for more details see [9] and
[4]). Let us recall the definitions of hyperbolic and parabolic Eisenstein series.

If X is an horocycle of H with the direct orientation, we denote by dX ðzÞ the
oriented distance between X and z A H, ðz : XÞ ¼ edX ðzÞ, vX the volume form on
X invariant under GX , the stabilizer of X in G, pX the orthogonal projection
from H to X . Then define a 1-form on H, wX ¼ �p�

XvX such that kwXk ¼
ðz : XÞ.

If Y is an oriented geodesic of H, we denote by dY ðzÞ the oriented distance
between Y and z A H, ðz : Y Þ ¼ 1=cosh dY ðzÞ, vY the volume form on Y invariant
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under GY , the stabilizer of Y in G, pY the orthogonal projection from H to
Y . Then define a 1-form on H, wY ¼ �p�

YvY such that kwYk ¼ ðz : Y Þ.
Let x an oriented horocycle on M associated to a point p and HðxÞ the set

of horocycles on H that project under the canonical projection H ! M on x.
The Eisenstein series associated to x is the 1-form

x̂xs ¼
X

X AHðxÞ
kwXks�1

wX ;

defined for Re s > 1 and called horocyclic Eisenstein series.
If we denote by jxj the width of the horocycle x then the form jxj�sx̂xs is

independent of the choice of the horocycle x associated to the point p. We
denoted this series by p̂ps and we will call it a parabolic Eisenstein series.

In the same way let h be a closed oriented geodesic on M and HðhÞ the set
of oriented geodesics on H that project to h. The Eisenstein series associated to
h is, up to some normalization, the 1-form

ĥhs ¼
X

Y AHðhÞ
kwYks�1

wY ;

defined for Re s > 1 and called hyperbolic Eisenstein series.
In each case, for s A C, Re s > 1, we define the 1-form on M with Z ¼ X

(respectively, Z ¼ Y ) and the notation kwZks�1
wZ ¼ ws

Z:X
ws
Z

called an horocyclic Eisenstein series (respectively, an hyperbolic Eisenstein series).
Fix Y0 in HðhÞ and denote by GY0

its stabilizer in G, then HðhÞ ¼ GY0 ¼
ðGnGY0

ÞY0

ĥhs ¼
X

g AGnGY0

ws
gY0

:

Choose and fix any point z A M, which we lift to a point z A H. As dgY0
ðzÞ ¼

dY0
ðg�1zÞ, we have also

ĥhsðzÞ ¼
X

d AGY0
nG

1

cosh dY0
ðdzÞs�1

ddY0
ðdzÞ

cosh dY0
ðdzÞ :

Remark 2.1. dY0
is the Fermi-coordinate x2 in [17].

In the same way, fix X0 in HðxÞ and denote by GX0
its stabilizer in G, then

HðxÞ ¼ GX0 ¼ ðGnGX0
ÞX0 then

x̂xsðzÞ ¼
X

g AGnGX0

ws
gX0

ðzÞ:
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Choose and fix any point z A M, which we lift to a point z A H. As dgX0
ðzÞ ¼

dX0
ðg�1zÞ, we have also

x̂x sðzÞ ¼
X

d AGX0
nG
esdX0 ðdzÞ ddX0

ðdzÞ:

2.4. Stieltjes integrals. In order to be consistent with the notations of [7]
we will fix Z0 in the set of oriented geodesics of H that project to h (respectively,
in the set of oriented horocycles of H that project to x) and we will write
dhypðz;Z0Þ the geodesic distance and as before dZ0

ðzÞ, the oriented geodesic
distance from z to Z0. With all this, we will re-write the counting functions in
[7], p. 705, in the following way: the hyperbolic counting function (respectively,
parabolic counting function associated to X0) is define as

Nhyp;M;hðT ; zÞ ¼ cardfd A GY0
nG;�T < dY0

ðdzÞ < Tg
ðrespectively; Npar;M0;pðT ; z; xÞ ¼ cardfd A GX0

nG;�T < dX0
ðdzÞ < TgÞ:

As h is non-separating one needs to take into account that geodesic lengths
from z to h enter the cylinder about the pinching geodesic from the two di¤erent
sides.

