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RULED REAL HYPERSURFACES HAVING THE SAME

SECTIONAL CURVATURE AS THAT OF AN AMBIENT

NONFLAT COMPLEX SPACE FORM

Sadahiro Maeda, Hiromasa Tanabe and Young Ho Kim

Abstract

Ruled real hypersurfaces in a nonflat complex space form ~MMnðcÞ ðnf 2Þ are

obtained by having a one-codimensional foliation whose leaves are totally geodesic

complex hypersurfaces of the ambient space. Motivated by a fact that the sectional

curvature K of every ruled real hypersurface M in ~MMnðcÞ ðnf 3Þ satisfies jc=4je
jKðX ;YÞje jcj for an arbitrary pair of orthonormal vectors X and Y that are tangent to

the leaf at each point x of M, we study ruled real hypersurfaces having the sectional

curvature K with jc=4je jK je jcj in ~MMnðcÞ.

1. Introduction

We denote by ~MMnðcÞ a complex n-dimensional complete and simply con-
nected Kähler manifold of constant holomorphic sectional curvature cð0 0Þ
endowed with the standard Riemannian metric h ; i and the Kähler structure
J. This so-called an n-dimensional nonflat complex space form of constant
holomorphic sectional curvature c is holomorphically isometric to either an
n-dimensional complex projective space CPnðcÞ or an n-dimensional complex
hyperbolic space CHnðcÞ according as c is positive or negative. We recall the
fact that for nf 2 the sectional curvatures K of CPnðcÞ and CHnðcÞ satisfy
c=4eK e c and ceK e c=4, respectively. Needless to say, the sectional
curvatures K of CP1ðcÞ and CH 1ðcÞ satisfy K ¼ c.

In this paper, among real hypersurfaces isometrically immersed into a nonflat
complex space form ~MMnðcÞ ðnf 2Þ, we shall focus on ruled real hypersurfaces.

119

2010 Mathematics Subject Classification. Primary 53B25, Secondary 53C40.

Key words and phrases. ruled real hypersurfaces, sectional curvatures, nonflat complex space

forms.

The first author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540097),

Japan Society for the Promotion of Sciences.

The third author is partially supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology

(2012R1A1A2042298).

Received February 24, 2015.



In classical di¤erential geometry, it is well-known that every ruled surface in
3-dimensional Euclidean space R3 has nonpositive Gaussian curvature. Hence
we have an interest in the sectional curvature of every ruled real hypersurface
M in a nonflat complex space form ~MMnðcÞ ðnf 2Þ. Since every leaf of a one-
codimensional foliation on M is totally geodesic, in the case of nf 3 we find
easily the fact that the sectional curvature K of every ruled real hypersurface M

in ~MMnðcÞ satisfies jc=4je jKðX ;YÞje jcj for an arbitrary pair of orthonormal
vectors X and Y tangent to the leaf at each point x of M. Motivated by
this fact we study ruled real hypersurfaces M having the sectional curvature K
with jc=4je jKje jcj, that is, the sectional curvature K satisfies either c=4e
KðX ;YÞe c ðc > 0Þ or ceKðX ;YÞe c=4 ðc < 0Þ for an arbitrary pair of
orthonormal vectors X and Y that are not necessarily tangent to the leaf at
each point x of M:

Every ruled real hypersurface in ~MMnðcÞ is constructed by attaching complex
hyperplanes ~MMn�1ðcÞ on a smooth real curve g : I ! ~MMnðcÞ with its arclength
s defined on some open interval IðHRÞ in such a way that the hyperplane
~MMn�1ðcÞ is orthogonal to the real plane spanned by f _ggðsÞ; J _ggðsÞg at each point
gðsÞ. So, it is natural to investigate the relation between the properties of the
curve g which generates a ruled real hypersurface M and the value of the
sectional curvature K of M. In §4 we give our main results by using the notion
of Frenet curves.

