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Abstract

In this paper new results concerning three dimensional real hypersurfaces in non-flat

complex space forms in terms of their stucture Jacobi operator are presented. More

precisely, the conditions of 1) the structure Jacobi operator being of Codazzi type with

respect to the generalized Tanaka-Webster connection and commuting with the shape

operator and 2) h-invariance of the structure Jacobi operator and commutativity of

it with the shape operator are studied. Furthermore, results concerning Hopf hyper-

surfaces and ruled hypersurfaces of dimension greater than three satisfying the previous

conditions are also included.

1. Introduction

A complex space form is an n-dimensional Kähler manifold of constant
holomorphic sectional curvature c. A complete and simply connected complex
space form is complex analytically isometric to a complex projective space CPn if
c > 0, or to a complex Euclidean space Cn if c ¼ 0, or to a complex hyperbolic
space CHn if c < 0. The complex projective and complex hyperbolic spaces are
called non-flat complex space forms, since c0 0 and the symbol MnðcÞ is used to
denote them when it is not necessary to distinguish them.

A real hypersurface M is an immersed submanifold with real co-dimension
one in MnðcÞ. The Kähler structure (J;G), where J is the complex structure and
G is the Kähler metric of MnðcÞ, induces on M an almost contact metric structure
(j; x; h; g). The vector field x is called structure vector field and when it is an
eigenvector of the shape operator A of M the real hypersurface is called Hopf
hypersurface and the corresponding eigenvalue is a ¼ gðAx; xÞ.

The study of real hypersurfaces M in MnðcÞ was initiated by Takagi, who
classified homogeneous real hypersurfaces in CPn and divided them into six types,
namely (A1), (A2), (B), (C), (D) and (E) in [16]. These real hypersurfaces are
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Hopf ones with constant principal curvatures. In case of CHn the study of real
hypersurfaces with constant principal curvatures was started by Montiel in [9]
and completed by Berndt in [1]. They are divided into two types, namely (A)
and (B), depending on the number of constant principal curvatures. The real
hypersurfaces found by them are homogeneous and Hopf ones.

The last years many geometers have studied real hypersurfaces in MnðcÞ
when they satisfy certain geometric conditions. More precisely, the structure
Jacobi operator of them plays an important role in their study. Generally, the
Jacobi operator with respect to a vector field X on a manifold is defined by
Rð�;X ÞX , where R is the Riemmanian curvature of the manifold. In case of real
hypersurfaces for X ¼ x the Jacobi operator is called structure Jacobi operator
and is denoted by l ¼ Rx ¼ Rð�; xÞx.

One of the geometric conditions concerning the structure Jacobi operator
that has been studied is that of Codazzi type. Generally, a tensor field T of type
(1,1) on M is of Codazzi type when it satisfies

ð‘XTÞY ¼ ð‘YTÞX ; where X ;Y A TM:

In [14] the non-existence of real hypersurfaces in complex projective space whose
structure Jacobi operator is of Codazzi type is proved. In [18] and [19] the
previous result is extended for the case of three dimensional real hypersurfaces in
non-flat complex space forms and for real hypersurfaces in complex hyperbolic
space. In these cases it is also proved the non-existence of real hypersurfaces
satisfying the Codazzi-type condition for the structure Jacobi operator.

Another topic that has been of great importance is the study of real hyper-
surfaces in MnðcÞ in terms of their generalized Tanaka-Webster connection. The
notion of generalized Tanaka-Webster connection was first introduced by Tanno
in [17] in case of contact metric manifolds in the following way

‘̂‘XY ¼ ‘XY þ ð‘XhÞðYÞx� hðYÞ‘Xx� hðX ÞjY :

In [2], [3] Cho extended Tanno’s work by defining the notion of generalized
Tanaka-Webster connection for real hypersurfaces M in MnðcÞ in the following
way

‘̂‘
ðkÞ
X Y ¼ ‘XY þ gðjAX ;Y Þx� hðY ÞjAX � khðXÞjY ;

where X , Y are tangent to M and k is a non-zero real number. Denote by
F

ðkÞ
X Y ¼ gðjAX ;Y Þx� hðY ÞjAX � khðXÞjY which is called the k-th Cho oper-

ator corresponding to a vector field X . The above relation becomes

‘̂‘
ðkÞ
X Y ¼ ‘XY þ F

ðkÞ
X Y :ð1:1Þ

The importance of the above connection lies in the fact that studying real
hypersurfaces in MnðcÞ which satisfy geometric conditions such as parallelness
or Codazzi type with respect to the generalized Tanaka-Webster connection leads
to di¤erent results to those obtained with respect to the Levi-Civita connection.
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More precisely, in [15] real hypersurfaces in MnðcÞ, nb 3, whose shape operator
is of Codazzi type with respect to the generalized Tanaka-Webster connection
are classified in contrast to the fact that there are no real hypersurfaces in
MnðcÞ whose shape operator is of Codazzi type with respect to the Levi-Civita
connection.

Motivated by all the above the following question raises naturally.

Question. Are there real hypersurfaces in MnðcÞ whose structure Jacobi
operator is of Codazzi type with respect to the generalized Tanaka-Webster
connection?

First of all, the structure Jacobi operator is called of Codazzi type with
respect to the generalized Tanaka-Webster connection, when the following relation
is satisfied

ð‘̂‘ðkÞ
X lÞY ¼ ð‘̂‘ðkÞ

Y lÞX ;ð1:2Þ

for any X , Y tangent to M.
In this paper we study three dimensional real hypersurfaces in M2ðcÞ when

the structure Jacobi operator satisfies relation (1.2) and also commutes with the
shape operator, i.e.

AlX ¼ lAXð1:3Þ

for any X tangent to M.
More precisely, the following Theorem is proved.

