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Abstract

We consider the initial value problem to a model system for water waves. The

model system is the Euler–Lagrange equations for an approximate Lagrangian which is

derived from Luke’s Lagrangian for water waves by approximating the velocity potential

in the Lagrangian. The model are nonlinear dispersive equations and the hypersurface

t ¼ 0 is characteristic for the model equations. Therefore, the initial data have to be

restricted in an infinite dimensional manifold in order to the existence of the solution.

Under this necessary condition and a sign condition, which corresponds to a generalized

Rayleigh–Taylor sign condition for water waves, on the initial data, we show that the

initial value problem is solvable locally in time in Sobolev spaces.

1. Introduction

In this paper we consider the initial value problem to a model system for
water waves. The water wave problem is mathematically formulated as a free
boundary problem for an irrotational flow of an inviscid and incompressible fluid
under the gravitational field. The basic equations for water waves are compli-
cated due to the nonlinearity of the equations together with the presence of an
unknown free surface. Therefore, until now many approximate equations have
been proposed and analyzed to understand natural phenomena for water waves.
Famous examples of such approximate equations are the shallow water equations
[1, 8], the Green–Naghdi equations [10, 11], Boussinesq type equations [5], the
Korteweg–de Vries equation [18], the Kadomtsev–Petviashvili equation [14], the
Benjamin–Bona–Mahony equation [22, 4], the Camassa–Holm equation [9, 6],
the Benjamin–Ono equation [3, 21], and so on. All of them are derived from the
water wave problem under a shallowness assumption of the water waves, which
means that the mean depth of the water is su‰ciently small compared to the
typical wavelength of the water surface.
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On the other hand, in coastal engineering some model equations were
derived without using any shallowness assumption of the water waves. It is well-
known that the water wave problem has a variational structure. In fact, J. C.
Luke [20] gave a Lagrangian in terms of the velocity potential and the surface
variation, and showed that the corresponding Euler–Lagrange equations are
the basic equations for water waves. M. Isobe [12] derived model equations for
water waves without any shallowness assumption, and then T. Kakinuma [15]
extended the model equations for a multi-phase problem for water waves. See
also M. Isobe [13] and T. Kakinuma [16, 17]. The model equations are the
Euler–Lagrange equations to an approximate Lagrangian, which is obtained by
approximating the velocity potential in Luke’s Lagrangian. One of the models
has the form

ht þ ‘ � H‘f0 þ 1

3
H 3‘f1 �H 2f1‘b

� �
¼ 0;

H 2ht þ ‘ � 1

3
H 3‘f0 þ 1

5
H 5‘f1 � 1

2
H 4f1‘b

� �
þH 2‘b � ‘f0 þ 1

2
H 4‘b � ‘f1 � 4

3
H 3ð1þ j‘bj2Þf1 ¼ 0;

f0
t þH 2f1

t þ ghþ 1

2
j‘f0j2 þ 1

2
H 4j‘f1j2

þH 2‘f0 � ‘f1 � 2Hf1‘b � ‘f0 � 2H 3f1‘b � ‘f1

þ 2H 2ð1þ j‘bj2Þðf1Þ2 ¼ 0;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð1:1Þ

where h ¼ hðx; tÞ is the surface elevation, b ¼ bðxÞ represents the bottom
topography, f0 ¼ f0ðx; tÞ and f1 ¼ f1ðx; tÞ are related to the velocity potential
F ¼ Fðx; z; tÞ of the water by the approximate formula

Fðx; z; tÞ ¼ f0ðx; tÞ þ ðz� bðxÞÞ2f1ðx; tÞð1:2Þ

and H ¼ Hðx; tÞ is the depth of water and is given by

Hðx; tÞ ¼ hþ hðx; tÞ � bðxÞ:

Here, g is the gravitational constant and h is the mean depth of the water.
Both of them are assumed to be given positive constants. t is the time, x ¼
ðx1; x2; . . . ; xnÞ A Rn is the horizontal spatial coordinates, and z is the vertical
spatial coordinate. In this paper we will show a unique solvability of the initial
value problem for the model system (1.1) under the initial conditions

ðh; f0; f1Þ ¼ ðh0; f0
0 ; f

1
0Þ at t ¼ 0:ð1:3Þ

We will explain fundamental properties of the model system (1.1).
First, ðh; f0; f1Þ ¼ 0 is the solution of (1.1), which corresponds to the still water
with flat water surface. In the case of the flat bottom bðxÞ1 0, the lin-
earized equations of the model system (1.1) around this trivial solution have
the form
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ht þ hDf0 þ h3

3
Df1 ¼ 0;

ht þ
h

3
Df0 þ h3

5
Df1 � 4

3
hf1 ¼ 0;

f0
t þ h2f1

t þ gh ¼ 0:

8>>>><>>>>:ð1:4Þ

This system has a non-trivial solution of the form hðx; tÞ ¼ h0e
iðx�x�otÞ if and

only if the wave vector x A Rn and the angular frequency o A C satisfy the
relation

ð6h2jxj2 þ 15Þo2 � ghjxj2ðh2jxj2 þ 15Þ ¼ 0;ð1:5Þ

which is the linear dispersion relation of the model system (1.1). The phase
speed of the wave is given by

o

jxj ¼G
ffiffiffiffiffi
gh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2jxj2 þ 15

6h2jxj2 þ 15

s
:

Therefore, the model system (1.1) is classified into the dispersive equations. In
Section 2 we will compare this dispersion relation to those of well-known model
equations. Then, the model system (1.1) turns out to be precise approximate
equations for water waves in the shallow water regime, at least, in the linear level.

