
D. T. HIEP
KODAI MATH. J.
39 (2016), 110–118

ON THE DEGREE OF FANO SCHEMES OF

LINEAR SUBSPACES ON HYPERSURFACES

Dang Tuan Hiep

Abstract

In this paper we propose and prove an explicit formula for computing the degree of

Fano schemes of linear subspaces on general hypersurfaces. The method used here is

based on the localization theorem and Bott’s residue formula in equivariant intersection

theory.

1. Introduction

Let X HPn
C be a general hypersurface of degree d. The Fano scheme

FkðXÞ is defined to be the set of k-dimensional linear subspaces of Pn
C which

are contained in X . This is a subscheme of the Grassmannian Gðk; nÞ of
k-dimensional linear subspaces in Pn

C. For convenience, we set

d ¼ ðk þ 1Þðn� kÞ � d þ k

d

� �
:

Suppose that d0 2 (or nb 2k þ 1) and db 0. Langer [10] showed that FkðX Þ is
smooth of expected dimension d. In this case, the degree of FkðX Þ is given by
the following formula

degðFkðXÞÞ ¼
ð
Gðk;nÞ

c dþk
dð ÞðSym

d S4Þ � c1ðQÞd;ð1Þ

where S and Q are respectively the tautological sub-bundle and quotient bundle
on Gðk; nÞ, Symd S4 is the d-th symmetric power of the dual of S, and ciðEÞ
is the i-th Chern class of the vector bundle E. Note that

Ð
Y
a denotes the degree

of the cycle class a on Y defined in [8, Definition 1.4]. Formula (1) can be
found, for example, in [8, Example 14.7.13] or [11, Section 3.5]. Using Schubert
calculus, Debarre and Manivel [5, Theorem 4.3] showed that the degree of FkðX Þ
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is equal to a certain coe‰cient of an explicit polynomial, given as the product
of linear forms. In this paper we propose and prove an explicit formula for
computing the degree of FkðXÞ via equivariant intersection theory.

We denote by I the set of ðk þ 1Þ-subsets of f1; . . . ; nþ 1g, where a ðk þ 1Þ-
subset of f1; . . . ; nþ 1g is a subset consisting of k þ 1 elements of f1; . . . ; nþ 1g.
Consider the polynomial ring C½h1; . . . ; hnþ1� in nþ 1 variables h1; . . . ; hnþ1. For
each I A I, we set

SI ¼
Y

vi AN;T
i A I vi¼d

X
i A I

vihi

 !
; QI ¼

X
j B I

hj;

and

TI ¼
Y
i A I

Y
j B I

ðhi � hjÞ:

Then SI , QI , and TI are elements in C½h1; . . . ; hnþ1�.
Here is the main result of this paper:

Theorem 1.1. Let k; d; n A N satisfy d0 2 (or nb 2k þ 1) and db 0, and
let X HPn

C be a general hypersurface of degree d. Then the degree of the Fano
scheme FkðX Þ of k-dimensional linear subspaces on X is given by the following
formula:

degðFkðXÞÞ ¼ ð�1Þd
X
I AI

SIQ
d
I

TI

:

The right-hand-side of the formula in Theorem 1.1 is a rational polynomial
function, and the above theorem claims in other words that it is in fact a constant
function, moreover it is an integer. Namely, for any numbers hi such that
hi 0 hj for i0 j, the right-hand-side of the formula becomes the same integer.
Indeed, for concrete numbers ðk; d; nÞ such that the above conditions are satisfied,
it can be checked by computer algebra systems. See [3, Chapter 5] for the
computation in Sage [12] and Singular [4].

If k; d; n A N satisfy d0 2 (or nb 2k þ 1) and d ¼ 0, then the Fano scheme
FkðXÞ is zero-dimensional. In this case, the degree of FkðX Þ is equal to the
number of k-dimensional linear subspaces on X .

In particular, if k ¼ 1 and d ¼ 0, then d ¼ 2n� 3. In this case, we
have

I ¼ ffi; jg j 1a i < ja nþ 1g:

For each I ¼ fi; jg A I, we have

SI ¼
Y2n�3

a¼0

ðahi þ ð2n� 3� aÞhjÞ
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and

TI ¼
Y
k0i; j

ðhi � hkÞðhj � hkÞ:

Thus we have the following corollary.