Theorem 1.1. Every real hypersurface M in M2ðcÞ, whose structure Jacobi
operator satisfies relations (1.2) and (1.3), is a Hopf hypersurface. Furthermore, if
a0 2k then M is locally congruent

i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Ax ¼ 0, which in case of CP2 it is a non-

homogeneous real hypersurface, considered as a tube of radius r ¼ p

4
over a

holomorphic curve.

Furthermore, in this paper three dimensional real hypersurfaces in M2ðcÞ whose
structure Jacobi operator is h-invariant are also studied. The condition of
h-invariance implies that the structure Jacobi operator satisfies the following

gððLX lÞY ;ZÞ ¼ 0; X ;Y ;Z A D;ð1:4Þ

where L denotes the Lie derivative on M. More precisely, the following
Theorem is proved

Theorem 1.2. Every real hypersurface M in M2ðcÞ, whose structure Jacobi
operator satisfies relations (1.3) and (1.4), is a Hopf hypersurface. Furthermore,
M is locally congruent
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i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Ax ¼ 0, which in case of CP2 it is a non-

homogeneous real hypersurface, considered as a tube of radius r ¼ p

4
over a

holomorphic curve,
iii) or to a real hypersurface of type (B). In case of CP2 it is a tube of radius

r A 0;
p

4

� �
around the complex quadric Q1 and in case of CH 2 it is a tube of some

radius r around the canonically (totally geodesic) embedded 2-dimensional real
hyperbolic space.

This paper is organized as follows: In Section 2 basic relations and results
about real hypersurfaces in MnðcÞ, nb 2, are given. In Section 3 the proof of
Theorem 1.1 is provided. Furthermore, in this Section some Propositions for
Hopf and ruled hypersurfaces, whose structure Jacobi operator is only of Codazzi
type with respect to the generalized Tanaka-Webster connection, are proved. In
Section 4 the proof of Theorem 1.2 is given. Finally, in this Section Propositions
for Hopf and ruled hypersurfaces, whose structure Jacobi operator satisfies only
the condition of h-invariance, are included.

2. Preliminaries

Throughout this paper all manifolds, vector fields etc are assumed to be of
class Cy and all manifolds are assumed to be connected. Furthermore, the real
hypersurfaces M are supposed to be without boundary.

Let M be a real hypersurface immersed in a non-flat complex space form
ðMnðcÞ;GÞ with complex structure J of constant holomorphic sectional curva-
ture c.

Let N be a locally defined unit normal vector field on M and x ¼ �JN be
the structure vector field of M. For a vector field X tangent to M relation

JX ¼ jX þ hðX ÞN

holds, where jX and hðX ÞN are respectively the tangential and the normal
component of JX . The Riemannian connections ‘ in MnðcÞ and ‘ in M are
related for any vector fields X , Y on M by

‘XY ¼ ‘XY þ gðAX ;Y ÞN;

where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in MnðcÞ with respect to N

is given by

‘XN ¼ �AX :

The real hypersurface M has an almost contact metric structure ðj; x; h; gÞ
induced from J of MnðcÞ, where j is the structure tensor which is a tensor
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field of type (1,1) and h is an 1-form on M such that

gðjX ;Y Þ ¼ GðJX ;YÞ; hðXÞ ¼ gðX ; xÞ ¼ GðJX ;NÞ:

Moreover, the following relations hold

j2X ¼ �X þ hðXÞx; h � j ¼ 0; jx ¼ 0; hðxÞ ¼ 1;

gðjX ; jYÞ ¼ gðX ;YÞ � hðXÞhðYÞ; gðX ; jY Þ ¼ �gðjX ;Y Þ:

The fact that J is parallel implies ‘J ¼ 0. The last relation leads to

‘Xx ¼ jAX ; ð‘XjÞY ¼ hðYÞAX � gðAX ;YÞx:ð2:1Þ

The ambient space MnðcÞ is of constant holomorphic sectional curvature c and
this results in the Gauss and Codazzi equations are respectively given by

RðX ;YÞZ ¼ c

4
½gðY ;ZÞX � gðX ;ZÞY þ gðjY ;ZÞjXð2:2Þ

�gðjX ;ZÞjY � 2gðjX ;YÞjZ� þ gðAY ;ZÞAX � gðAX ;ZÞAY ;

ð‘XAÞY � ð‘YAÞX ¼ c

4
½hðX ÞjY � hðYÞjX � 2gðjX ;YÞx�;

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any
vector fields on M.

Relation (2.2) implies that the structure Jacobi operator l is given by

lX ¼ c

4
½X � hðX Þx� þ aAX � hðAX ÞAx;ð2:3Þ

for any X tangent to M and a ¼ hðAxÞ ¼ gðAx; xÞ.
The tangent space TPM, for every point P A M, can be decomposed as

TPM ¼ spanfxglD;

where D ¼ ker h ¼ fX A TPM : hðXÞ ¼ 0g and is called (maximal ) holomorphic
distribution (if nb 3). Due to the above decomposition, the vector field Ax can
be written

Ax ¼ axþ bU ;

where b ¼ jj‘xxj and U ¼ � 1

b
j‘xx A kerðhÞ is a unit vector field, provided that

b0 0.
The following Theorem is necessary in the proof of our Theorems. It was

proved by Okumura in case of CPn ([12]) and by Montiel and Romero in case
of CHn ([10]) and it provides the classification of real hypersurfaces in MnðcÞ
whose shape operator commutes with the structure tensor field j.
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Theorem 2.1. Let M be a real hypersurface of MnðcÞ, nb 2. Then Aj ¼
jA, if and only if M is locally congruent to a homogeneous real hypersurface of
type (A). More precisely:

In case of CPn

ðA1Þ a geodesic hypersphere of radius r, where 0 < r <
p

2
,

ðA2Þ a tube of radius r over a totally geodesic CPk, ð1a ka n� 2Þ, where

0 < r <
p

2
.