Secondly, the model system (1.1) is written in the matrix form as

1 0 0

H 2 0 0

0 1 H 2

0B@
1CA q

qt

h

f0

f1

0@ 1Aþ fspatial derivativesg ¼ 0:

Since the coe‰cient matrix always has the zero eigenvalue, the hypersurface
t ¼ 0 in the space-time Rn � R is characteristic for the model system (1.1), so that
the initial value problem (1.1) and (1.3) is not solvable in general. In fact, if
the problem has a solution ðh; f0; f1Þ, then by eliminating the time derivative ht
from the first two equations in (1.1) we see that the solution has to satisfy the
relation

H 2‘ � H‘f0 þ 1

3
H 3‘f1 �H 2f1‘b

� �
ð1:6Þ

¼ ‘ � 1

3
H 3‘f0 þ 1

5
H 5‘f1 � 1

2
H 4f1‘b

� �
þH 2‘b � ‘f0 þ 1

2
H 4‘b � ‘f1 � 4

3
H 3ð1þ j‘bj2Þf1:

Therefore, as a necessary condition the initial date ðh0; f0
0 ; f

1
0Þ and the bottom

topography b have to satisfy the relation (1.6) for the existence of the solution.
Thirdly, the corresponding total energy of the motion for the model system

(1.1) is given by
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EðtÞ :¼ 1

2

ð
Rn

(ð hþhðx;tÞ

bðxÞ
j‘X ðf0ðx; tÞ þ ðz� bðxÞÞ2f1ðx; tÞÞj2 dzð1:7Þ

þ gðhðx; tÞÞ2
)

dx;

where ‘X ¼ ð‘; qzÞ. In fact, we can see that the energy function EðtÞ is
a conserved quantity in time for any smooth solution ðh; f0; f1Þ of the model
system (1.1) (see Lemma 5.1). Under a physically reasonable condition on the
water surface h and the bottom b we have an equivalence

EðtÞF
ð
R n

fj‘f0ðx; tÞj2 þ j‘f1ðx; tÞj2 þ ðf1ðx; tÞÞ2 þ ðhðx; tÞÞ2g dx:

Therefore, it is natural to work in the class h, ‘f0 A Cð½0;T �;HmÞ and
f1 A Cð½0;T �;Hmþ1Þ, where Hm ¼ Wm;2ðRnÞ is the standard L2 Sobolev space
of order m on Rn. We note that the water wave problem has a conserved
energy

EWW ðtÞ :¼ r

2

ð
Rn

ð hþhðx;tÞ

bðxÞ
j‘XFðx; z; tÞj2 dzþ gðhðx; tÞÞ2

( )
dx;

where r is the constant density of the water. This is a sum of the kinetic and the
potential energies. The energy function (1.7) is obtained by this energy function
EWW with the velocity potential F replaced by the approximate one (1.2).

Finally, it is well known that the well-posedness of the initial value problem
for the full water wave problem may be broken unless a generalized Rayleigh–

Taylor sign condition � qp

qN
b c0 > 0 on the water surface is satisfied, where p

is the pressure and N is the unit outward normal on the water surface (see, for
example, [2]). S. Wu [23, 24] showed that this condition always holds for any
smooth non-self-intersecting surface in the case of infinite depth. In the case
with variable bottom, D. Lannes [19] gave a relation between this condition and
the bottom topography. However, as far as the authors know, no example of
the bottom topography is given for which the sign condition does not hold. We
note that the sign condition is equivalent to �qz pb c0 > 0 because the pressure p
is constant on the water surface. By using Bernoulli’s law

Ft þ
1

2
j‘XFj2 þ 1

r
ðp� p0Þ þ gðz� hÞ1 0ð1:8Þ

and the approximate formula (1.2), the sign condition can be written in term of
our unknowns ðh; f0; f1Þ and b as aðx; tÞb c0 > 0, where

a :¼ gþ 2Hf1
t þ 2H 3j‘f1j2 þ 2H‘f0 � ‘f1 � 2f1‘b � ‘f0ð1:9Þ

� 6H 2f1‘b � ‘f1 þ 4Hð1þ j‘bj2Þðf1Þ2:
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In fact, we have � 1

r
qz p ¼ gþ qzFt þ ‘XqzF � ‘XF ¼ a on z ¼ hþ hðx; tÞ. In

this paper, we assume that this sign condition is satisfied at the initial time
t ¼ 0.

Now, we are ready to give our main result in this paper.