Corollary 1.2. Let k; d; n A N satisfy d0 2 (or nb 2k þ 1) and d ¼ 0,
and let X HPn

C be a general hypersurface of degree d. Then the number of
k-dimensional linear subspaces on X is equal to

X
I AI

SI

TI

:

In particular, the number of lines on a general hypersurface of degree 2n� 3 in Pn
C

is equal to

X
1ai< janþ1

Q2n�3

a¼0

ðahi þ ð2n� 3� aÞhjÞQ
k0i; j

ðhi � hkÞðhj � hkÞ
:

Debarre and Manivel [5] showed that the degree of FkðXÞ is equal to the
coe‰cient of the monomial xn

0x
n�1
1 � � � xn�k

k in the product of the polynomial

Y
vi AN;T

k

i¼0 vi¼d

Xk
i¼0

vixi

 !
ðx0 þ � � � þ xkÞd

by the Vandermonde determinant

Y
0ai< jak

ðxi � xjÞ:

See [11, Theorem 3.5.18] for the special case of this formula for computing the
number of linear subspaces on hypersurfaces.

In [1], Altman and Kleiman gave a formula for computing the degree of
F1ðX Þ. Harris [9] gave a formula for computing the number of lines on a
general hypersurface of degree 2n� 3 in Pn. In [13], van der Waerden showed
that the number of lines on a general hypersurface of degree d ¼ 2n� 3 in
Pn
C could also be computed as the coe‰cient of the monomial xnyn�1 in the

polynomial

ðx� yÞ
Yd
i¼0

ððd � iÞxþ iyÞ:
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These results were obtained via Schubert calculus. However, in this paper, our
approach is completely di¤erent. We use the localization theorem and Bott’s
residue formula in equivariant intersection theory.

The rest of the paper is organized as follows: Section 2 presents a quick
review of equivariant intersection theory. Section 3 presents the proof of the
main theorem.

2. Equivariant intersection theory

Edidin and Graham [6, 7] gave an algebraic construction to equivariant
intersection theory. In this section, we review the basic notions and results of
this theory. Let G be a linear algebraic group and let X be a scheme of finite
type over C endowed with a G-action. For any non-negative integer i, we can
find a representation V of G together with a dense open subset U HV on which
G acts freely and whose complement has codimension larger than dim X � i such
that the principal bundle quotient U ! U=G exists in the category of schemes
(see [6, Lemma 9]). The diagonal action on X �U is then also free, which
implies that under mild assumption, a principal bundle quotient X �U !
ðX �UÞ=G exists in the category of schemes (see [6, Proposition 23]). In
what follows, we will tacitly assume that the scheme ðX �UÞ=G exists and
denote it by XG.

2.1. Equivariant Chow groups. We define the i-th G-equivariant Chow
group of X to be

AG
i ðX Þ :¼ AiþdimU�dimGðXGÞ;

where A� stands for the ordinary Chow group defined in [8]. By [6, Prop-
osition 1], this is well-defined. The G-equivariant Chow group of X is defined
to be

AG
� ðXÞ ¼ 0

i

AG
i ðXÞ:

If XG is smooth, then AG
� ðXÞ inherits an intersection product from the ordinary

Chow groups. This endows AG
� ðX Þ with the structure of a graded ring, called

the G-equivariant Chow ring of X . For example, if G ¼ T ¼ ðC�Þn is a split
torus of dimension n, then the T-equivariant Chow ring of a point is isomorphic
to a polynomial ring in n variables (see [6, Section 3.2]). Throughout this paper,
we denote this ring by RT .

2.2. Equivariant vector bundles and Chern classes. A G-equivariant vector
bundle is a vector bundle E on X such that the action of G on X lifts to an
action of G on E which is linear on fibers. By [6, Lemma 1], EG is a vector
bundle over XG. The G-equivariant Chern classes cGi ðEÞ are defined to be the
Chern classes ciðEGÞ. If E has rank r, then the top Chern class cGr ðEÞ is called
the G-equivariant Euler class of E and denoted eGðEÞ.
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Note that a G-equivariant vector bundle over a point is a representation of G
(see also [6, Section 3.2]). Our primary interest is when G ¼ T ¼ ðC�Þn is a split
torus of dimension n and X ¼ pt is a point. In this case, let MðTÞ be the
character group of the torus T . Suppose that RT ¼ C½h1; . . . ; hn�. There is
a group homomorphism c : MðTÞ ! RT given by ri 7! hi, where ri is the
character of T defined by riðt1; . . . ; tnÞ ¼ ti. This induces a ring isomorphism
SymðMðTÞÞFRT . We call cðrÞ the weight of r. In particular, hi is the weight
of ri.

