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A THEOREM OF LIOUVILLE TYPE FOR p-HARMONIC
MAPS IN WEIGHTED RIEMANNIAN MANIFOLDS
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Abstract

Let M be a weighted Riemannian manifold with non-negative Bakry-Emery-Ricci
curvature and N be a complete Riemannian manifold of non-positive sectional
curvature. In this paper, the p-harmonic map u: M — N is studied, and a theorem
of Liouville type is obtained.

1. Introduction

Let (M™,g) and (N",h) be complete Riemannian manifolds, dim M =
m>2 dmN=mn,and let p>2. A map u: M — N is said to be p-harmonic
if u|o is a critical point of the p-energy

Ey(u) = %JQ \dul” dVy,

for every compact domain Q < M. Here the differential du is a section of the
bundle 7*M @ u"'TN — M and u~'TN denotes the pull-back bundle via the
map u and dV),, stands for the canonical Riemannian volume form on M.
When u is C?-regular, the Euler-Lagrange equation for the energy functional
E, is the p-harmonic maps equation [2]

t,(u) = div(|dul”? du) = |dul”*t2(u) + (p — 2)|dul’~ du(grad,|du]) = 0

where 7,(u) := div(du) is the standard tension field of . In this paper, A, 6 and
7(u) = 15(u) always denote the Laplace operator, the co-differential operator
and the tension field of a map u on the manifold (M™,g). Several studies are
given for harmonic maps (see [5, 7, 11, 13, 14]). For these harmonic maps, there
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are Liouville type theorems, which state that a harmonic map u is constant under
some conditions.

In 1976, R. M. Schoen and S. T. Yau [11] proved the following Liouville
type theorem.

THEOREM 1.1. Let M be a complete Riemannian manifold of non-negative
Ricci curvature and N be a complete Riemannian manifold of non-positive sectional
curvature.  Then any harmonic map u: M — N of E,(u) < oo is constant.

For p-harmonic maps, N. Nakauchi [9] proved the following theorem in
1998.

THEOREM 1.2. Let M be a complete Riemannian manifold of non-negative
Ricci curvature and N be a complete Riemannian manifold of non-positive sectional
curvature. Then any p-harmonic map u: M — N of E,(u) < co is constant.

Let f: M — R be a smooth function. A map u: M — N is said to be
(weakly) f-harmonic if u|, is a critical point of the f-energy

I
E(u) = EJe*f|aru|2 AV

for every compact domain Q = M. The study of f-harmonic maps began with
A. Lichnerowicz in 1969 [6] and J. Eells and L. Lemaire in 1977 [3]. We now
study the f-harmonic maps on weighted manifold and gradient Ricci solitons.

A weighted manifold, also known in the literature as smooth metric mea-
sure space, is a Riemannian manifold (M"™,g) endowed with a weighted volume
form e dV); and some smooth function f : M — R. For a weighted manifold
(M™,g,e™ dVy), we are interested in the Bakry-Emery Ricci tensor Rich =
Ric + Hess f, which was first introduced by A. Lichnerowicz in [7] and later
by D. Bakry and M. Emery in [1]. Recently it has been found that this
curvature tensor is strictly related with geometric objects whose importance is
outstanding in mathematics. Imposing the constancy of Ric}” , one can intro-
duce gradient Ricci soliton structure on the manifold, and the importance of
gradient Ricci solitons is due to the fact that they correspond to self-similar
solutions to Hamilton’s Ricci flow and often arise as limits of dilations of
singularities developed along the flow.

It is easy to know that the f-harmonic map on manifold (M"™,g), just be
the harmonic map on a weighted manifold (M™, g,e~ dV);). In this paper, we
study the p-harmonic maps on a weighted manifold (M”,g,e™ dVy), that is, the
map is a critical point of the (p, f)-energy

1 )
E, r(u) = —J e |du|” dViy
Pla

for every compact domain Q = M. We said u is a (p, f)-harmonic map on M.
We obtain the following general result.
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THEOREM 1.3.  Let (M™, g,e™ dVy) be an orientable, complete non-compact
weighted Riemannian manifold with Ric}/[ >0, and N be a complete Riemannian
manifold of non-positive sectional curvature, where f e C*(M). Let u: M — N
be a (p, f)-harmonic map with E, r(u) < 0.