Theorem 1.1. Let g, h, c0, M0 be positive constants and m an integer such

that m >
n

2
þ 1. There exists a time T > 0 such that if the initial data ðh0; f0

0 ; f
1
0Þ

and b satisfy the relation (1.6) and

kh0km þ k‘f0
0km þ kf1

0kmþ1 þ kbkW mþ2;y aM0;

hþ h0ðxÞ � bðxÞb c0; aðx; 0Þb c0 for x A Rn;

�
ð1:10Þ

then the initial value problem (1.1) and (1.3) has a unique solution ðh; f0; f1Þ
satisfying

h;‘f0 A Cð½0;T �;HmÞ; f1 A Cð½0;T �;Hmþ1Þ:

Remark 1.1. (1) If we impose an additional condition f0
0 A Hmþ1, then the

solution satisfies an additional regularity f0 A Cð½0;T �;Hmþ1Þ.
(2) In the sign condition aðx; 0Þb c0 > 0 we have the quantity f1

t ðx; 0Þ which
should be written in terms of the initial data. Although the hypersurface t ¼ 0
is characteristic for the system (1.1), we can express f1

t ðx; 0Þ in terms of the initial
data and b. For details, we refer to Remark 3.1 in Section 3.

The contents of this paper are as follows. In Section 2 we sketch the
derivation of the model system (1.1) and discuss an accuracy of the approxi-
mation. In Section 3 we transform the model system (1.1) to a system of
equations for which the hypersurface t ¼ 0 is noncharacteristic by using the
necessary condition (1.6). In Section 4 we construct the solution of the initial
value problem to the transformed equations by using a standard parabolic
regularization. In Section 5 we show that the solution constructed in Section
4 is the solution of the model system (1.1) if the initial data satisfy the necessary
condition (1.6).

Notation. We denote by Wm;pðRnÞ the Lp Sobolev space of order m
on Rn. The norms of the Lebesgue space LpðRnÞ and the Sobolev space
Hm ¼ Wm;2ðRnÞ are denoted by j � jp and k � km, respectively. The L2 norm

and inner product are simply denoted by k � k and ð� ; �Þ, respectively. PðX ;Y Þ
is the set of all polynomials in X ¼ ðX1; . . . ;Xl1Þ and Y ¼ ðY1; . . . ;Yl2Þ which

are homogeneous of degree 2 in Y . Dmu ¼ q

qx

� �a
u j jaj ¼ m

� �
is the set of

all partial derivatives of u of order m in x. ½P;Q� ¼ PQ�QP denotes the
commutator.
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2. The model system

Here, we will sketch the derivation of the model system (1.1) for water
waves. As mentioned in the introduction L. C. Luke [20] showed that the water
wave problem has a variational structure by giving a Lagrangian in terms of F
and h. His Lagrangian has the form

LðF; hÞ ¼
ð hþhðx; tÞ

bðxÞ
Ftðx; z; tÞ þ

1

2
j‘XFðx; z; tÞj2 þ gðz� hÞ

� �
dz

and the action function is

JðF; hÞ ¼
ð t1

t0

ð
W

LðF; hÞ dxdt;

where W is an appropriate region in Rn. In view of Bernoulli’s law (1.8) this
Lagrangian is essentially the integral of the pressure p in the vertical direction
of the water region. L. C. Luke showed that the corresponding Euler–Lagrange
equation is exactly the basic equations for water waves. M. Isobe [12] and
T. Kakinuma [15] approximated the velocity potential in Luke’s Lagrangian
as

Fðx; z; tÞF
XK
k¼0

Ckðz; bÞfkðx; tÞ;

where fCkg is an appropriate function system, and derived an approximate
Lagrangian for ðh; f0; f1; . . . ; fKÞ. Their model equations are the correspond-
ing Euler–Lagrange equations. If we approximate F by f0 a function indepen-
dent of the vertical spatial variable z, then Luke’s Lagrangian is approximate
by

L0ðf0; hÞ ¼ f0
t þ

1

2
j‘f0j2

� �
ðhþ h� bÞ þ 1

2
gðh2 � ðb� hÞ2Þ:

The corresponding Euler–Lagrange equations are the shallow water equations

ht þ ‘ � ððhþ h� bÞ‘f0Þ ¼ 0;

f0
t þ

1

2
j‘f0j2 þ gh ¼ 0:

8<:
If we approximate F by the formula (1.2) in Luke’s Lagrangian, then the corre-
sponding Euler–Lagrange equations are the model system (1.1). In fact, by the

variations with respect to f0, f1, and h, we obtain the first, the second, and the
third equations in (1.1), respectively.

Remark 2.1. (1) If we adopt the approximation of the velocity potential

Fðx; z; tÞ ¼ f0ðx; tÞ þ ðz� bðxÞÞpf1ðx; tÞ
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with a constant p > 0 in place of the approximation (1.2), then we have slightly
di¤erent equations than (1.1). However, basic properties of the equations are
the same as those of (1.2) and similar existence theorem as Theorem 1.1 holds.

(2) D. Clamond and D. Dutykh [7] derived several model equations for
water waves. The models are also Euler–Lagrange equations for approximate
Lagrangians which are derived from Luke’s Lagrangian for water waves by
adding as many variables as possible in order to include the e¤ects of the
compressibility of the fluid and of the vorticity of the flow. Therefore, the
models are essentially di¤erent from the model (1.1).