In case of CHn

ðA0Þ a horosphere in CHn, i.e a Montiel tube,
ðA1Þ a geodesic hypersphere or a tube over a totally geodesic complex

hyperbolic hyperplane CHn�1,
ðA2Þ a tube over a totally geodesic CHk ð1a ka n� 2Þ.

The above real hypersurfaces are called real hypersurfaces of type (A).
Finally, we mention the following Theorem which in case of CPn is owed to

Maeda [8] and in case of CHn is owed to Montiel [9] (also Corollary 2.3 in [11]).

Theorem 2.2. Let M be a Hopf hypersurface in MnðcÞ, nb 2. Then
i) a is constant.
ii) If W is a vector field which belongs to D such that AW ¼ lW , then

l� a

2

� �
AjW ¼ la

2
þ c

4

� �
jW :ð2:4Þ

iii) If the vector field W satisfies AW ¼ lW and AjW ¼ njW then

ln ¼ a

2
ðlþ nÞ þ c

4
:ð2:5Þ

Remark 2.3. In case of real hypersurfaces of dimension greater than or
equal to three the third case of Theorem 2.2 occurs when a2 þ c0 0, since in

this case relation l0
a

2
holds. Furthermore, the first of (2.1) and the structure

Jacobi operator for X ¼ W and X ¼ jW becomes

‘Wx ¼ ljW and ‘jWx ¼ �nW ;ð2:6Þ

lW ¼ c

4
þ al

� �
W and ljW ¼ c

4
þ an

� �
jW :ð2:7Þ

2.1. Auxiliary facts about three dimensional real hypersurfaces
in non-flat complex space forms

Let M be a non-Hopf real hypersurface in M2ðcÞ and fU ; jU ; xg be a local
orthonormal basis at some point P of M. Then the following Lemma holds
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Lemma 2.4. Let M be a non-Hopf real hypersurface in M2ðcÞ. The fol-
lowing relations hold on M

AU ¼ gU þ djU þ bx; AjU ¼ dU þ mjU ; Ax ¼ axþ bUð2:8Þ
‘Ux ¼ �dU þ gjU ; ‘jUx ¼ �mU þ djU ; ‘xx ¼ bjU ;

‘UU ¼ k1jU þ dx; ‘jUU ¼ k2jU þ mx; ‘xU ¼ k3jU ;

‘UjU ¼ �k1U � gx; ‘jUjU ¼ �k2U � dx; ‘xjU ¼ �k3U � bx;

where a; b; g; d; m; k1; k2; k3 are smooth functions on M and b0 0.

Remark 2.5. The proof of Lemma 2.4 is included in [13].

The structure Jacobi operator for X ¼ U , X ¼ jU and X ¼ x due to (2.8) is
given by

lU ¼ c

4
þ ag� b2

� �
U þ adjU ;ð2:9Þ

ljU ¼ adU þ c

4
þ am

� �
jU and lx ¼ 0:

The Codazzi equation for X A fU ; jUg and Y ¼ x because of Lemma 2.4
implies the following relations

Ub � xg ¼ ad� 2dk3ð2:10Þ

xd ¼ agþ bk1 þ d2 þ mk3 þ
c

4
� gm� gk3 � b2ð2:11Þ

Ua� xb ¼ �3bdð2:12Þ
xm ¼ adþ bk2 � 2dk3ð2:13Þ

ðjUÞa ¼ ab þ bk3 � 3bmð2:14Þ

ðjUÞb ¼ agþ bk1 þ 2d2 þ c

2
� 2gmþ amð2:15Þ

and for X ¼ U and Y ¼ jU

Ud� ðjUÞg ¼ mk1 � k1g� bg� 2dk2 � 2bmð2:16Þ
Um� ðjUÞd ¼ gk2 þ bd� k2m� 2dk1ð2:17Þ

Furthermore, combination of the Gauss equation (2.2) with the formula
of Riemannian curvature RðX ;YÞZ ¼ ‘X‘YZ � ‘Y‘XZ � ‘½X ;Y �Z, taking into
account relations of Lemma 2.4, implies

Uk2 � ðjUÞk1 ¼ 2d2 � 2gm� k2
1 � gk3 � k2

2 � mk3 � c;ð2:18Þ
ðjUÞk3 � xk2 ¼ 2bm� mk1 þ dk2 þ k3k1 þ bk3:ð2:19Þ
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Remark 2.6. In case of Hopf three dimensional real hypersurfaces we
consider a local orthonormal basis fW ; jW ; xg at some point P A M such that
AW ¼ lW and AjW ¼ njW . So relation (2.5) holds. Moreover, relations (2.6)
and (2.7) hold.

3. Proof of Theorem 1.1

Let M be a three-dimensional real hypersurface in M2ðcÞ whose structure
Jacobi operator satisfies relations (1.2), (1.3) and a0 2k. More analytically,
relation (1.2) due to (1.1) is written

‘X ðlY Þ þ F
ðkÞ
X ðlY Þ � l‘XY � lF

ðkÞ
X Yð3:1Þ

¼ ‘Y ðlX Þ þ F
ðkÞ
Y ðlX Þ � l‘YX � lF

ðkÞ
Y X ;

where X , Y are tangent to M.
We consider the open subset N of M such that

N ¼ fP A M : b0 0 in a neighborhood of Pg:

On N relation (2.8) holds. Moreover, relation (1.3) for X ¼ x implies that

lU ¼ 0 and due to the first of (2.9) we have ad ¼ 0 and agþ c

4
¼ b2. Suppose

that a0 0. Then d ¼ 0 and relation (2.8) becomes

AU ¼ gU þ bx and AjU ¼ mjU :