(I) Assume at least one of the following assumption is satisfied

(a) there exists a constant C >0 such that |f| < C;

(b) f is convex and the set of its critical points is unbounded,

(c) Vol (M) := [, e dVy = +o0;

(d) there is a point qo € M such that Rich|q0 >0

() there is a point q1 € M such that RicM(X,X)\q1 #0forall 0 #X e Ty M.

Then u is homotopic to a constant.

(I 1 Secty < 0, then u is homotopic either to a constant or to a totally
geodesic map whose image is contained in a geodesic of N.

2. Bochner type formula

Let (M™,g,e~ dVy) be a weighted manifold, or a smooth metric measure
space, where f : M — R is a smooth function. For every smooth function / on
M, we define an operator L, as follows:

where A = —(dd +4d) is the Laplace operator. At the same time, the Bakry-
Emery-Ricci curvature is defined by the formula

Rich = Ric + Hess f.

LemMa 2.1, Let (M™,g,e™ dVy) be a weighted Riemannian manifold and
N be a smooth Riemannian manifold, then a map u: M — N is (p, f)-harmonic if
and only if it satisfies the Euler-Lagrange equation

2.1) 1, (u) := e |dul”* ((u) + du(grad(In|dul’ > — f))
= div(e™ |dul"* du) = —d(e™ |du|"* du) = 0

where t(u) = —0 du = div(du) is the tension field of u. We call t, ;(u) the (p, f)-
tension field of u.

Proof. The proof is standard computation which can be adapted from the
case when p =2 and f =0, see for example [3]. O

In this section we give the following Bochner type formula.

LeMMA 2.2. Let (M™, g,e™ dVy) be a weighted Riemannian manifold and
N be a smooth Riemannian manifold, and u: M — N be a C* map. Then
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1 _
(2.2) Ly (; Idul”) = [dul"(|V du|* + (p = 2)|V|du| |* + Fy ()

+ |du|”2<d(z(u) — du(Vf)), du)
where

Fy(u) =) {du(Ric" e;), du(e;)y = Y (R (duler), dule))) du(e;), du(e;)>.

Proof. We start recalling the standard Bochner formula for a smooth map
u 3],

1
§A|du|2 = (A duyduy + |V dul® + F(u),
where

Fu) = <du(Ric™ ¢;), du(e;)y — > (RN (dule;), duley)) du(er), du(e;).
Then

L,(éuuv) _ %A|du\” _ <df’,d<%|du|”>>
= 21?2 Alduf? + (p — 2)\dul? |V ldu] 3| ()
= |du|" 2 ({Adu, duy + |V dul® + F(u))
+(p )l V]l [ — 3 el > d(|d)>
= |dul"(|V du|* + (p = 2)|Vdu| |* + Fy ()
V3 du ey — (V). ) 3l dd)
where
Fr(u) = <du(Ric}" e;),du(e;)y =Y (R (du(er), du(e;)) duler), du(e;)).
= F(u)+ > _ {du(V.Vf),du(e;))
= F(u) + <du(V()Vf), du>.
It is easy to know that

A du=—(do+od) du = —d(od)u = d(t(u)).

Hence the lemma is proved once we show that

(23) (Y F) dy) + 3 < d(|dul?)> = <d(du(¥1), .
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Let {x,}/", be the normal coordinate chart at ge M on M and {04}_,
and {E4}}_, orthonormal coframe and dual frame on N at u(q) respectively.

0 0
Moreover denote the components of the metric on M as g, := gu < e b).
Then we have the following equalities in this coordinate. xToox

1 (a=0b) ag“b .
ab ¢
ab = = R =0, I';,=0 tgqg.
Jab =9 {O (a #Db) ox¢ ab at g

Now, we can write

du=u'E; @dx", Vf=f*

6x“

. 0 8
Vfﬁ/ax"vf = Vﬁ/@x“ <fbﬁ) = (fu +fhr[1b) axc7

that is,

VOV = (4 +1T5)
At the given point ¢ € M, we have
du(V\Vf) = ul £ dx" ® Ey4.
Cdu(V ) Vf ), duy = g“uitug 1, = ulu

and
df, d(|dul?)) <fa dx?, g (g ulug )dxd>:2fﬂuglug;.
Then
(¥ )V )y -+ 3 < () = £+
On the other hand,
Cdu, d(du(Vf))> = {du,d(f uE4)
— <du, aia (fulEq) ® dx”>

= (ul dx? @ Eq,ul £ dx" ® E4)
+ <uf dx© ®EA,uglaf" dx? ®E >

A, A A, A
= uc ua fca—i_faub uba'