Next, we will compare the dispersion relation (1.5) to those of well-known
model equations. The linear dispersion relations of the shallow water (SW)
equations, the Korteweg–de Vries (KdV) equation, the Benjamin–Bona–Mahony
(BBM) equation, the Green–Naghdi (GN) equations, and the full water wave
(WW) equations are given by

ðSWÞ o2 � ghjxj2 ¼ 0;

ðKdVÞ Go�
ffiffiffiffiffi
gh

p
xþ 1

6

ffiffiffiffiffi
gh

p
h2x3 ¼ 0;

ðBBMÞ G 1þ 1

6
h2x2

� �
o�

ffiffiffiffiffi
gh

p
x ¼ 0;

ðGNÞ 1þ 1

3
h2jxj2

� �
o2 � ghjxj2 ¼ 0;

ðWWÞ o2 � gjxj tanhðhjxjÞ ¼ 0;

so that the corresponding phase speeds cSW , cKdV , cBBM , cGN , and cWW are given

by cSW ¼G
ffiffiffiffiffi
gh

p
, cKdV ðxÞ ¼G

ffiffiffiffiffi
gh

p �
1� 1

6 h
2x2

�
, cBBMðxÞ ¼G

ffiffiffiffiffi
gh

p

1þ 1
6 h

2x2
, cGNðxÞ ¼

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh

1þ 1
3 h

2jxj2

s
, and cWW ðxÞ ¼G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g tanhðhjxjÞ

jxj

s
, respectively. On the other

hand, the phase speed cIK of the model due to Isobe and Kakinuma (IK) is given
by

cIKðxÞ ¼G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh

1þ 1
15 h

2jxj2

1þ 2
5 h

2jxj2

vuut :

We note that as x ! 0 all of them converge to cSW and that a Taylor approx-
imation of cBBMðxÞ, cGNðxÞ, cIKðxÞ, and cWW ðxÞ coincides with cKdV ðxÞ. More-

over, cBBMðxÞ is the ½0=2� Padé approximant of cWW ðxÞ, ðcGNðxÞÞ2 is the ½0=2�
Padé approximant of ðcWW ðxÞÞ2, and ðcIKðxÞÞ2 is the ½2=2� Padé approximant of
ðcWW ðxÞÞ2. Therefore, among them cIKðxÞ is the best approximation of cWW ðxÞ
in the shallow water regime hjxjf 1. In fact, we have the following Taylor
expansions
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cWW ðxÞ ¼G
ffiffiffiffiffi
gh

p
1� 1

6
ðhjxjÞ2 þ 19

360
ðhjxjÞ4 � 55

3024
ðhjxjÞ6

� �
þOððhjxjÞ8Þ;

cIKðxÞ ¼G
ffiffiffiffiffi
gh

p
1� 1

6
ðhjxjÞ2 þ 19

360
ðhjxjÞ4 � 193

10800
ðhjxjÞ6

� �
þOððhjxjÞ8Þ;

whereas

cGNðxÞ ¼G
ffiffiffiffiffi
gh

p
1� 1

6
ðhjxjÞ2 þ 1

24
ðhjxjÞ4

� �
þOððhjxjÞ6Þ:

Once we admit higher order derivative terms in the approximate equations, we
may obtain good model equations whose dispersion relation is as precise as the
model (1.1). However, higher order derivative terms are troublesome in a nu-
merical computation. The model (1.1) contains only up to second order deriva-
tive terms. This is an advantage of the model.

Finally, we will give one more remark on the consistency of the linearized
equations (1.4) with the full water wave equations in the shallow water approx-
imation. As was shown by J. Boussinesq [5], in the case of the flat bottom the
velocity potential F can be expanded in a Taylor series with respect to the
vertical spatial variable as

Fðx; z; tÞ ¼
Xy
n¼0

z2n

ð2nÞ! ð�DÞnf0ðx; tÞ;

where f0 is the trace of the velocity potential F on the bottom. In view of our
approximation (1.2), one might expect that the unknown functions f0 and f1 are

related with f0 by f0 ¼ f0 and f1 ¼ � 1
2Df0 and that the relation f1 ¼ � 1

2Df
0

holds. However, it is not true and the solution ðh; f0f1Þ of (1.4) does not satisfy
this relation f1 ¼ � 1

2Df
0 but the relation

1þ 1

10
h2D

� �
f1 ¼ � 1

2
Df0;ð2:1Þ

which comes from the linearized version of the relation (1.6). Therefore, the

relation f1 ¼ � 1
2Df

0 is satisfied approximately as h2
b
f1f1 ¼ 1

2 ðhjxjÞ
2 bf0f0 þOððhjxjÞ4Þ

in the shallow water regime hjxjf 1, where b�� denotes the Fourier transform in
the horizontal spatial variables x. Moreover, in view of our approximation (1.2)
again, the trace of the velocity potential F on the water surface should be given
by

fðx; tÞ :¼ f0ðx; tÞ þ h2f1ðx; tÞð2:2Þ

in terms of our variables f0 and f1. It follows from (2.1) and (2.2) that f0 and
f1 can be expressed in terms of f as
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f0 ¼ 1� 2

5
h2D

� ��1

1þ 1

10
h2D

� �
f;

f1 ¼ � 1

2
1� 2

5
h2D

� ��1

Df;

8>>><>>>:
so that the first two equations can be transformed into

ht þ h 1� 2

5
h2D

� ��1

1� 1

15
h2D

� �
Df ¼ 0:

Therefore, if ðh; f0; f1Þ is a solution of (1.4) and if f is defined by (2.2), then
ðh; fÞ satisfies

ĥht � jxj tanhðhjxjÞf̂f ¼ OðjxjðhjxjÞ7Þ;
f̂ft þ gĥh ¼ 0:

(
This means that ðh; fÞ satisfies the linearized water wave equations up to order
jxjðhjxjÞ7. Since the shallow water equations and the Green–Naghdi equations
are approximations up to order jxjðhjxjÞ3 and jxjðhjxjÞ5, respectively, the model
(1.1) due to Isobe and Kakinuma is in fact fit in the shallow water theory, at
least, in the linear level.