Relation (3.1) for X ¼ U and Y ¼ x and X ¼ U and Y ¼ jU due to the
above relation, relation (2.9) and Lemma 2.4 implies respectively

ðk3 � kÞ c

4
þ am

� �
¼ 0 and k1

c

4
þ am

� �
¼ 0:

Suppose that k3 0 k then the first relation implies that
c

4
þ am ¼ 0 and the

second of (2.9) yields ljU ¼ 0. So we have that l ¼ 0 which due to Proposition
8 in [4] is impossible. For the same reason as in the previous case the second
relation implies that k1 ¼ 0. So the following relations hold

k3 ¼ k; k1 ¼ 0 and
c

4
þ am0 0;ð3:2Þ

since lU ¼ 0 and Proposition 8 in [4]. Di¤erentiation of
c

4
þ ag ¼ b2 with respect

to jU taking into account relations (2.14), (2.15), (2.16) and (3.2) implies
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gk þ gm ¼ c. On the other hand, relation (2.11) because of the first two relations

of (3.2) and agþ c

4
¼ b2 implies that

mk ¼ gmþ gk:ð3:3Þ

Combination of the last two relations yields m ¼ c

k
and this results in Um ¼ 0.

The last one due to (2.17) implies ðg� mÞk2 ¼ 0. If k2 0 0 then g ¼ m and

substitution of the latter in (3.3) leads to m ¼ 0. Then since m ¼ c

k
this results in

c ¼ 0, which is impossible. So relation k2 ¼ 0 holds.
Relation (2.18) due to k1 ¼ k2 ¼ 0, gk þ gm ¼ c and m ¼ c

k
implies that

g ¼ �3k. Di¤erentiation of the latter with respect to jU due to (2.16), (3.2) and

the relations for g and m yields c ¼ 3k2

2
. On the other hand, relation (2.19)

because of (3.2), k2 ¼ 0 and m ¼ c

k
leads to c ¼ � k2

2
. Combination of the two

relations for c leads to a contradiction.
So on N relation a ¼ 0 holds and this results in

c

4
¼ b2 and ljU ¼ c

4
jU .

Relation (3.1) for X ¼ U and Y ¼ x and for X ¼ U and Y ¼ jU due to the
above relations and Lemma 2.4 implies

k3 ¼ k and k1 ¼ k2 ¼ 0:

Relation (2.14) because of the first of the above relations implies m ¼ k

3
.

Furthermore, relation (2.13) yields d ¼ 0, thus relation (2.11) due to the previous

relations results in g ¼ k

4
. Moreover, di¤erentiation of

c

4
¼ b2 taking into

account the relations for g, m and relation (2.15) implies c ¼ k2

3
. Substitution of

the previous relations for g, m, k3 and c in (2.18) results in k ¼ 0, which is
impossible.

Thus, N is empty and the following Proposition is proved

Proposition 3.1. Every real hypersurface in M2ðcÞ whose structure Jacobi
operator satisfies relations (1.2) and (1.3) is Hopf.

Due to the above Proposition, relations of Theorem 2.2 and remark 2.3 hold.
The inner product of relation (3.1) for X ¼ W and Y ¼ x with jW due to (2.6)
and (2.7) implies

aðl� nÞgð‘xW ; jWÞ ¼ akðl� nÞ:

Suppose that aðl� nÞ0 0 then since gð‘xW ;WÞ ¼ gð‘xW ; xÞ ¼ 0 we have
‘xW ¼ kjW and taking into account the second of (2.1) we obtain ‘xjW ¼
�kW .
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The inner product of Codazzi equation for X ¼ x and Y ¼ W with jW and
for X ¼ x and Y ¼ jW with W due to the above relations and (2.6) implies

lk� nk� alþ ln ¼ c

4
;

lk� nkþ an� ln ¼ � c

4
:

Combination of the above relations due to l0 n results in a ¼ 2k which is
a contradiction.

So on M we have that aðl� nÞ ¼ 0. If a ¼ 0 in case of CP2 we have two
cases: 1) if l0 n then M is locally congruent to a non-homegeneous real

hypersurface considered as a tube of radius r ¼ p

4
over a holomorphic curve,

2) if l ¼ n then M is locally congruent to a geodesic hypersphere of radius

r ¼ p

4
. In case of CH 2 M is a Hopf hypersurface with Ax ¼ 0 (for the

construction of such real hypersurfaces see [5]).
If a0 0 then l ¼ n. The latter implies that

ðAj� jAÞX ¼ 0

for any X tangent to M. So due to Theorem 2.1 M is locally congruent to a
real hypersurface of type (A).

Conversely, it will be proved that real hypersurfaces of type (A) and Hopf
hypersurfaces with Ax ¼ 0 in M2ðcÞ satisfy relation (1.2), since it is known that
every Hopf hypersurface satisfies relation (1.3).

Let M be a real hypersurface of type (A) in M2ðcÞ, then the shape operator
of M is given by

Ax ¼ ax and AZ ¼ rZ; for any Z A D;

where a and r are constants. Then relation (2.3) for X ¼ x and X ¼ Z, Z A D
due to the above relation of the shape operator implies

lx ¼ 0 and lZ ¼ c

4
þ ar

� �
Z; for any Z A D:

Relation (1.2) yields relation (3.1). The last one for any X ¼ Y A TM is
identity, for any X A D and Y ¼ x because of the above relations for the struc-
ture Jacobi operator is satisfied and for any X ;Y A D is satisfied. So real
hypersurfaces of type (A) satisfy relation (1.2).

Let M be a Hopf hypersurface with Ax ¼ 0 in M2ðcÞ, then the shape
operator of M at some point P is given by

Ax ¼ 0; AZ ¼ tZ and AZ1 ¼ t1Z1;
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where t, t1 are non-constant functions. Then relation (2.3) for X ¼ x and
Y A fZ;Z1g because of the above relation yields

lx ¼ 0; lZ ¼ c

4
Z and lZ1 ¼

c

4
Z1:

Then, following the same combinations as in the case of real hypersurfaces of
type (A), it is proved that Hopf hypersurfaces with Ax ¼ 0 satisfy relation (1.2).