ĥhsðzÞ ¼
X

d AGY0
nG

1

cosh dY0
ðdzÞs�1

ddY0
ðdzÞ

cosh dY0
ðdzÞð1Þ

¼
X

d AGY0
nG

dY0 ðdzÞb0

1

cosh dY0
ðdzÞs�1

ddY0
ðdzÞ

cosh dY0
ðdzÞð2Þ

þ
X

d AGY0
nG

dY0 ðdzÞ<0

1

cosh dY0
ðdzÞs�1

ddY0
ðdzÞ

cosh dY0
ðdzÞ :

Let then write

Nhyp;M;hðx; zÞ ¼ NL
hyp;M;hðx; zÞ þNR

hyp;M;hðx; zÞ;

where

NL
hyp;M;hðx; zÞ ¼ cardfd A GY0

nG; 0a dY0
ðdzÞ < xg

and

NR
hyp;M;hðx; zÞ ¼ cardfd A GY0

nG;�x < dY0
ðdzÞa 0g:

They are increasing step-functions and give rise to a Stieltjes measure
dNhyp;M;h (respectively, dNpar;M0;p, dNL

hyp;M;h, dNR
hyp;M;h).
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If we denote wY0
ðxÞ ¼ dx

cosh x
, we can express the hyperbolic Eisenstein series

as a Stieltjes integral, namely

ĥhsðzÞ ¼
ðy
0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNhyp;M;hðx; zÞ

¼
ðy
0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp;M;hðx; zÞ

�
ðy
0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNR
hyp;M;hðx; zÞ:

We have the following inequality

kĥhsðzÞka
ðy
0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ
�����

����� dNhyp;M;hðx; zÞ

¼
ðy
0

1

cosh x

� �ðRe sÞ
dNhyp;M;hðx; zÞ:

We can choose X0 such that Npar;M0;pðT ; z; xÞ ¼ cardfd A GX0
nG;�T <

dX0
ðdzÞa 0g. If we denote wX0

ðxÞ ¼ ex dx, we can express the parabolic
Eisenstein series as a Stieltjes integral, namely

x̂xsðzÞ ¼
ðy
0

ðe�xÞðs�1Þ
wX0

ð�xÞ dNpar;M0;pðx; zÞ;

and we have the same preceding remark.

3. Convergence

A family of degenerating geometrically finite hyperbolic surfaces consists of
a surface M and a smooth family ðglÞl>0 of Riemannian metrics that meet the
following assumptions:

(1) The Riemannian manifold Ml ¼ ðM; glÞ is a geometrically finite hyper-
bolic surface for each l.

(2) There are finitely many disjoint open subsets Cl; i � M that are di¤eo-
morphic to cylinders RnZ� Ji where Ji � R is a connected neighborhood
of 0 with the metric ðx; aÞ 7! ðliðlÞ2 þ a2Þ dx2 þ ððliðlÞ2 þ a2Þ�1

da2 and
liðlÞ ! 0 as l ! 0. The curve ci ¼ RnZ� f0g is a closed geodesic of
length liðlÞ.

(3) The complement of ðC1 [ � � � [ CncÞ [ ðF1 [ � � � [ Fnf Þ [i Cl; i where we
may have some Fj � Cl; i is relatively compact.

(4) On M0 :¼ Mn
S

i ci, the metrics gl converge smoothly to a hyperbolic
metric g0 as l ! 0. M0 is a possibly non connected hyperbolic surface
that contains a pair of cusps for each i.
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In the following, we will assume that Ml has a single family of degenerat-
ing geodesics; the more general situation is easily obtained with only a slight
modification of notation. More precisely we contemplate two cases: the case the
degenerating geodesic is non-separating and the case the degenerating geodesic
is the boundary of a funnel. In the first case we have for any 0 < e < 1=2,
Cl; e ¼ RnZ� ��e=2;þe=2½ with total volume equal to e. In the second case
Cl; e ¼ RnZ� ��e=2;þy½ contains the funnel Fl .