2. Preliminaries

Let M 2n�1 be a real hypersurface of an nðf 2Þ-dimensional nonflat complex
space form ~MMnðcÞ of constant holomorphic sectional curvature c and N be a unit

normal local vector field on M in ~MMnðcÞ. Then the formulae of Gauss and
Weingarten are given respectively by

~‘‘XY ¼ ‘XY þ hAX ;YiN; ~‘‘XN ¼ �AXð2:1Þ

for vector fields X and Y tangent to M, where ~‘‘ and ‘ denote the Riemannian
connections of ~MMnðcÞ and M, respectively, h ; i denotes the Riemannian metric on
M induced from the standard metric on ~MMnðcÞ and A is the shape operator of M
in ~MMnðcÞ. The Kähler structure J of ~MMnðcÞ induces an almost contact metric
structure ðf; x; h; h ; iÞ on the real hypersurface M. That is, we define a tensor
field f of type ð1; 1Þ, a vector field x and a 1-form h on M by

x ¼ �JN; hðXÞ ¼ hX ; xi ¼ hJX ;Ni and fX ¼ JX � hðXÞNð2:2Þ

for each tangent vector X A TM: Then the structure satisfies

f2X ¼ �X þ hðX Þx; hfX ; fYi ¼ hX ;Yi� hðXÞhðYÞ;ð2:3Þ
hðxÞ ¼ 1; fx ¼ 0 and hðfX Þ ¼ 0
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for all vectors X ;Y A TM: We call the vector field x the characteristic vector
field on M: It follows from the equalities (2.1) and ~‘‘J ¼ 0 that

ð‘XfÞY ¼ hðYÞAX � hAX ;Yixð2:4Þ
and

‘Xx ¼ fAX :ð2:5Þ

Denoting the curvature tensor of M by R, we have the equation of Gauss given
by

hRðX ;Y ÞZ;Wið2:6Þ
¼ ðc=4ÞfhY ;ZihX ;Wi� hX ;ZihY ;Wi

þ hfY ;ZihfX ;Wi� hfX ;ZihfY ;Wi

� 2hfX ;YihfZ;Wig
þ hAY ;ZihAX ;Wi� hAX ;ZihAY ;Wi

for vector fields X , Y , Z, W on M:
For a real hypersurface M in ~MMnðcÞ ðnf 2Þ; the condition that h ¼ 0

defines a ð2n� 2Þ-dimensional subbundle T 0M of the tangent bundle TM called
the holomorphic distribution: T 0M ¼ 6

x AM T 0
xM, where T 0

xM ¼ fX A TxM j
hðX Þ ¼ hX ; xi ¼ 0g: A real hypersurface M in ~MMnðcÞ is said to be ruled if
the holomorphic distribution T 0M is integrable and each of its leaves (i.e.,
maximal integral manifolds) is a totally geodesic complex hypersurface ~MMn�1ðcÞ
of ~MMnðcÞ: The construction of ruled real hypersurfaces in Introduction means
that in general a ruled real hypersurface has singularities. So we must omit such
points.

We define two functions m; n : M ! R by m ¼ hAx; xi and n ¼ kAx� mxk:
These functions m and n are important quantities which measure how far the
characteristic vector field x is from being a principal curvature vector. A
characterization of ruled real hypersurfaces in terms of the functions m; n and
the shape operator A is given as follows.

Proposition 1 ([8]). Let M be a real hypersurface in a nonflat complex space
form ~MMnðcÞ ðnf 2Þ: Then the following three conditions are mutually equivalent.

(1) M is a ruled real hypersurface.
(2) The shape operator A of M satisfies hAX ;Yi ¼ 0 for any tangent vectors

X ;Y A TxM orthogonal to xx at each point x A M:
(3) The set M1 ¼ fx A M j nðxÞ0 0g is an open dense subset of M and there

exists a unit vector field U on M1 such that it is orthogonal to x and
satisfies that

Ax ¼ mxþ nU ; AU ¼ nx and AX ¼ 0ð2:7Þ

for an arbitrary tangent vector X orthogonal to both x and U :
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In this paper, considering a ruled real hypersurface M, we treat M as a
di¤erentiable manifold such that M ¼ M1 U fx A M j nðxÞ ¼ 0g.

3. Sectional curvatures of ruled real hypersurfaces

Let K be the sectional curvature of a ruled real hypersurface M in a nonflat
complex space form ~MMnðcÞ ðnf 2Þ: That is, K is defined by KðX ;YÞ ¼
hRðX ;YÞY ;Xi for orthonormal tangent vectors X , Y on M with the curvature
tensor R of M:

First of all we give the following inequalities for the sectional curvature K of
a ruled real hypersurface M (cf. [9]).