This latter proves (2.3) and concludes the proof. O
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3. The proof of theorem 1.3
Proof of theorem 1.3. The (2.1) can be rewritten
1 )4 y—
S Ly (ldul?) = 2 1dul (¥ df? + (p = 2)|V]d | + Fy ()
+ Ll (x(u) = du(V))), duy
Let ¢ = |du|”’*, then
1 2 2
SLr(¢%) = oLy (9) + Vo,
It is easy to get
2P’ -2 2
Vo1 =L a2 9,
Using the Kato’s inequality, we have
1
Ly (9) =5 Ly(¢?) - Vg?
1 P’ _
= S Ly (dul”) = 2 a2 vl

= g |dul” (1Y du® + (p = 2)[Vdul |* + Fy (u))

2 () — (V1) iy — 2l V]
= L1 @IV dul? + (p — AI¥ldl |+ 267(0)

o+ £l < () — du(Vf)), duey
> Lldul"((p = 2)\Vld |* + 28 (u)

o+ £l () — du(Vf)), duey

Let B(r) be a ball with radius r, and w, be a cut-off function s.t. w, <1 on M,

Wwelgpy =1, wilapnpoy =0 and [V, | < % Since Fr(u) >0, we have
gJ w2|du|”2 ({d (t(u) — du(Vf)) dud)e™ dbv, _J w2pLs(p)e™ du,
M M

<= B[ Wil 3((p - DIVl + 26 e ! diy <0
M
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where dv, stands for the canonical Riemannian volume form on metric g. It is
easy to know that

J w2pLs($)e™ du,
M
= J wig div(e™ d(¢)) du,
M

= J wip(—d(e” d(9))) dv,
M

—| <d(w¢), e d(9)) dv,

M

=— | wreld()] dvy—2| <wd(w)p e d(g)) du,
JM JM

< —| wrAld@)P doy+2| wild(w,)gld()le dv,
M M

= | W@ dog+ p | wildOw)] dul?d(|dul) e d,
M M
At the same time, we have

P i< (etw) — du(vp). e do,
M

2
- g (d(t(u) — du(Vf)), we™ |du|’? du dv,
JM
- g () — du(Vf),6(wre ™ |dul’ > du)y dv,
M
zg Ce(u) — du(Vf), w2(e™ |du|" ™ du) + e |du|"™* du(Vw?)> du,
M
- g Ct(u) — du(Vf), e |dul?~* du(Vw?)) dv,
M
(O(e "2 du) = —z, (1) = 0)
BJ (e (t(u) — du(Vf)), |dul”* du(Vw?)> dv,
2 )m
EJ (—8(e™ du), |dul”~* du(Vw?)> dv,
2 )m

— _EJ <e™ du,d(|dul’ " du(Vw?))> do,
2 Jm
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= _g (JM Ce™ du, (p —2)|du|”>d(|dul) du(Vw?)> dv,
+ JM e du, |du|p72d(du(wa))> dvg>
-2 (jM (e du, (p— Dl d(|dul) du(w2)> d,
+—Lw<efqduv_2dugﬂah(waD)cwg>
= 5( ] <o du o= 2l ) auv)y
| ol ) v dug)
[ e s~ Dl ) (02
> ~plp=2) | wld0m)] il ld(le !
Here we have used the fact d(e™|du|’* du) = —1, r(u) = 0. Now, we have

0> BJ wr2|du|p_2(<d(Au — du(Vf)) dud)e™ dv, — J w2gLs(¢)e™ dv,
2 M M

ZJ waﬂﬂwﬁm@—mp—nj wold(w,)| |dul? " |d(|dul)|e ™ dv,
M M

> [ w2 @ doy ~2p = 1) | wldOm)ldd@le do,
N

> (1= (p = Vo) | wie (@) do, - = | tatree as

for any 0 <e< 1. So d(¢) e L>. Hence by the Holder inequality

j (" d(du) e dvg:%j dld(@)le do,
Q Plao

> 1/2 1/2
< - (J e |d(¢)? dv,,) (J 2e7/ dvq> <o
P \Ja ) Q )

for any compact set Q = M. If we let r — oo, then

Jmmmwﬁwww*mao
M
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From above we get

P

0>— J w2|du|” " ((p — 2)|V|du| |* + 2F;(u))e ™ dv,
M

=P w2|du|” 2 ({d (L — du(Vf)) duy)e™ dv, — J w2pLs(p)e™ dv,
2)m M ‘

M
That is
(3.1) |dul”((p — 2)|Vdu| |* + 2F; (u)) = 0,
and
(3.2) dep = d(|dul?*) = 0.

d¢p =0 means |du| = const. Suppose |du| = C > 0. Then the finiteness of the
(p, f)-energy E, s(u) of u gives that Vols(M) < +co. 1If either |f| is uniformly
bounded or f is convex and the set of its critical points is unbounded, then
Theorems 1.3 and 5.3 in [12] implies that M has at least linear f-volume growth,
giving a contradiction.