In both cases we consider a degenerating family of groups fGlg with Ml ¼
HnGl degenerating to the surface M0, Gl containing the transformation slðzÞ ¼
elz and its stabilizer Gsl . We also write sl for the associated closed geodesic.
Then the geodesic in H fixed by sl is the line Y0 ¼ fReðzÞ ¼ 0g \H. For any
point z A Ml , which we lift to a point z A H, let dlðzÞ denote the geodesic distance
from z to Y0. We denote by p and q the two cusps of M0 arising from pinching
sl , the limit of respectively the right side and the left side of the sl-collar Cl; e.

To prevent burdensome notation, we write

Nhyp; l :¼ Nhyp;Ml ; cl

N
LðRÞ
hyp; l :¼ N

LðRÞ
hyp;Ml ; cl

In the case the degenerating geodesic cl is non-separating, we denote by qCL
l; e

(respectively, qCR
l; e) the left (respectively, right) boundary of the collar Cl; e and the

corresponding counting functions Nhyp;qCL
l; e
ðx; zÞ ¼ cardfd A GslnGl ; 0a dqCL

l; e
ðdzÞ

< xg (respectively, Nhyp;qCR
l; e
ðx; zÞ ¼ cardfd A GslnGl ;�x < dqCR

l; e
ðdzÞa 0g).

In the case the degenerating geodesic cl is the boundary of the funnel Fl

we are only interested in the right side of the collar and the corresponding
definitions.

3.1. Convergence of counting functions. We can rewrite Lemma 3.3 of [7]
in the following way

Lemma 3.1. Assume e > 0 is su‰ciently small so that Cl; e is embedded in
Ml. Let tðe; lÞ being the half width of the collar Cl; e, then for any x > 0 we have:

(1) In the case the degenerating geodesic cl is non-separating

Nhyp;qCL
l; e
ðx; zÞ ¼ NL

hyp; lðxþ tðe; lÞ; zÞ;

lim
l!0

NL
hyp; lðxþ tðe; lÞ; zÞ ¼ Npar;M0;qðx; z; xq; eÞ

with jxq; ej ¼ e=2.
In the same way

Nhyp;qCR
l; e
ðx; zÞ ¼ NR

hyp; lðxþ tðe; lÞ; zÞ;

lim
l!0

NR
hyp; lðxþ tðe; lÞ; zÞ ¼ Npar;M0;pðx; z; xp; eÞ

with jxp; ej ¼ e=2.
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(2) In the case the degenerating geodesic cl is the boundary of a funnel,
Nhyp; lðT ; zÞ is equal to cardfd A GslnGl ;�T < dlðdzÞa 0g and we have

lim
l!0

Nhyp; lðxþ tðe; lÞ; zÞ ¼ Npar;M0;pðx; z; xp; eÞ:

In all instances, the convergence is uniform on compact subsets of the complement
of Cl; e.

We will denote by Xq (respectively, Xp) a horocycle in H corresponding to
xq; e (respectively, xp; e).

Let us illustrate this result by a change of variables. To study the left side
of the collar use the change of variables lz ¼ �logð�zÞ, with the principal branch:

then
1

l

dz

z

� �2
¼ ðdzÞ2 and

jdzj
Im z

� �2
¼ ljdzj

sin lb

� �2
for z ¼ aþ ib.

We consider q the cusp of M0 limit of the left side of the sl-collar. Now, as
above, let lz ¼ �logð�zÞ, z A H, and conjugate Gl by the map zðzÞ to obtain ~GGl

acting on Sl ¼ fz j 0 < Im z < p=lg. ~GGl is a (non-Möbius) group of desk trans-
formations acting on Sl ; the quotient Sln~GGl is Ml .