Lemma 1. Let M be a ruled real hypersurface in ~MMnðcÞ ðnf 2Þ. Then the
sectional curvature K of M satisfies the following:

(1) If c > 0, we have ðc=4Þ � nðxÞ2 eK e c at every point x A M;

(2) If c < 0, we have ðc=4Þ � nðxÞ2 eKe c=4 at the point x A M with
nðxÞ2 f 3jcj=4 and ceKe c=4 at the point x A M with nðxÞ2 < 3jcj=4.

These estimates are sharp in the sense that at each point of M we can take a pair
of orthonormal tangent vectors X and Y satisfying KðX ;YÞ ¼ k for given k with
Kmin e keKmax.

Proof. By the equation of Gauss (2.6), the sectional curvature K is given as

KðX ;Y Þ ¼ ðc=4Þf1þ 3hfX ;Yi2g þ hAX ;XihAY ;Yi� hAX ;Yi2ð3:1Þ

for orthonormal tangent vectors X , Y on M: At a point x of M, we take an
arbitrary 2-dimensional vector subspace P of the tangent space TxM. Then we
can choose an orthonormal pair of vectors X ;Y A T 0

xM and a real number t
such that vectors cos t � xx þ sin t � X and Y form the orthonormal basis of the
subspace P:

First, we examine the case where nðxÞ0 0. By using (2.3) and Proposition
1(2), (3), we find the sectional curvature K of the plane section P can be written
as

Kðcos t � xx þ sin t � X ;YÞð3:2Þ

¼ ðc=4Þf1þ 3 sin2 thfX ;Yi2g � nðxÞ2 cos2 thY ;Uxi
2:

If c > 0, we can see that the expression of (3.2) takes its maximum value c
at t ¼ p=2 and X ¼ fY (that is, for example, in the case that a plane section P
is a f-section spanned by Ux and fUx). Also, it takes the minimum value
ðc=4Þ � nðxÞ2 at t ¼ 0, Y ¼ Ux (that is, in the case that the plane P is spanned by
Ux and xx). If c < 0, it follows from (3.2) that

Kðcos t � xx þ sin t � X ;Y Þf ðc=4Þð1þ 3 sin2 tÞ � nðxÞ2 cos2 t

¼ ðc=4Þ � nðxÞ2 þ ðð3c=4Þ þ nðxÞ2Þ sin2 t:
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Hence, if ð3c=4Þ þ nðxÞ2 f 0, the sectional curvature K takes its minimum value
ðc=4Þ � nðxÞ2 at t ¼ 0, Y ¼ Ux, X ¼ fUx: If ð3c=4Þ þ nðxÞ2 < 0, it takes the
minimum value ðc=4Þ � nðxÞ2 þ fð3c=4Þ þ nðxÞ2g ¼ c at t ¼ p=2, Y ¼ Ux, X ¼
fUx. Obviously, we find that the maximum value of K is c=4 from (3.2).

Next we consider the case where nðxÞ ¼ 0. Since Axx ¼ mðxÞxx by the
definition of n, we see from Proposition 1(2)

Kðcos t � xx þ sin t � X ;YÞ ¼ ðc=4Þf1þ 3 sin2 thfX ;Yi2g:

This implies our inequalities are valid at the point x with nðxÞ ¼ 0. Thus we
have the assertion (2). The last assertion of the lemma is clear from the above
argument. r

4. Ruled real hypersurfaces associated with Frenet curves

Take an arbitrary regular real curve g : I ! ~MMnðcÞ with its arclength s
defined on some open interval IðHRÞ: Then we consider a ruled real hyper-
surface M ¼ 6

s A I
~MM

ðsÞ
n�1ðcÞ associated with the curve g with arclength s, where

~MM
ðsÞ
n�1ðcÞ is a complex hyperplane through the point gðsÞ (for details, see

Introduction). Needless to say that the curve g is an integral curve of the
characteristic vector field x of M:

In [3], Lohnherr-Reckziegel studied ruled real hypersurfaces by parameter-
izing them by maps of the form f : I � ~MMn�1ðcÞ ! ~MMnðcÞ and show properties on
these maps. The following lemma is due to them.