These considerations motivate us to give a mathematically rigorous justifi-
cation of the model (1.1). We postpone this subject in the future research.

3. Transformation of the system

Our basic idea to solve the initial value problem (1.1) and (1.3) is to trans-
form the model system (1.1) into a system of equations by using the relation (1.6)
for which the hypersurface t ¼ 0 is noncharacteristic and the initial value problem
is well-posed in Sobolev spaces.

We introduce second order di¤erential operators L11 ¼ L11ðH; bÞ, L12 ¼
L12ðH; bÞ, and L22 ¼ L22ðH; bÞ depending on the depth of the water H and
the bottom topography b by

L11c
0 :¼ �‘ � ðH‘c0Þ;

L12c
1 :¼ �‘ � 1

3
H 3‘c1 �H 2c1‘b

� �
;

L22c
1 :¼ �‘ � 1

5
H 5‘c1 � 1

2
H 4c1‘b

� �
� 1

2
H 4‘b � ‘c1

þ 4

3
H 3ð1þ j‘bj2Þc1:

8>>>>>>>>><>>>>>>>>>:
ð3:1Þ

Then, we see that L11 and L22 are symmetric in L2ðRnÞ and the adjoint operator
L�
12 of L12 is given by

L�
12c

0 ¼ �‘ � 1

3
H 3‘c0

� �
�H 2‘b � ‘c0:
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Therefore, the model system (1.1) and the relation (1.6) can be written as

ht � L11f
0 � L12f

1 ¼ 0;

H 2ht � L�
12f

0 � L22f
1 ¼ 0;

f0
t þH 2f1

t þ F1 ¼ 0

8><>:ð3:2Þ

and

H 2ðL11f
0 þ L12f

1Þ ¼ L�
12f

0 þ L22f
1;ð3:3Þ

respectively, where

F1 :¼ ghþ 1

2
j‘f0j2 þ 1

2
H 4j‘f1j2 þH 2‘f0 � ‘f1ð3:4Þ

� 2Hf1‘b � ‘f0 � 2H 3f1‘b � ‘f1 þ 2H 2ð1þ j‘bj2Þðf1Þ2:

Di¤erentiating (3.3) with respect to t and using the first equation in (3.2) to
eliminate ht we obtain

ðH 2L11 � L�
12Þf

0
t � ðL22 �H 2L12Þf1

t ¼ F2;ð3:5Þ

where

F2 :¼ �F3‘ � H‘f0 þ 1

3
H 3‘f1 �H 2f1‘b

� �
;

F3 :¼ 2H 2Df0 þ 2

3
H 4Df1 � 2H‘b � ‘f0

� 4H 3‘b � ‘f1 � 2H 3f1Dbþ 4H 2ð1þ j‘bj2Þf1:

8>>>>><>>>>>:
ð3:6Þ

We also introduce second order di¤erential operator L0 ¼ L0ðH; bÞ and L1 ¼
L1ðH; bÞ by

L0c
0 :¼ ðL11 �H�2L�

12Þc
0 þ ðH�2L22 � L12ÞðH�2c0Þð3:7Þ

¼ � 8

15
‘ � ðH‘c0Þ þH�1

�
4

3
ð1þ j‘bj2Þ þ 2‘b � ‘H þ 4

5
j‘Hj2

� 4

15
HDH � 1

2
HDb

�
c0

and

L1c
1 :¼ ðH 2L11 � L�

12ÞðH 2c1Þ þ ðL22 �H 2L12Þc1ð3:8Þ

¼ � 8

15
‘ � ðH 5‘c1Þ

þH 3 4

3
ð1þ j‘bj2Þ þ 2‘b � ‘H � 4

3
j‘Hj2 � 4

3
HDH � 1

2
HDb

� �
c1;
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respectively. L0 and L1 are also symmetric in L2ðRnÞ and are related each other
by

H 2L0ðH 2c1Þ ¼ L1c
1:ð3:9Þ

It follows from the third equation in (3.2) that f1
t ¼ �H�2ðf0

t þ F1Þ and f0
t ¼

�H 2f1
t � F1. Plugging these into (3.5) we obtain

L0f
0
t þ ðH�2L22 � L12ÞðH�2F1Þ ¼ H�2F2;

L1f
1
t þ ðH 2L11 � L�

12ÞF1 ¼ �F2:

(
ð3:10Þ

These should be evolution equations for unknowns f0 and f1.

Remark 3.1. As mentioned in Remark 1.1 (2) we have to express f1
t ðx; 0Þ in

terms of the initial data and b. Such an expression is given by

f1
t ð�; 0Þ ¼ �L�1

1 ðF2 þ ðH 2L11 � L�
12ÞF1Þjt¼0:ð3:11Þ

The invertibility of the operator L1 will be proved later. See Lemmas 3.1
and 3.2.