Remark 3.2. The structure Jacobi operator is parallel with respect to the
generalized Tanaka-Webster connection when it satisfies

ð‘ðkÞ
X lÞY ¼ 0;

for any X , Y tangent to M. The above relation implies that the structure Jacobi
operator satisfies relation (1.2). Thus M is locally congruent to one of the above
mentioned real hypersurfaces.

Conversely, it will be proved that real hypersurfaces of type (A) and Hopf
hypersurfaces with Ax ¼ 0 in M2ðcÞ has parallel structure Jacobi operator with
respect to the generalized Tanaka-Webster connection, i.e. ð‘ðkÞ

X lÞY ¼ 0, for
any X , Y tangent to M. The latter relation because of (1.1) is written more
analytically as

‘X ðlY Þ þ F
ðkÞ
X ðlY Þ ¼ l‘XY þ lF

ðkÞ
X Y :ð3:4Þ

Let M be a real hypersurface of type (A) in M2ðcÞ, then the shape operator
of M is given by

Ax ¼ ax and AZ ¼ rZ; for any Z A D;

where a and r are constants. Then relation (2.3) for X ¼ x and X ¼ Z, Z A D
due to the above relation of the shape operator implies

lx ¼ 0 and lZ ¼ c

4
þ ar

� �
Z; for any Z A D:

Relation (3.4) for X ¼ Y A TM, for X ¼ x and Y A D, for any X A D and
Y ¼ x and for any X ;Y A D is satisfied. So the structure Jacobi operator of real
hypersurfaces of type (A) is parallel with respect to the generalized Tanaka-
Webster connection.

Let M be a Hopf hypersurface with Ax ¼ 0 in M2ðcÞ, then the shape
operator of M at some point P is given by

Ax ¼ 0; AZ ¼ tZ and AZ1 ¼ t1Z1;

where t, t1 are non-constant functions. Then relation (2.3) for X ¼ x and
Y A fZ;Z1g because of the above relation yields

lx ¼ 0; lZ ¼ c

4
Z and lZ1 ¼

c

4
Z1:
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Then, following the same combinations as in the case of real hypersurfaces of
type (A), it is proved that Hopf hypersurfaces with Ax ¼ 0 have parallel structure
Jacobi operator with respect to the generalized Tanaka-Webster connection.

Corollary. Let M be a real hypersurface in M2ðcÞ with a0 2k whose
structure Jacobi operator is parallel with respect to the generalized Tanaka-Webster
connection and also satisfies (1.3). Then M is locally congruent to

i) a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Ax ¼ 0, which in case of CP2 is a non-

homegeneous real hypersurface considered as a tube of radius r ¼ p

4
over a

holomorphic curve.

3.1. Real hypersurfaces in MnðcÞ, nb 2, whose structure Jacobi operator
satisfies relation (1.2)

3.1.1. Hopf hypersurfaces in non-flat complex space forms
Let M be a Hopf hypersurface in MnðcÞ, nb 2, whose structure Jacobi

operator satisfies relation (1.2) and a0 2k. Relation (3.1) also holds. We
consider two cases

Case I: a2 þ c0 0.
In this case relations of Theorem 2.2 and remark 2.3 hold. Thus, following

similar steps to those as in the proof of three dimensional Hopf hypersurfaces we
obtain

aðl� nÞ ¼ 0:ð3:5Þ

Case II: a2 þ c ¼ 0.
In this case the ambient space is CHn and a0 0. Suppose that l0

a

2
then

AjW ¼ njW and (2.5) results in n ¼ a

2
. The same steps as in the previous case

lead to a ¼ 2k, which is a contradiction.

Therefore, l ¼ a

2
is the only eigenvalue for all vector fields in D and M is

locally congruent to a horosphere. Therefore, due to Theorem 1.1, relation (3.5)
and Theorem 2.1 we obtain

Proposition 3.3. Let M be a Hopf hypersurface in MnðcÞ, nb 2, whose
structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-
Webster connection and a0 2k. Then M is locally congruent

i) to a real hypersurface of type (A)
ii) or to a real hypersurface with Ax ¼ 0.

Due to remark 3.2 we also obtain the following Proposition
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Proposition 3.4. Let M be a Hopf hypersurface in MnðcÞ, nb 2, whose
structure Jacobi operator is parallel with respect to the generalized Tanaka-Webster
connection and a0 2k. Then M is locally congruent

i) to a real hypersurface of type (A)
ii) or to a real hypersurface with Ax ¼ 0.

3.1.2. Ruled hypersurfaces in non-flat complex space forms
A ruled real hypersurface in MnðcÞ, nb 2, is a real hypersurface such that D

is integrable and its integral manifold is Mn�1ðcÞ (see [6] and [7]). Thus, the
shape operator of a ruled real hypersurface satisfies the following relations

Ax ¼ axþ bU ; AU ¼ bx and AZ ¼ 0 for any Z orthogonal to spanfx;Ug;
where b0 0. The inner product of Codazzi equation for X ¼ x and Y A fU ; jUg
with U , jU and Z A DU , for nb 3, which is the orthogonal complement of
spanfU ; jU ; xg yields

b2 ¼ bk1 þ
c

4
; where k1 ¼ gð‘UU ; jUÞ;ð3:6Þ

gð‘UU ;ZÞ ¼ 0; for any Z A DU ;ð3:7Þ
gð‘jUU ; jUÞ ¼ 0;ð3:8Þ
gð‘jUU ;ZÞ ¼ 0; for any Z A DU ;ð3:9Þ