Lemma 2 ([3]). For every s A I the function n satisfies the following:
(1) When c > 0, on each leaf ~MM

ðsÞ
n�1ðcÞ we have 0e n < y;

(2) When c < 0, on each leaf ~MM
ðsÞ
n�1ðcÞ we have either 0e n <

ffiffiffiffiffi
jcj

p
=2,

n1
ffiffiffiffiffi
jcj

p
=2 or

ffiffiffiffiffi
jcj

p
=2 < n < y.

Here we recall the definition of Frenet curves in a Riemannian manifold ~MM.
A smooth curve g ¼ gðsÞ parametrized by its arclength s is called a Frenet curve
of proper order d if there exist a field of orthonormal frames fV1 ¼ _gg;V2; . . . ;Vdg
along g and positive smooth functions k1ðsÞ; . . . ; kd�1ðsÞ satisfying the following
system of ordinary di¤erential equations

~‘‘ _ggVjðsÞ ¼ �kj�1ðsÞVj�1ðsÞ þ kjðsÞVjþ1ðsÞ; j ¼ 1; . . . ; d;ð4:1Þ

where V0 1Vdþ1 1 0 and ~‘‘ _gg denotes the covariant di¤erentiation along g with
respect to the Riemannian connection ~‘‘ of ~MM. The functions kjðsÞ ð j ¼ 1; . . . ;
d � 1Þ and a field of orthonormal frames fV1; . . . ;Vdg are called the curvatures
and the Frenet frame of g, respectively. We call a curve a helix when all of its
curvatures are constant functions. A curve g is called a helix of order d if it is a
helix of proper order rðe dÞ. For a helix of order d, which is of proper order
rðe dÞ, we use the convention in (4.1) that kj ¼ 0 ðre je d � 1Þ and Vj ¼ 0
ðrþ 1e je dÞ. A helix of order 1 is nothing but a geodesic. A helix of order
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2, that is a curve which satisfies ~‘‘ _gg _ggðsÞ ¼ kV2ðsÞ, ~‘‘ _ggV2ðsÞ ¼ �k _ggðsÞ, is called a
circle of curvature kðf 0Þ.

For a Frenet curve g of proper order d in a nonflat complex space form
~MMnðcÞ, we define its complex torsions by tijðsÞ ¼ hViðsÞ; JVjðsÞi ð1e i < je dÞ:
In the study of Frenet curves in ~MMnðcÞ their complex torsions play an important

role (see [6]). A circle of positive curvature in ~MMnðcÞ is said to be totally real if
its complex torsion t12 vanishes. A totally real circle lies on a totally real totally
geodesic surface M 2ðcÞð¼ RP2ðc=4Þ or RH 2ðc=4ÞÞ.

Now, we consider a ruled real hypersurface associated with a Frenet curve g
and investigate the value of the function n along g.

Lemma 3. Let g ¼ gðsÞ be a Frenet curve of proper order d with curvatures
kjðsÞ ð1e je d � 1Þ and complex torsions tijðsÞ ð1e i < je dÞ in a nonflat
complex space form ~MMnðcÞ, nf 2 and M be a ruled real hypersurface associated
with the curve g. Then the functions m ¼ hAx; xi and n ¼ kAx� mxk satisfy the
following.

mðgðsÞÞ ¼ �k1ðsÞt12ðsÞ;ð4:2Þ
nðgðsÞÞ2 ¼ k1ðsÞ2ð1� t12ðsÞ2Þ:ð4:3Þ

Proof. As _ggðsÞ ¼ xgðsÞ, we see from (2.1) and (2.5) that

~‘‘ _gg _ggðsÞ ¼ ‘ _gg _ggðsÞ þ hA _ggðsÞ; _ggðsÞiNgðsÞð4:4Þ

¼ fAxgðsÞ þ mðgðsÞÞNgðsÞ:

We consider firstly the case in which nðgðsÞÞ0 0. By use of (2.3) and (2.7) we
have