Example 2.1 [2, Example 9.1.1.1]. The diagonal action of G ¼ T ¼ ðC�Þn
on Cn gives a T-equivariant vector bundle E over a point. The corresponding
representation of T has characters ri for i ¼ 1; . . . ; n, and their weights are hi.
In this case, we have ET GOðh1Þl � � �lOðhnÞ: This implies that cTi ðEÞ ¼
ciðET Þ ¼ siðh1; . . . ; hnÞ A RT , where si is the i-th elementary symmetric function.
In particular, the T-equivariant Euler class of E is eT ðEÞ ¼ h1 � � � hn A RT :

Example 2.2. Consider the diagonal action of T ¼ ðC�Þ4 on C4 given in
coordinates by

ðt1; t2; t3; t4Þ � ðx1; x2; x3; x4Þ ¼ ðt1x1; t2x2; t3x3; t4x4Þ:
This induces an action of T on the Grassmannian Gð2; 4Þ with the isolated fixed
points LI corresponding to coordinate 2-planes in C4. Each LI is indexed by
the 2-subset I of the set f1; 2; 3; 4g so that LI is defined by the equations xj ¼ 0
for j B I . Let S be the tautological sub-bundle on Gð2; 4Þ. At each LI , the
restriction of the action of T on the fiber SjLI

gives a representation of T with
characters ri for i A I . This representation gives a T-equivariant vector bundle
of rank 2 over a point. We also denote it by SjLI

. If I ¼ fi1; i2g, then we have

cT1 ðSjLI
Þ ¼ hi1 þ hi2 and cT2 ðSjLI

Þ ¼ hi1 � hi2 , where hi1 and hi2 are the weights of ri1
and ri2 respectively.

2.3. Localization and Bott’s residue formula. Let X be a scheme endowed
with an action of T ¼ ðC�Þn. We denote the fixed point locus by X T . The
localization theorem states that up to RT -torsion, the T-equivariant Chow group
of the fixed points locus X T is isomorphic to that of X . Moreover, the
localization isomorphism is given by the equivariant push-forward induced by
the inclusion of X T to X (see [7, Theorem 1]). For smooth varieties, the inverse
to the equivariant push-forward can be written explicitly (see [7, Theorem 2]).
Using these results, Edidin and Graham gave an algebraic proof of Bott’s residue
formula for Chern numbers of vector bundles on smooth complete varieties (see
[7, Theorem 3]). Bott’s residue formula shows that we can compute the degree
of a zero-dimensional cycle class on a smooth complete variety X in terms of
local contributions supported on the components of the fixed point locus of a
torus action on X .

Let us describe Bott’s residue formula in case where the fixed point locus
X T is finite. Let E be a T-equivariant vector bundle on X . For each point
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Zj A X T , assume that the action of T on EjZj
has characters w1j ; . . . ; w

s
j , where

each w i
j is a linear combination of the basic characters r1; . . . ; rn defined above.

Write w i
j ¼ ai

j ðr1; . . . ; rnÞ for this linear combination. Since ri has weight hi,

the weight of w i
j is ai

j ðhÞ, where ai
j ðhÞ A RT denotes the linear combination of

h1; . . . ; hn obtained by replacing hi by ri in ai
j ðr1; . . . ; rnÞ. Thus the T-action on

EjZj
has weights ai

j ðhÞ. This implies that

cTk ðEjZj
Þ ¼ skða1j ðhÞ; . . . ; as

j ðhÞÞ A RT ;

where sk is the k-th elementary symmetric function. In addition, since Zj is just
a point, the normal bundle Nj of Zj in X is the tangent space to X at Zj. If
the action of T on the tangent space to X at Zj has weights b1j ðhÞ; . . . ; bm

j ðhÞ,
where m ¼ dim X , then

eTðNjÞ ¼
Ym
i¼1

bi
j ðhÞ A RT :

We arrive at the following formula

ð
X

PðckðEÞÞ ¼
X
j

Pðskða1j ðhÞ; . . . ; as
j ðhÞÞÞQm

i¼1

bi
j ðhÞ

;ð2Þ

where PðckðEÞÞ is a polynomial in the Chern classes of E.
Let us look closer at a simple example based on Bott’s residue formula for

the projective space P2
C.

Example 2.3. Consider the natural action of T ¼ ðC�Þ3 on P2
C given in

coordinates by

ðt1; t2; t3Þ � ðx1 : x2 : x3Þ ¼ ðt1x1 : t2x2 : t3x3Þ:

The fixed point locus is finite and consists of coordinate lines, say p1, p2, and p3.
Let c be the first Chern class of E ¼ OP2

C
ð1Þ, that is the class of a hyperplane.