ðjUÞb ¼ b2 þ c

4
:ð3:10Þ

The following relations, taking into account the second of (2.1) and relations
(3.7), (3.8), (3.9), gð‘UU ;UÞ ¼ gð‘UU ; xÞ ¼ 0 and gð‘jUU ;UÞ ¼ gð‘jUU ; xÞ ¼
0, hold

‘UU ¼ k1jU ; ‘UjU ¼ �k1U ; ‘jUU ¼ ‘jUjU ¼ 0:ð3:11Þ

Moreover, the structure Jacobi operator (2.3) becomes

lx ¼ 0; lU ¼ c

4
� b2

� �
U andð3:12Þ

lZ ¼ c

4
Z; for any Z orthogonal to U and x:

Let M be a ruled real hypersurface whose structure Jacobi operator satisfies
relation (1.2). Relation (3.1) also holds. The inner product of relation (3.1) for
X ¼ U and Y ¼ x due to the first of (2.1) and (3.12) with jU and Z A DU

implies respectively

k3 ¼ gð‘xU ; jUÞ ¼ k and gð‘xU ;ZÞ ¼ 0:

So because of the above and the second of (2.1) we have

‘xU ¼ kjU and ‘xjU ¼ �kU � bx:ð3:13Þ
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Moreover, relation (3.1) for X ¼ jU and Y ¼ U yields ðjUÞb ¼ k1b

2
. So

relation (3.10) due to the latter and (3.6) implies b2 ¼ � 3c

4
. Di¤erentiation of

the latter with respect to jU implies ðjUÞb ¼ 0. So relation (3.10) implies

b2 þ c

4
¼ 0. Combination of the latter with b2 ¼ � 3c

4
results in c ¼ 0 which is a

contradiction. So the following Proposition is proved

Proposition 3.5. There are no ruled real hypersurfaces in MnðcÞ, nb 2,
whose structure Jacobi operator satisfies relation (1.2).

4. Proof of Theorem 1.2

Let M be a three-dimensional real hypersurface in M2ðcÞ whose structure
Jacobi operator satisfies relations (1.3) and (1.4). The last one implies

gð‘X lY � ‘lYX � l‘XY þ l‘YX ;ZÞ ¼ 0; X ;Y ;Z A D:ð4:1Þ

We consider the open subset N of M such that

N ¼ fP A M : b0 0 in a neighborhood of Pg:

On N relation (2.8) holds. Moreover, relation (1.3) for X ¼ x implies that
lU ¼ 0.

Relation (4.1) for X ¼ jU and Y ¼ U due to the latter and relations of
Lemma 2.4 implies

k2gðljU ;ZÞ ¼ 0; Z A D:

Suppose that k2 0 0 then ljU ¼ 0 and this results in l ¼ 0, which due to Lemma
9 in [4] is impossible.

So on N k2 ¼ 0 and since lU ¼ 0 the first of (2.9) implies

ad ¼ 0 and
c

4
þ ag ¼ b2:ð4:2Þ

Suppose that a0 0 then d ¼ 0. Relation (4.1) for X ¼ U and Y ¼ jU due to
(4.2), the second of (2.9), relations of Lemma 2.4, k2 ¼ 0 and lU ¼ lx ¼ 0 yields

UðamÞgðjU ;ZÞ � k1
c

4
þ am

� �
gðU ;ZÞ ¼ 0:

For Z ¼ U the above implies that k1
c

4
þ am

� �
¼ 0. If k1 0 0 then

c

4
þ am

� �
¼ 0

and the second of (2.9) results in ljU ¼ 0. The latter implies that l ¼ 0 and due
to Lemma 9 in [4] we have a contradiction.
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So k1 ¼ 0. Di¤erentiation of the second one of (4.2) with respect to jU
taking into account relations (2.14), (2.15) and (2.16) implies

gmþ gk3 ¼ c:ð4:3Þ

Since k2 ¼ 0 relations (2.13) and (2.17) implies

xm ¼ Um ¼ 0:

The Lie bracket ½U ; x�m is given by ½U ; x�m ¼ UðxmÞ � xðUmÞ ¼ 0. On the
other hand, because of Lemma 2.4 we obtain ½U ; x�m ¼ ð‘Ux� ‘xUÞm ¼
ðg� k3ÞðjUÞm. Combination of the above relations results in ðg� k3ÞðjUÞm ¼ 0.

Suppose that ðjUÞm0 0 then g ¼ k3 and relation (2.18) taking into account
(4.3) implies gm ¼ �c. Substitution of the last one in (4.3) implies g2 ¼ 2c.
Moreover, relation (2.11) yields g ¼ 0. So we conclude that c ¼ 0, which is
impossible. Thus, relation ðjUÞm ¼ 0 holds.

Relation (4.1) for X ¼ Y ¼ Z ¼ jU because of the latter implies mðjUÞa ¼
0. Suppose that ðjUÞa0 0 then m ¼ 0 and relation (2.11) results in gk3 ¼ 0. So
(4.3) leads to c ¼ 0, which is a contradiction. Thus ðjUÞa ¼ 0 and because of
(2.14) we obtain k3 ¼ 3m� a. Substitution of the last one in (4.3) implies
ð4m� aÞg ¼ c. Di¤erentiation of the last one with respect to jU because of
ðjUÞm ¼ ðjUÞa ¼ 0 yields ð4m� aÞðjUÞg ¼ 0. If ðjUÞg0 0 then 4m ¼ a and
k3 ¼ �m. On the other hand, relation (2.19) since ðjUÞk3 ¼ 0 implies k3 ¼
m ¼ 0 and relation (4.3) leads to c ¼ 0, which is impossible.