~‘‘ _gg _ggðsÞ ¼ ffmðgðsÞÞxgðsÞ þ nðgðsÞÞUgðsÞg þ mðgðsÞÞNgðsÞ

¼ nðgðsÞÞfUgðsÞ þ mðgðsÞÞNgðsÞ;

so that the first curvature k1ðsÞ of g, considered as a curve in ~MMnðcÞ, satisfies

k1ðsÞ2 ¼ nðgðsÞÞ2 þ mðgðsÞÞ2 ð> 0Þð4:5Þ
and

V2ðsÞ ¼ ð1=k1ðsÞÞfnðgðsÞÞfUgðsÞ þ mðgðsÞÞNgðsÞg:
This gives

t12ðsÞ ¼ h _ggðsÞ; JV2ðsÞi
¼ ð1=k1ðsÞÞhxgðsÞ; JfnðgðsÞÞfUgðsÞ þ mðgðsÞÞNgðsÞgi

¼ �ð1=k1ðsÞÞhNgðsÞ; nðgðsÞÞfUgðsÞ þ mðgðsÞÞNgðsÞi

¼ �mðgðsÞÞ=k1ðsÞ:

Thus we obtain (4.2), which, together with (4.5), implies (4.3).
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Next, let us consider the case in which there exists some s0 A I such that
nðgðs0ÞÞ ¼ 0: Then we have Axgðs0Þ ¼ mðgðs0ÞÞxgðs0Þ and hence equation (4.4)
becomes

ð~‘‘ _gg _ggÞðs0Þ ¼ mðgðs0ÞÞNgðs0Þ:ð4:6Þ

If mðgðs0ÞÞ > 0, we find k1ðs0Þ ¼ mðgðs0ÞÞ, V2ðs0Þ ¼ Ngðs0Þ and therefore

t12ðs0Þ ¼ h _ggðs0Þ; JV2ðs0Þi ¼ hxgðs0Þ; JNgðs0Þi ¼ �1:

Relations (4.2) and (4.3) follow from this. If mðgðs0ÞÞ ¼ 0, equation (4.6) shows
k1ðs0Þ ¼ 0, so relations (4.2) and (4.3) hold. If mðgðs0ÞÞ < 0, from (4.6) we have
k1ðs0Þ ¼ �mðgðs0ÞÞ, V2ðs0Þ ¼ �Ngðs0Þ. Then, just as above we get the conclusion.

r

As a direct consequence of Lemmas 1, 2 and 3, we have the following.

Theorem 1. Every ruled real hypersurface M of a complex projective space
CPnðcÞ ðnf 2Þ has the sectional curvature K with �y < K e c, so that there
does not exist a ruled real hypersurface having the sectional curvature K with
c=4eK e c in this ambient space.

Theorem 2. Let g : I ! CHnðcÞ ðnf 2Þ be a Frenet curve of proper order d
defined on an open interval IðHRÞ in a complex hyperbolic space CHnðcÞ and M
be a ruled real hypersurface associated with the curve g in CHnðcÞ. Then M has
the sectional curvature K with ceKe c=4 if and only if the first curvature k1 and
a complex torsion t12 of the Frenet curve g satisfy k1ðsÞ2ð1� t12ðsÞ2Þe jcj=4 for
any s A I .

Remark 1. As a matter of course, the curve g which generates a ruled real
hypersurface M is not unique. At any point p of M there exists the unique
curve gp through p, which generates M. It follows from Lemma 2(2) and (4.3)
that in Theorem 2 the inequality k1ðsÞ2ð1� t12ðsÞ2Þe jcj=4 holds on every g
generating M.

5. Examples

Example 1. In [2], Adachi, Bao and the first author studied congruency of
minimal ruled real hypersurfaces in a nonflat complex space form ~MMnðcÞ, nf 2
with respect to the action of its isometry group Ið ~MMnðcÞÞ. They showed that
those in a complex projective space CPnðcÞ ðnf 2Þ are congruent to each other
and that those in a complex hyperbolic space CHnðcÞ ðnf 2Þ are classified into
three classes.