There exist homeomorphisms fl from Ml � fclg to M0, with fl tending to
isometries C 2-uniformly on compact subsets of the complement of Cl; e; fl has
a lift ~ffl , a homeomorphism from a sub domain of Sl (containing the left half-
collar f�1 < Re za 0; c < Im z < p=2lg) to H; fl induces a group homomorphism
rl : G0 ! ~GGl by the rule A ! ~ff �1

l A~ffl , A A G0. We call rlðAÞ A ~GGl the element

corresponding to A A G0. Now by our normalizations for ~GGl and G0, the trans-
lation z 7! z� 1 corresponds to itself. If we specify the further normalization
~fflðiÞ ¼ i, then the lifts ~ffl are uniquely determined and tend uniformly on compact
subsets to the identity, and thus for A A G0, the corresponding elements rlðAÞ
tend uniformly on compact subsets to A.

3.2. Convergence of Eisenstein series. In this section, we prove the Main
Theorem.

First assume cl is non-separating. Let then write

ĉcsl ðzÞ ¼ ĉcslLðzÞ � ĉcslRðzÞ
with

ĉcslLðzÞ ¼
ðy
0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

and corresponding definition for ĉcslRðzÞ. To begin, we write

ĉcslLðzÞ ¼
ðT0þtðe; lÞ

0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞð3Þ

þ
ðy
T0þtðe; lÞ

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ;

where tðe; lÞ is given in Lemma 3.1.
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For the integral over ½T0 þ tðe; lÞ;yÞ, we haveðy
T0þtðe; lÞ

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

�����
�����a

ðy
T0þtðe; lÞ

1

cosh x

� �Re s

dNL
hyp; lðx; zÞ:

Now, we recall the fundamental geometric lemma which applies in our context
(see Lemma 1.4 of [14]):

Lemma 3.2. Let M ¼ GnH be a hyperbolic Riemann surface of finite type.
For any point z A M with injectivity radius r and any x > T0 > r, we have

Nhyp;M;hðx; zÞaNhyp;M;hðT0; zÞ þ
sinh2 xþ r

2

� �
� sinh2 T0 � r

2

� �

sinh2 r

2

� � :ð4Þ

From this lemma we deduce the following inequality, as in [7] p. 718, with
s ¼ Re s and r the injectivity radius of Ml at z:

2�sestðe; lÞ
ðy
T0þtðe; lÞ

1

cosh x

� �Re s

dNL
hyp; lðx; zÞa eð�sþ1ÞT0

er

sinh2ðr=2Þ
s

s� 1

� �
:ð5Þ

By choosing

T0 b
1

s� 1
�ln mþ ln

er

sinh2ðr=2Þ
s

s� 1

� � ! !
;

we have that the upper bound in (5) can be made smaller than any m > 0.
In the same way,

x̂xs
q; eðzÞ ¼

ðy
0

ðe�xÞðs�1Þ
wXq

ð�xÞ dNpar;M0;qðx; zÞ

and ðy
T0

ðe�xÞðs�1Þ
wXq

ð�xÞ dNpar;M0;qðx; zÞ
����

����a e�T0ðs�1Þ

4 sinh2ðr=2Þ
1þ 2 sinhðrÞ

sinh2ðr=2Þ

 !
;ð6Þ

can be made, for T0 su‰ciently big, as small as we want uniformly on compact
subsets of M0 bounded away from the developing cusps and in half-planes of the
form ReðsÞb 1þ d for any d > 0.

For the first integral in (3), with an adequate T0 chosen, we begin by writingðT0þtðe; lÞ

0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

¼
ðT0

0

1

coshðxþ tðe; lÞÞ

� �ðs�1Þ
wY0

ðxþ tðe; lÞÞ dNhyp;qCL
l; e
ðx; zÞ:

Let us assume, for convenience, that T0 is a point of continuity of
Npar;M0;qðx; z; xq; eÞ, meaning there is no geodesic path from z to xq; e on M0 with
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length equal to T0. Then, as liml!0 N
L
hyp; lðT0 þ tðe; lÞ; zÞ ¼ Npar;M0;qðT0; z; xq; eÞ,

there exists l0 ¼ l0ðT0; eÞ such that, for l < l0, N ¼ NL
hyp; lðT0 þ tðe; lÞ; zÞ ¼

Npar;M0;qðT0; z; xq; eÞ. Let ftk; l ; 1a ka nlg � ½0;T0� (respectively, ftk; 1a ka ng
� ½0;T0�) be the set of lengths on Ml (respectively, M0) such that for any h > 0
we have