So we have ðjUÞg ¼ 0 and (2.16) implies g ¼ �2m. Relation (2.11) because
of the relations for g and k3 and (4.3) implies mð11m� 3aÞ ¼ 0. If 11m� 3a0 0

then m ¼ 0 and this results in g ¼ 0. So b2 ¼ c

4
and di¤erentiating the latter with

respect to jU taking into account (2.15) we obtain c ¼ 0, which is a contra-
diction.

So a ¼ 11m

3
and k3 ¼ � 2m

3
. So (2.18) implies c ¼ 10m2

3
. Substitution of

the relations for g, k3 and c in (4.3) yields m ¼ 0 and this results in c ¼ 0, which is
a contradiction.

Therefore, on N we have a ¼ 0 and the second of (4.2) implies b2 ¼ c

4
.

Moreover, relation (2.14) implies k3 ¼ 3m. Relation (4.1) for X ¼ U , Y ¼ jU
and Z ¼ U yields k1 ¼ 0. So relations (1.3) and (2.11) taking into account the

previous results yield mð4g� 3mÞ ¼ 0. If m0 0 then g ¼ 3m

4
and relation (2.15)

implies c ¼ 3m2. Thus, relation (2.18) yields m ¼ 0, which is a contradiction.
So m ¼ 0 and this results in k3 ¼ 0. Therefore, relation (2.18) implies c ¼ 0,

which is a contradiction.
Thus, N is empty and the following Proposition is proved

Proposition 4.1. Every real hypersurface in M2ðcÞ whose structure Jacobi
operator satisfies relations (1.3) and (1.4) is Hopf.
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Due to the above Proposition we have that M is a Hopf hypersurface and
relations of Theorem 2.2 and Remark 2.6 hold. Relation (4.1) for X ¼ jW ,
Y ¼ W and Z ¼ jW due to (2.7) implies

aðl� nÞgð‘jWW ; jWÞ ¼ 0:

Suppose that aðl� nÞ0 0 then gð‘jWW ; jWÞ ¼ 0. Moreover, relation (4.1) for
X ¼ W , Y ¼ jW and Z ¼ W implies gð‘WjW ;WÞ ¼ 0. The inner product
of Codazzi equation for X ¼ x and Y ¼ W with jW because of (2.5) implies

gð‘xW ; jWÞ ¼ a

2
. Combination of the Gauss equation with the formula for the

Riemannian curvature for X ¼ W , Y ¼ jW and Z ¼ W taking into account

‘jWW ¼ nx; ‘WjW ¼ �lx; and ‘jWjW ¼ ‘WW ¼ 0;

implies ln ¼ � c

4
and because of (2.5) we have that aðlþ nÞ ¼ �c. Thus l, n

are constant and since l0 n we have that M is locally congruent to a real
hypersurface of type (B).

Let aðl� nÞ ¼ 0. If a ¼ 0 in case of CP2 we have two cases: 1) if l0 n
then M is locally congruent to a non-homegeneous real hypersurface considered

as a tube of radius r ¼ p

4
over a holomorphic curve, 2) if l ¼ n then M is locally

congruent to a geodesic hypersphere of radius r ¼ p

4
. In case of CH 2 M is a

Hopf hypersurface with Ax ¼ 0 (for the construction of such real hypersurfaces
see [5]).

If a0 0 then l ¼ n. The latter implies that

ðAj� jAÞX ¼ 0

for any X tangent to M. So due to Theorem 2.1 M is locally congruent to a
real hypersurface of type (A).

Conversely, it will be proved that real hypersurfaces of type (A), real hyper-
surfaces of type (B) and Hopf hypersurfaces with Ax ¼ 0 in M2ðcÞ satisfy relation
(1.4).

Let M be a real hypersurface of type (A) in M2ðcÞ, then the shape operator
of M is given by

Ax ¼ ax and AZ1 ¼ rZ1; for any Z1 A D;

where a and r are constants. Then relation (2.3) for X ¼ x and X ¼ Z1, Z1 A D
due to the above relation of the shape operator implies

lx ¼ 0 and lZ1 ¼
c

4
þ ar

� �
Z1; for any Z1 A D:

Relation (1.4) yields relation (4.1). The last one taking into account the
above relation for the structure Jacobi operator is satisfied for all the possible
combinations of X , Y and Z A D.
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Let M be a real hypersurface of type (B), then the shape operator of M with
respect to an orthonormal basis fx;Z1;Z2g is given by

Ax ¼ ax; AZ1 ¼ s1Z1 and AZ2 ¼ s2Z2;

where a, s1 and s2 are constants. Relation (2.3) for X ¼ x, X ¼ Z1 and X ¼ Z2

because of the above relation of the shape operator implies

lx ¼ 0; lZ1 ¼
c

4
þ as1

� �
Z1 and lZ2 ¼

c

4
þ as2

� �
Z2:

Relation (4.1) taking into account the above relation for the structure Jacobi
operator is satisfied for all the possible combinations of X , Y and Z A fZ1;Z2g.

Let M be a Hopf hypersurface with Ax ¼ 0 in M2ðcÞ, then the shape
operator of M at some point P is given by

Ax ¼ 0; AZ1 ¼ t1Z1 and AZ2 ¼ t2Z2;

where t1, t2 are non-constant functions. Then relation (2.3) for X ¼ x and X A
fZ1;Z2g because of the above relation yields

lx ¼ 0; lZ1 ¼
c

4
Z1 and lZ2 ¼

c

4
Z2:

Then following the same combinations as in the case of real hypersurfaces of type
(A) it is proved that Hopf hypersurfaces with Ax ¼ 0 satisfy relation (1.4).

4.1. Real hypersurfaces in MnðcÞ, nb 2, whose structure Jacobi operator
sastisfies relation (1.4)

4.1.1. Hopf hypersurfaces in non-flat complex space forms
Let M be a Hopf hypersurface in MnðcÞ, nb 2, whose structure Jacobi

operator satisfies relation (1.4). Relation (4.1) also holds. We consider two
cases.