It is well-known that ð
P2
C

c2 ¼ 1:

Applying Bott’s residue formula (2) we get the identity

h21
ðh3 � h1Þðh2 � h1Þ

þ h22
ðh3 � h2Þðh1 � h2Þ

þ h23
ðh1 � h3Þðh2 � h3Þ

¼ 1;

which can be checked by hand.
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3. The proof of Theorem 1.1

Consider the diagonal action of T ¼ ðC�Þnþ1 on Pn
C given in coordinates by

ðt1; . . . ; tnþ1Þ � ðx1 : � � � : xnþ1Þ ¼ ðt1x1 : � � � : tnþ1xnþ1Þ:
This induces an action of T on the Grassmannian Gðk; nÞ with

nþ 1

k þ 1

� �
isolated

fixed points LI corresponding to
nþ 1

k þ 1

� �
coordinate k-planes in Pn

C. Each fixed

point LI is indexed by a ðk þ 1Þ-subset I of the set f1; . . . ; nþ 1g. Let S and Q
be the tautological sub-bundle and quotient bundle on Gðk; nÞ respectively. The
key idea is that, at each LI , the torus action on the fibers SjLI

and QjLI
have

characters ri for i A I and rj for j B I respectively. Since the tangent bundle on
the Grassmannian is isomorphic to S4nQ, the characters of the torus action on
the tangent space at LI are

frj � ri j i A I ; j B Ig:

The normal bundle NLI
of LI in Gðk; nÞ is just the tangent space of Gðk; nÞ at

LI . Hence

eTðNLI
Þ ¼

Y
i A I

Y
j B I

ðhj � hiÞ

¼ ð�1Þðkþ1Þðn�kÞY
i A I

Y
j B I

ðhi � hjÞ;

where hi is the weight of ri defined above, and RT ¼ C½h1; . . . ; hnþ1� is the
T-equivariant Chow ring of a point.

At each LI , we also need to compute eTðSymd S4jLI
Þ and cT1 ðQjLI

Þ. Since
the characters of the torus action on S4jLI

are �ri for i A I , the torus action on
Symd S4jLI

has characters

X
i A I

við�riÞ j vi A N;
X
i A I

vi ¼ d

( )
:

Hence

eTðSymd S4jLI
Þ ¼

Y
vi AN;Ti A I vi¼d

X
i A I

við�hiÞ
 !

¼ ð�1Þ
dþk
dð Þ Y

vi AN;T
i A I vi¼d

X
i A I

vihi

 !
:

Since the characters of the torus action on QjLI
are rj for j B I , we have

cT1 ðQjLI
Þ ¼

X
j B I

hj:
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By (1) and (2), we obtain

degðFkðX ÞÞ ¼
X
I AI

eT ðSymd S4jLI
ÞðcT1 ðQjLI

ÞÞd

eT ðNLI
Þ

¼ ð�1Þd
X
I AI

Q
vi AN;T

i A I vi¼d

P
i A I

vihi

� � ! P
j B I

hj

 !d
Q
i A I

Q
j B I

ðhi � hjÞ
:

We get the desired formula.
Another proof of Theorem 1.1 is as follows. Consider the action of T ¼ C�

on Pn
C given in coordinates by

t � ðx1 : � � � : xnþ1Þ ¼ ðth1x1 : � � � : thnþ1xnþ1Þ:

The induced action of T on Gðk; nÞ also has
nþ 1

k þ 1

� �
isolated fixed points LI as

above. At each LI , the torus action on the fibers SjLI
and QjLI

have char-
acters hir for i A I and hjr for j B I respectively, where r is the character of
T defined by rðtÞ ¼ t for all t A T . We denote the weight of r by h. In this
case, the T-equivariant Chow ring of a point is RT ¼ C½h�. With this set-up,
we have

eTðNLI
Þ ¼

Y
i A I

Y
j B I

ðhj � hiÞhðkþ1Þðn�kÞ

¼ ð�1Þðkþ1Þðn�kÞ
TIh

ðkþ1Þðn�kÞ:

Similarly, we also have

eTðSymd S4jLI
Þ ¼

Y
vi AN;T

i A I vi¼d

X
i A I

við�hihÞ
 !

¼ ð�1Þ
dþk
dð ÞSIh

dþk
dð Þ;

and

cT1 ðQjLI
Þ ¼

X
j B I

hjh ¼ QIh:

By (1) and (2), we obtain

degðFkðXÞÞ ¼ ð�1Þd
X
I AI

SIQ
d
I h

ðkþ1Þðn�kÞ

TIhðkþ1Þðn�kÞ :

Cancelling hðkþ1Þðn�kÞ, we get the desired formula.

117on the degree of fano schemes of linear subspaces on hypersurfaces



Acknowledgements. This work is a part of my Ph.D. thesis at the University
of Kaiserslautern. I would like to take this opportunity to express my profound
gratitude to my advisor Professor Wolfram Decker. I would also like to thank
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