NL
hyp; lðtk; l þ tðe; lÞ � h; zÞ < NL

hyp; lðtk; l þ tðe; lÞ þ h; zÞ:

(respectively, Npar;M0;qðtk � h; z; xq; eÞ < Npar;M0;qðtk þ h; z; xq; eÞ).
We denote by fmk; l ; 1a ka nlg (respectively, fmk; 1a ka ng) the multi-

plicities of ftk; lg (respectively, ftk; 1a ka ng).
Then we haveðT0þtðe; lÞ

0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

¼
Xnl
k¼1

coshðtk; l þ tðe; lÞÞ�s
mk; ldðtk; l þ tðe; lÞÞ:

In the same way,

x̂xs
q; eðzÞ ¼

ðy
0

ðe�xÞðs�1Þ
wXq

ð�xÞ dNpar;M0;qðx; zÞ

and ðT0

0

ðe�xÞðs�1Þ
wXq

ð�xÞ dNpar;M0;qðx; zÞ ¼ �
Xn
k¼1

e�tksmk dtk:

In the following take l < l0. As liml!0 N
L
hyp; lðt1 þ tðe; lÞ; zÞ ¼ 0, bl1 ¼ l1ðt1Þ,

l < l1, NL
hyp; lðt1 þ tðe; lÞ; zÞ ¼ 0, so t1 a t1; l .

In a similar way, liml!0 N
L
hyp; lðt2 þ tðe; lÞ; zÞ ¼ m1;0, for l su‰ciently small,

NL
hyp; lðt2 þ tðe; lÞ; zÞ ¼ m1;0 > 0, so t2 > t1; l .

In conclusion there exists l2 ¼ l2ðT2Þ < l1 and su‰ciently small so that for
l < l2, t1 a t1; l < t2 a t2; l and m1; l ¼ m1;0. Repeating this argument there exists
li su‰ciently small so that for l < li, Ej, 1a ja i, tj a tj; l < tjþ1 and mj; l ¼
mj;0. As

Pn
k¼1 mk ¼

Pnl
k¼1 mk; l , there exists ln su‰ciently small so that for l < ln,

nl ¼ n and Ej, 1a ja n, tj a tj; l < tjþ1 and mj; l ¼ mj;0.
Moreover as for all T , t1 < T a t2, we have liml!0 N

L
hyp; lðT þ tðe; lÞ; zÞ ¼

m1;0, we deduce that liml!0 t1; l ¼ t1 and the same for all others tj; l , 1a ja n.
Then for l < ln we can write,ðT0þtðe; lÞ

0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

¼
Xn
k¼1

coshðtk; l þ tðe; lÞÞ�s
mkdðtk; l þ tðe; lÞÞ:

194 thérèse falliero



Now we use the preceding change of variables lz ¼ �logð�zÞ to see that
limt!0kdðtk; l þ tðe; lÞÞ � dtkk ¼ 0.

The hyperbolic metric on the collar is given in polar coordinates by ds2 ¼
dr2 þ r2 dy2

r2 sin2 y
. Then, with the substitution ln r ¼ �la, y ¼ p� lb where z ¼

aþ ib, ds2 ¼ l2ðda2 þ db2Þ
sin2 lb

, which tends to
da2 þ db2

b2
as l tends to zero. The

convergence is uniform for y bounded, and for instance is not uniform for
lya p=2.

In Fermi coordinates sin y ¼ 1

ch x2
and dx2 ¼ � l

sin lb
db tends to � db

b
as l

tends to zero. Now, remember that, with simplified notations: tk; l þ tðe; lÞ ¼
x2ðZÞ ¼ dlðZÞ, tk ¼ �dX0

ðZÞ for some Z ¼ aþ ib and kdðtk; l þ tðe; lÞÞ � dtkk ¼
ðlb=sinðlbÞ � 1Þ. It follows that kdðtk; l þ tðe; lÞÞ � dtkk tends to zero as l tends to
zero.