Now, we are going to determine the principal parts of the left-hand sides of
the equations in (3.10). It is easy to see that

ðH�2L22 � L12Þc

¼ 2

15
H 3Dc�H 2‘b � ‘cþ 4

3
Hð1þ j‘bj2Þ � 1

2
H 2Db

� �
c;

ðH 2L11 � L�
12Þc ¼ � 2

3
H 3DcþH 2‘b � ‘c

8>>>><>>>>:ð3:12Þ

and that

DF1 ¼ a1Dhþ u � ‘Df0 þH 2u � ‘Df1 þ F4;ð3:13Þ

where

a1 :¼ gþ 2H 3j‘f1j2 þ 2H‘f0 � ‘f1 � 2f1‘b � ‘f0

� 6H 2f1‘b � ‘f1 þ 4Hð1þ j‘bj2Þðf1Þ2;
u :¼ ‘f0 þH 2‘f1 � 2Hf1‘b;

8><>:ð3:14Þ

and F4 is a collection of lower order terms, more precisely,

F4 A PðH;Db;D2b;D3b;Dh; f1;Df;D2fÞ;ð3:15Þ

where f ¼ ðf0; f1Þ. Here, we note that u is the horizontal velocity on the water
surface. In fact, in view of (1.2) we have ð‘FÞðx; hþ hðx; tÞ; tÞ ¼ uðx; tÞ. On
the other hand, it follows from the relation (1.6) that
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2

3
HDf0 þ 2

15
H 3Df1 ¼ ‘b � ‘f0 þH 2‘b � ‘f1ð3:16Þ

þ 1

2
H 2Db� 4

3
Hð1þ j‘bj2Þ

� �
f1;

which expresses Df0 in terms of Df1 with lower order terms and vice versa. By
(3.12), (3.13), and (3.16), we can rewrite equations in (3.10) as

P0f
0
t � 4‘ � ðHðu � ‘Þ‘f0Þ þ ‘ � ððHa1 � 2F1Þ‘hÞ ¼ G0;

P1f
1
t �

4

5
‘ � ðH 5ðu � ‘Þ‘f1Þ � ‘ � ðH 3a1‘hÞ ¼ G1;

8<:
where

P0 ¼ P0ðH; bÞ :¼ 15

2
L0ðH; bÞ; P1 ¼ P1ðH; bÞ :¼ 3

2
L1ðH; bÞ;ð3:17Þ

and G0 and G1 are collections of lower order terms, more precisely,

G0;G1 A PðH;H�1;Db;D2b;D3b;Dh; f1;Df;D2fÞ:ð3:18Þ

Next, we will derive appropriate evolution equation for h, which together

with the above evolution equations for f ¼ ðf0; f1Þ should have a good sym-
metry. The first equation in (1.1) can be written as

ht þ u � ‘H þHDf0 þ 1

3
H 3Df1 �H 2‘ � ðf1‘bÞ ¼ 0;

which together with (3.16) implies that

9ht þ 9u � ‘h�HDf0 þH 3Df1 ¼ G2;ð3:19Þ

where G2 is a collection of lower order terms, more precisely,

G2 :¼ 9H 2‘ � ðf1‘bÞð3:20Þ

� 15

�
‘b � ‘f0 þH 2‘b � ‘f1 þ 1

2
H 2Db� 4

3
Hð1þ j‘bj2Þ

� �
f1

�
:

Now, we have derived reduced equations

P0f
0
t � 4‘ � ðHðu � ‘Þ‘f0Þ þ ‘ � ððHa1 � 2F1Þ‘hÞ ¼ G0;

P1f
1
t �

4

5
‘ � ðH 5ðu � ‘Þ‘f1Þ � ‘ � ðH 3a1‘hÞ ¼ G1;

9ht þ 9u � ‘h�HDf0 þH 3Df1 ¼ G2;

8>><>>:ð3:21Þ

for which the following initial conditions are imposed.

ðh; f0; f1Þ ¼ ðh0; f0
0 ; f

1
0Þ at t ¼ 0:ð3:22Þ
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The hypersurface t ¼ 0 is noncharacteristic for the reduced system (3.21). In
fact, the second order di¤erential operators P0 and P1 are positive in L2ðRnÞ as
shown in the following lemma.

Lemma 3.1. Suppose that 0 < c0 aHðxÞa c1 and ‘b A LyðRnÞ. There
exists a positive constant C ¼ Cðc0; c1Þ depending only on c0 and c1 such that
we have

ðP0c
0;c0ÞbC�1kc0k21 ; ðP1c

1;c1ÞbC�1kc1k21 :

Proof. In view of (3.17) it is su‰cient to show the estimates for the
operators L0 and L1. By direct calculation we have

I :¼
ð
R n

ð hþhðxÞ

bðxÞ
j‘X ðc0ðx; tÞ þ ðz� bðxÞÞ2c1ðx; tÞÞj2 dz

( )
dxð3:23Þ

¼
ð
R n

�
Hj‘c0j2 þ 2

3
H 3‘c0 � ‘c1 þ 1

5
H 5j‘c1j2 � 2H 2c1‘b � ‘c0

�H 4c1‘b � ‘c1 þ 4

3
H 3ð1þ j‘bj2Þðc1Þ2

�
dx

¼ ðL11c
0 þ L12c

1;c0Þ þ ðL�
12c

0 þ L22c
1;c1Þ:

On the other hand, we rewrite this integral as

I ¼
ð
R n

(ðHðxÞ

0

fj‘c0ðxÞ � 2zc1ðxÞ‘bðxÞ þ z2‘c1ðxÞj2ð3:24Þ

þ 4z2ðc1ðxÞÞ2g dz

)
dx

F
ð
R n

fHj‘c0j2 þH 3ð1þ j‘bj2Þðc1Þ2 þH 5j‘c1j2g dx;

where F represents an equivalence of these integrals. Therefore, there exists a
positive constant C ¼ Cðc0Þ such that

ðL11c
0 þ L12c

1;c0Þ þ ðL�
12c

0 þ L22c
1;c1ÞbC�1ðk‘c0k2 þ kc1k2 þ k‘c1k2Þ:

By the definitions (3.7) and (3.8) of the operators L0 and L1 we see that

ðL0c
0;c0Þ ¼ ðL11c

0 þ L12ð�H�2c0Þ;c0Þ þ ðL�
12c

0 þ L22ð�H�2c0Þ; ð�H�2c0ÞÞ

bC�1ðk‘c0k2 þ kH�2c0k2 þ k‘ðH�2c0Þk2Þ

bC�1ðk‘c0k2 þ c�4
1 kc0k2Þ

and that
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ðL1c
1;c1Þ ¼ ðL11ð�H 2c1Þ þ L12c

1; ð�H 2c1ÞÞ þ ðL�
12ð�H 2c1Þ þ L22c

1;c1Þ

bC�1ðk‘ðH 2‘c1Þk2 þ kc1k2 þ k‘c1k2Þ

bC�1ðkc1k2 þ k‘c1k2Þ;

which give the desired estimates. r

By this lemma, the explicit expressions (3.7) and (3.8) of the operators L0

and L1, the standard elliptic estimates, and the definition (3.17) of the operator
P0 and P1, we can easily obtain the following lemma.

Lemma 3.2. Let h, c0, M be positive constants and m an integer such that

m >
n

2
þ 1. There exists a positive constant C ¼ Cðh; c0;MÞ such that if h and b

satisfy

khkm þ kbkW mþ1;yðR nÞ aM;

c0 aHðxÞ ¼ hþ hðxÞ � bðxÞ for x A Rn;

�
then for 1a kam we have

kP�1
0 f kk þ kP�1

1 f kk aCk f kk�2:

4. Construction of the solution to the reduced system

In this section we will construct the solution to the initial value problem for
the reduced system (3.21) and (3.22) derived in the previous section by a standard
parabolic regularization of the equations, that is,

P0ðf0
t � eDf0Þ � 4‘ � ðHðu � ‘Þ‘f0Þ þ ‘ � ððHa1 � 2F1Þ‘hÞ ¼ G0;

P1ðf1
t � eDf1Þ � 4

5
‘ � ðH 5ðu � ‘Þ‘f1Þ � ‘ � ðH 3a1‘hÞ ¼ G1;

9ðht � eDhÞ þ 9u � ‘h�HDf0 þH 3Df1 ¼ G2;

8>>><>>>:ð4:1Þ

where e > 0 is a small regularized parameter. We impose the same initial
conditions.

ðh; f0; f1Þ ¼ ðh0; f0
0 ; f

1
0Þ at t ¼ 0:ð4:2Þ

We rewrite the regularized system (4.1) as

f0
t � eDf0 ¼ P�1

0 fG0 þ 4‘ � ðHðu � ‘Þ‘f0Þ � ‘ � ððHa1 � 2F1Þ‘hÞg;

f1
t � eDf1 ¼ P�1

1 G1 þ
4

5
‘ � ðH 5ðu � ‘Þ‘f1Þ þ ‘ � ðH 3a1‘hÞ

� �
;

ht � eDh ¼ 1

9
fG2 � 9u � ‘hþHDf0 �H 3Df1g;

8>>>>><>>>>>:
ð4:3Þ
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and the right-hand sides of these equations can be regarded as lower order terms
thank of (3.4), (3.14), (3.18), (3.20), and Lemma 3.2. Therefore, we can show
the following lemma.

Lemma 4.1. Let g, h, c0, M0 be positive constants and m an integer such that

m >
n

2
þ 1. Suppose that the initial data ðh0; f0

0 ; f
1
0Þ and b satisfy the conditions in

(1.10), then for any e > 0 there exists a maximal existence time Te > 0 such that
the initial value problem (4.1)–(4.2) has a unique solution ðhe; f0; e; f1; eÞ satisfying

he;‘f0; e A Cð½0;TeÞ;HmÞ; f1; e A Cð½0;TeÞ;Hmþ1Þ:

We are going to derive uniform estimates of the solution ðhe; f0; e; f1; eÞ with
respect to the regularized parameter e > 0 for a time interval ½0;T � independent
of e. The following lemma gives a relation of the solution, which corresponds
to the third equation in model system (1.1) (equivalently (3.2)). For simplicity of
notation we write ðh; f0; f1Þ in place of ðhe; f0; e; f1; eÞ in the following.