The Kato’s inequality with equality holding means Vdu =0, i.e. u: M — N
is totally geodesic, which in turn gives that u is harmonic, i.e. t(u) = 0. Since
|du| = const, 7, r(u) =0 and 7(u) =0, (2.1) becomes

(3.3) |du|"? du(Vf) = ', r(u) — |du|”*t(u) = 0.
Accordingly, the (3.1) reads
(34) Jdul” 2 Fy(u) = 0,

and by the curvature sign assumptions both

(3.5) |dul?"2 " (du(Ric" e;), du(e;)y =0,
and
(3.6) |dul”™2 " (RN (du(er), du(e)) du(er), du(e;)y = 0.

First, suppose that |du| = C >0 and Sect” <0, then du(E;)| du(E;) for all
i,j=1,...,n and we conclude that u(M) must be contained in a geodesic of N.
On the other hand, suppose that Rich |, > 0 at some point go € M. Then
necessarily du(qo) = 0 which gives du = 0.
Moreover, (3.5) can be rewrote

(BT |dul" (Z Cu(Ric™ e;), du(er)> + {du(V,,Vf), du(e,»)>) —0.
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Since

0= (Vdu)(X,Y) = (Vaur) du)(X) = Vi) du(X) — du(Vy'X)
for all X, Y vector fields on M. (3.3) implies

)" Cdu(V YIS ), du(er)y = |dul”™> (V. du(Vf ), du(e;) = 0,
for each i=1,...,n. Since Rich >0. (3.7) in particular gives
(3.8) |dul?™2 " <du(Ric" e;), du(e;)y = 0.
Hence, if there exists a point ¢; € M such that RicY (X, X )Ny #0 for all

0# X eT, M, then u is once again necessarily constant.

4. A remark

When M is an n-dimensional compact Riemannian manifold without bound-
ary, we have the following result, which is an extension of facts in p-harmonic
map case. (See Eells and Sampson [4].)

TueoreM 4.1. Let (M™,g,e™ dVy) be a weighted, compact Riemannian
manifold without boundary and N be a smooth Riemannian manifold, and
u: M — N be a (p,[)-harmonic map.

(a) Assume RicM >0 and Sect™ <0. Then u is totally geodesic.

(b) In addition to (a), if Ric;” > 0 somewhere, then u is a constant map.

(c) In addition to (a), if Sect” < 0, then u is a constant map, or u maps onto
a closed geodesic in N.

Proof. Using the Lemma 2.2, we get
1 _
o:J L/-<—|du|”)e- dv,

M p

= J )" 2(IV dul® + (p — 2)|V|du| |* + Fy(u))e™ dbv,
M
+J \dul?*{d (t(u) — du(Vf)), duye™ dbv,

M

= J )" 2(IV dul® + (p — 2)|V|du| |* + Fy(u)e™ db,

M

+ JM d(t(u) — du(Vf)),e™ |du|’* du dv,
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= JM dul”2(IV dul* + (p = 2)|Vdu| |* + Fy(u))e ™ dv,

- J Ct(u) — du(Vf),0(e™ |dul?* du) dv,
M
= J || ">(IV dul® + (p — 2)|V|du| |* + Fy(u))e ™ dv,

+ J t(u) — du(Vf), tp (1)) du,
M
Since u: M — N be a (p, f)-harmonic map, that is, 7, /(u) =0, we know
J )" ~*(|V dul® + (p — 2)|V|du| |* + Fy(u)e ™ dv, <0,
M

By the curvature sign assumptions, we know Fy(u) >0, and
jdul”>(IV dul* + (p = 2)|Vdu| |* + Fy (u)) = 0.
Hence
|dul” (1Y dul® + (p = 2)|Vdu] |* + Fy () = 0.

Analysis similar to that in the proof of Theorem 1.3 shows that the theorem
holds. O
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