Moreover for fixed x > 0 and s A C with ReðsÞ > 0, we have

lim
r!y

2�sersððcoshðxþ rÞÞ�s ¼ e�sx

and the limit is uniform for all x > 0 and ReðsÞb 1þ d. Then
liml!0 2

�setðe; lÞs coshðtk; l þ tðe; lÞÞ�s ¼ e�stk and liml!0kdðtk; lÞ � dðtkÞk ¼ 0 give

lim
l!0

2�setðe; lÞs
Xn
k¼1

coshðtk; l þ tðe; lÞÞ�s
dðtk; l þ tðe; lÞÞmk

 !
¼
Xn
k¼1

e�stk dtkmk:

In other words we have

lim
l!0

2�setðe; lÞs
ðT0þtðe; lÞ

0

1

cosh x

� �ðs�1Þ
wY0

ðxÞ dNL
hyp; lðx; zÞ

 !

¼ �
ðT0

0

ðe�xÞðs�1Þ
wXq

ð�xÞ dNpar;M0;qðx; zÞ

and the convergence is uniform on compact subsets of the complement of Cl; e

and in half-planes of the form ReðsÞb 1þ d for any d > 0.
Then we write

1

l s
ĉcslLðzÞ ¼

1

l s
2s

estðe; lÞ
2�sestðe; lÞĉcslLðzÞ:

We have

tðe; lÞ ¼
ð p=2
cot�1ðe=2lÞ

dy

sin y
¼ log

e

2l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

2l

� �2
þ 1

s0
@

1
A;

such that

1

l s
2s

estðe; lÞ
¼ 2s

es
ð1� sOðl2ÞÞ

converges uniformly on compact subsets of ReðsÞ > 1 to
e

2

� ��s

.
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Now

q̂qs ¼ jxq; ej�sx̂x s
q; e

¼ e

2

� ��s� ðT0

0

ðe�xÞðs�1Þ
wX0

ð�xÞ dNpar;M0;qðx; zÞ

þ
ðy
T0

ðe�xÞðs�1Þ
wX0

ð�xÞ dNpar;M0;qðx; zÞ
�
:

We now use (5), (6), the preceding limit and the triangle inequality in order to
prove that

lim
l!0

1

l s
ĉcslL ¼ �q̂qs;

uniformly on compact subsets of the complement of Cl; e and on compact subsets
of ReðsÞ > 1.

To study the right side of the collar, use the change of variables lo ¼ logðzÞ,

with the principal branch: then
1

l

dz

z

� �2
¼ ðdoÞ2 and

jdzj
Im z

� �2
¼ ljdoj

sin lv

� �2
for o ¼

uþ iv.
The hyperbolic metric on the collar is given in polar coordinates by

ds2 ¼ dr2 þ r2 dy2

r2 sin2 y
. Then, with the substitution ln r ¼ lu, y ¼ lv and ds2 ¼

l2ðda2 þ db2Þ
sin2 lb

, which tends to
da2 þ db2

b2
as l tends to zero. The convergence is

uniform for y bounded. In the same way we show that

lim
l!0

1

l s
ĉcslR ¼ � p̂ps:

In the case cl is the boundary of the funnel Fl , for z away from the
developing cusps, we have only to consider the right side of the sl-collar,
Nhyp; lðT ; zÞ ¼ NR

hyp; lðT ; zÞ, and from the preceding study

lim
l!0

1

l s
ĉcsl ¼ p̂ps:

3.3. Final remarks. For geometrically infinite surfaces, that is to say a
surface of infinite genus or homeomorphic to a compact surface with infinitely
many points removed, the notion of geometry ‘at infinity’ is ill-defined, and there
is virtually nothing we can say about the spectral theory of the Laplacian.
However we can make the following remarks.

First note that it has already been pointed out (see [14]) that one can find
results for spectral counting functions on degenerating hyperbolic surfaces of
infinite volume analogues to those obtained for finite volume surfaces and with
the same techniques.
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The parabolic and hyperbolic Eisenstein series p̂ps and ĉcs, we work with are
well defined. For Re s > 1, il follows from the fundamental lemma (see [12],
p. 178, [10], p. 27):

Proposition 3.1. For any Fuchsian group G, there exists a Cðq;GÞ such that
for all z A H, X

g AG

yðgzÞq

½1þ jgzj�2q
aCðq;GÞ:

The constant Cðq;GÞ depends only on q and G.