Here we consider minimal ruled real hypersurface M in a complex hyper-
bolic space. It is known that every minimal ruled real hypersurface M is
associated with a totally real circle g and vice versa ([3, 4]). Moreover, on the
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minimal ruled real hypersurface M the function m vanishes identically, the
function n is constant along each integral curve of its characteristic vector field
x and we have ~‘‘ _gg _ggðsÞ ¼ nðgðsÞÞfUgðsÞ, ~‘‘ _ggðfUÞgðsÞ ¼ �nðgðsÞÞ _ggðsÞ with _ggðsÞ ¼ xgðsÞ.
These equations mean that a totally real circle g generating a minimal ruled real
hypersurface M has just one curvature k ¼ nðgðsÞÞ along the curve g. On the
other hand, totally real circles in CHnðcÞ are classified into three kind of classes
according to their curvatures ([1]). If the curvature k of a totally real circle g
is greater than

ffiffiffiffiffi
jcj

p
=2, g is closed and bounded. If k ¼

ffiffiffiffiffi
jcj

p
=2, it is horocyclic,

so that it is unbounded and has a single limit point at infinity gðyÞ ¼ gð�yÞ
in the ideal boundary of CHnðcÞ. If 0e k <

ffiffiffiffiffi
jcj

p
=2, it is unbounded and has

two distinct limit points at infinity gðyÞ, gð�yÞ in the ideal boundary. Corre-
sponding to this classification of totally real circles, we call ruled real hyper-
surfaces M associated with g of elliptic type, parabolic type and axial type

according as the curvature of g satisfies k >
ffiffiffiffiffi
jcj

p
=2, k ¼

ffiffiffiffiffi
jcj

p
=2 and 0e k <ffiffiffiffiffi

jcj
p

=2 ([2]). Every minimal ruled real hypersurface is locally congruent to one
of minimal ruled real hypersurfaces of axial type, parabolic type and elliptic
type. Minimal ruled real hypersurfaces of parabolic type and axial type are
complete, but minimal ruled real hypersurfaces of elliptic type are not complete.
Furthermore, the minimal ruled real hypersurface of parabolic type is homoge-
neous, i.e. this minimal ruled real hypersurface is an orbit of some subgroup
of the full isometry group of the ambient space CHnðcÞ. Note that the isometry
group of the minimal ruled real hypersurface of parabolic type is the direct
product of IðCHn�1ðcÞÞ and a one-parameter subgroup whose orbit is a horocycle
on a totally geodesic RH 2ðc=4Þ, where IðCHn�1ðcÞÞ is the isometry group of a
totally geodesic CHn�1ðcÞ (for details, see [2, 5]).

Returning to our main topics, since the complex torsion t12 of a totally real
circle g vanishes, by Theorem 2 we can see that minimal ruled real hypersurfaces
of types axial and parabolic in CHnðcÞ have the sectional curvature K with
ceKe c=4. In particular, the minimal ruled real hypersurface associated
with geodesics on a totally geodesic RH 2ðc=4Þ has the sectional curvature K
with ceKe c=4.

Remark 2. For the minimal ruled real hypersurface of elliptic type we have
�y < Ke c=4.

Example 2. Take an arbitrary geodesic g in CHnðcÞ ðnf 2Þ and consider
the ruled real hypersurface M associated with g. Then we find k1 1 0, so that
M has the sectional curvature K with ceKe c=4 by Theorem 2. However this
ruled real hypersurface M can be considered the minimal ruled real hypersurface
of axial type. In fact, since CHnðcÞ is a Riemannian symmetric space of rank
one, our geodesic g is congruent to a geodesic on RH 2ðc=4Þ.

Example 3. Let M be a ruled real hypersurface in CHnðcÞ ðnf 2Þ
associated with a curve g ¼ gðsÞ lying on a totally geodesic complex line
CH 1ðcÞ. Then the curve g satisfies ~‘‘ _gg _ggðsÞ ¼ kðsÞJ _ggðsÞ for each s A I , where
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k ¼ kðsÞðf 0Þ is a smooth function along g. Such a curve is called Kähler
Frenet curve ([7]). Needless to say, every geodesic is a Kähler Frenet curve in a
trivial sense. We can find jt12j ¼ 1 on the curve g and hence by Theorem 2 M
has the sectional curvature K with ceKe c=4. We here remark that the
characteristic vector x is principal along the above curve g. But, in general the
vector x is not principal along other curves generating M, that is, t12 0G1 on
these curves. (In fact, if t12 ¼G1 on every curve generating M, then we see
easily our ruled real hypersurface M is a Hopf hypersurface, that is, the
characteristic vector x on M is principal at its each point. This is a contra-
diction.) However the inequality in Theorem 2 must hold on every curve
generating M.
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