Case I: a2 þ c0 0.
In this case relations of Theorem 2.2 and remark 2.3 hold. Following

similar steps to those of the case of three dimensional real hypersurfaces we
obtain

gð‘jWW ; jWÞ ¼ k2 ¼ 0 and gð‘WjW ;WÞ ¼ k1 ¼ 0:

The inner product of Codazzi equation for X ¼ x and Y ¼ W with jW due
to (2.5) yields

k3 ¼ gð‘xW ; jWÞ ¼ a

2
:
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The inner product of Codazzi equation for X ¼ W and Y ¼ jW with any
W1 A DW , if nb 3, which is the orthogonal complement of the spanfW ; jW ; xg
yields

ngð‘WjW ;W1Þ � lgð‘jWW ;W1Þ ¼ gðA‘WjW � A‘jWW ;W1Þ:ð4:4Þ

Furthermore, the inner product of (4.1) for X ¼ W , Y ¼ jW and Z ¼ W1

due to relation (4.4) and relation (2.3) for X ¼ ‘WjW and X ¼ ‘jWW , since
l0 n leads to

gð‘jWW ;W1Þ ¼ 0; for any W1 A DW :

Because of the latter and the fact that ‘jWW has no component on W and
jW we conclude that

‘jWW ¼ nx and ‘jWjW ¼ 0:ð4:5Þ

The inner product of (4.1) for X ¼ jW , Y ¼ W and Z ¼ W1 due to relation
(4.4) and relation (2.3) for X ¼ ‘WjW and X ¼ ‘jWW , since l0 n leads to

gð‘WjW ;W1Þ ¼ 0; for any W1 A DW :

Due to the latter and the fact that ‘WjW has no component on W and jW
we conclude that

‘WjW ¼ �lx and ‘WW ¼ 0:ð4:6Þ

The Riemannian curvature tensor is given by the relation

RðX ;YÞZ ¼ ‘X‘YZ � ‘Y‘XZ � ‘½X ;Y �Z:ð4:7Þ

Relation (4.7) for X ¼ W , Y ¼ jW and Z ¼ W because of relations (4.5)
and (4.6) yields

RðW ; jWÞW ¼ ðWnÞxþ nljW þ ðlþ nÞ‘xW :ð4:8Þ

On the other hand from the Gauss equation for X ¼ W , Y ¼ jW and Z ¼ W
we obtain

RðW ; jWÞW ¼ �ðlnþ cÞjW :ð4:9Þ

The combination of the inner product of the above two relations with W1 A DW

implies

ðlþ nÞgð‘xW ;W1Þ ¼ 0:

Suppose that gð‘xW ;W1Þ0 0 then the above relation gives lþ n ¼ 0.
Combining the inner product of (4.8) and (4.9) with jW results in ln ¼

� c

2
. Substituting the previous two relations in (2.4) leads to c ¼ 0, which is a

contradiction. Therefore, on M we have that gð‘xW ;W1Þ ¼ 0, which implies
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that ‘xW has no component on DW . Therefore, since k3 ¼
a

2
the following

relations hold

‘xW ¼ a

2
jW and ‘xjW ¼ � a

2
W :ð4:10Þ

The combination of the inner product of relations (4.8) and (4.9) with jW

because of (4.10) implies 2lnþ a

2
ðlþ nÞ ¼ �c. The last one due to (2.4) results

in ln ¼ � c

4
. Substitution of the previous one in (2.4) implies aðlþ nÞ ¼ �c.

Therefore, the real hypersurface has at least three distinct constant principal

curvatures. Substitution of the principal curvatures in ln ¼ � c

4
implies that only

type (B) satisfies this relation.
If aðm� nÞ ¼ 0 holds, which implies that either M is a Hopf hypersurface

with a ¼ 0 or m ¼ n. The last one results in ðAj� jAÞX ¼ 0, X tangent to M.

Case II: a2 þ c ¼ 0.
In this case the ambient space is CHn and a0 0. Suppose that l0

a

2
then AjW ¼ njW and (2.5) results in n ¼ a

2
. Following similar steps as in the

previous case gives a contradiction.

Therefore, l ¼ a

2
is the only eigenvalue for all vector fields in D and M is

locally congruent to a horosphere. Therefore, due to Theorem 1.2, relation
ðAj� jAÞX ¼ 0 and Theorem 2.1 we obtain

Proposition 4.2. Let M be a Hopf hypersurface in MnðcÞ, nb 2, whose
structure Jacobi operator satisfies relation (1.4). Then, M is locally congruent

i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Ax ¼ 0,
iii) or to a real hypersurface of type (B), i.e. in case of CPn a tube of radius

r A 0;
p

4

� �
around the complex quadric Qn�1 and in case of CHn a tube of some

radius r around the canonically (totally geodesic) embedded n-dimensional real
hyperbolic space.

4.2. Ruled hypersurfaces in non-flat complex space forms
Let M be a ruled real hypersurface whose structure Jacobi operator satisfies

relation (1.4) and also relation (4.1) holds. Furthermore, the relations (3.6)–
(3.12) are satisfied. Relation (4.1) for X ¼ U , Y ¼ jU and Z ¼ U due to (3.11)
and (3.12), results in k1 ¼ 0. Combination of the Gauss equation for X ¼ U ,
Y ¼ jU and Z ¼ U due to k1 ¼ 0 with the definition of the Riemannian
curvature RðX ;YÞZ ¼ ‘X‘YZ � ‘Y‘XZ � ‘‘XY�‘YXZ implies c ¼ 0, which is
impossible. Thus we have proved the following Proposition.
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Proposition 4.3. There are no ruled real hypersurfaces in MnðcÞ, nb 2,
whose structure Jacobi operator satisfies relation (1.4).
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