In fact these series converge for Re s > d where d is the exponent of
convergence of the (relative) Poincaré series

d ¼ inf s > 0;
X
T AG

e�sdðz;TwÞ < y

( )

for some z;w A H, where dðz;wÞ again denotes the hyperbolic distance from
z A H to w A H. We have 0 < d < 1 for a geometrically infinite surface.

There is no decomposition in a finite number of trousers and funnels as in
the geometrically finite case, we have the following result though. First we recall
the definition (see [13], p. 84)

Definition 3.1. A family Y of simple closed curves on a surface S is called
a multicurve if the elements of Y are disjoint, no two are homotopic to each
other, and none is homotopic to a point.

And then give the theorem (see [13], p. 84)

Theorem 3.1. Let X be a connected hyperbolic Riemann surface that is not
simply connected, with its hyperbolic metric. Then there exists a multicurve Y
on X such that if Z denotes the closure of Z ¼ fx A g; g A Yg, then the closure of
X � Z is isometric to either

(1) a trouser, with anywhere from zero to three cusps,
(2) a half-annulus jzjb 1 in f1=R < jzj < Rg for some 0 < R < y, with its

hyperbolic metric, or
(3) a half plane Re za 0 in H, with its hyperbolic metric.

Moreover, each component of Z � Z is a simple infinite geodesic bounding a half
plane (i.e., case 3 above).

A geometrically infinite hyperbolic surface contains an infinite multicurve
or case 3 is checked, or both. This decomposition allows us to construct a
degenerating family of geometrically infinite surfaces ðMlÞl>0, Ml ¼ GlnH, by
letting the lengths of a finite number of geodesics approaching zero as l tends to
zero. These pinching geodesics can be taken as boundary components of a finite
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number of trousers appearing in Theorem 3.1. Denote by Pl the union of such
trousers, in the general case the injectivity radius of Ml may not be always strictly
positive outside the collars of the small geodesics and a thick-thin decomposition
is no more possible, however, using the same methods, we obtain the previous
results of degeneration on every compact of MlnPl .

In the following we give a more precise description of this claim. We may
suppose without loss of generality that there is only one pinching geodesic, cl , of
length l, which is the boundary of a trouser of the previous decomposition. The
existence for any 0 < e < 1=2, of the collar Cl; e (see Section 3 (2)) is found for
example in [13], p. 90. With this collar, one can construct homeomorphisms fl
(see end of Section 3.1) from Ml � fclg to M0, with fl quasi-isometries outside a
tiny neighborhood of cl , tending to isometries C2-uniformly on compact subsets
of the complement of Cl; e in analogous manner to the geometrically finite case
(see for example [2], Proposition 3.1 p. 359, [5], [11], Theorem 1.18 p. 50). The
proof of Lemma 3.1 Section 3.1, in the case of geometrically infinite hyperbolic
surfaces, follows. Proof of Lemma 3.2 Section 3.2, which essentially uses the
universal covering H and the fact that Gl is a discrete subgroup of PSLð2;RÞ is
also adapted to this case. The following theorem ensues

Theorem 3.2. Let ðMlÞl>0 be a degenerating family of geometrically infinite
hyperbolic surfaces with limit surface M0, as described above. Let ĉcsl be the
hyperbolic Eisenstein series on Ml associated to a simple closed geodesic of length
l, with Cl; e the associated collar.

(1) If cl is non-separating, then

lim
l!0

1

l s
ĉcsl ¼ p̂ps � q̂qs;

where p and q are the cusps arising from the pinching geodesic cl .
(2) If cl is the boundary of a funnel, then

lim
l!0

1

l s
ĉcsl ¼ p̂ps;

and the convergence is uniform on compact subsets of the complement of Cl; e and
in half-planes of the form ReðsÞb 1þ d for any d > 0.
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