Lemma 4.2. The solution ðh; f0; f1Þ obtained in Lemma 4.1 satisfies the
relation

f0
t � eDf0 þH 2ðf1

t � eDf1Þ þ F1 ¼ 0;

where F1 is defined by (3.4).

Proof. In view of the derivation of the first two equations in (3.21) from
(3.10), we rewrite the first two equations in (4.1) as

L0ðf0
t � eDf0Þ þ ðH�2L22 � L12ÞðH�2F1Þ ¼ H�2F2;

L1ðf1
t � eDf1Þ þ ðH 2L11 � L�

12ÞF1 ¼ �F2:

(
ð4:4Þ

By the relation (3.9) of L0 and L1 the second equation in (4.4) is rewritten as

L0ðH 2ðf1
t � eDf1ÞÞ þ ðL11 �H�2L�

12ÞF1 ¼ �H�2F2:

Adding this and the first equation in (4.4) we obtain

L0ðf0
t � eDf0 þH 2ðf1

t � eDf1Þ þ F1Þ ¼ 0:

Since the operator L0 is invertible, the above equation gives the desired relation.
r

Concerning the generalized Rayleigh–Taylor sign condition, a regularized
version of the function a defined by (1.9) is given by

ae :¼ gþ 2Hðf1
t � eDf1Þ þ 2H 3j‘f1j2 þ 2H‘f0 � ‘f1 � 2f1‘b � ‘f0ð4:5Þ

� 6H 2f1‘b � ‘f1 þ 4Hð1þ j‘bj2Þðf1Þ;

where we have
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f1
t � eDf1 ¼ �L�1

1 ðF2 þ ðH 2L11 � L�
12ÞF1Þð4:6Þ

¼ �L�1
1 F2 �

2

3
H 3DF1 þH 2‘b � ‘F1

� �
;

which comes from the second equation in (4.4) and (3.12). Therefore, in view of
Remark 3.1 we see that aeðx; 0Þ ¼ aðx; 0Þ so that by the assumption (1.10) we
have

a eðx; 0Þb c0 for x A Rn:ð4:7Þ

Moreover, by the definition (3.14) of the function a1 and Lemma 4.2 it holds
that

a1 þ 2Hðf1
t � eDf1Þ ¼ ae;

Ha1 � 2F1 � 2ðf0
t � eDf0Þ ¼ Hae:

(
ð4:8Þ

Therefore, by the definition (3.17) of P0 and P1 and the explicit expressions (3.7)
and (3.8) of L0 and L1, we rewrite (4.1) as

�4‘ � ðH‘ðf0
t � eDf0ÞÞ � 4‘ � ðHðu � ‘Þ‘f0Þ þ ‘ � ðHae‘hÞ ¼ ~GG0;

� 4

5
‘ � ðH 5‘ðf1

t � eDf1ÞÞ � 4

5
‘ � ðH 5ðu � ‘Þ‘f1Þ � ‘ � ðH 3ae‘hÞ ¼ ~GG1;

9ðht � eDhÞ þ 9u � ‘h�HDf0 þH 3Df1 ¼ G2;

8>><>>:ð4:9Þ

where ~GG0 and ~GG1 are collections of lower order terms, although they contain the
time derivatives. More precisely,

~GG0 :¼ G0 þ 2‘h � ‘ðf0
t � eDf0Þ þH�1

�
10ð1þ j‘bj2Þ þ 15‘b � ‘H

þ 6j‘Hj2 � 7

4
HDb

�
ðf0

t � eDf0Þ;

~GG1 :¼ G1 þ 2‘h � ‘ðH 4ðf1
t � eDf1ÞÞ þH 3

�
2ð1þ j‘bj2Þ þ 3‘b � ‘H

� 2j‘Hj2 þ 5

4
HDb

�
ðf1

t � eDf1Þ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:10Þ

The following lemma gives a uniform estimate of the solution.

Lemma 4.3. There exist a time T > 0 and a constant C > 0 independent of e
such that the solution ðhe; feÞ obtained in Lemma 4.1 satisfies the uniform estimate

sup
0ataT

ðkheðtÞk2m þ k‘f0; eðtÞk2m þ kf1; eðtÞk2mþ1Þð4:11Þ

þ e

ðT

0

ðkheðtÞk2mþ1 þ k‘f0; eðtÞk2mþ1 þ kf1; eðtÞk2mþ2Þ dtaC

for 0 < ea 1.

485solvability of a model system for water waves



Proof. Once again we simply write ðh; f0; f1Þ in place of ðhe; f0; e; f1; eÞ. By
(1.10), (3.4), (3.6), (3.12), (4.5), Lemma 3.2, and the Sobolev imbedding theorem,
there exists a constant C0 ¼ C0ðg; h; c0;M0Þ > 0 such that

c0 aHðx; 0ÞaC0; c0 a aeðx; 0ÞaC0 for x A Rn:ð4:12Þ

Now, we assume that

sup
0ataT

ðkhðtÞk2m þ k‘f0ðtÞk2m þ kf1ðtÞk2mþ1Þ

þ e

ðT

0

ðkhðtÞk2mþ1 þ k‘f0ðtÞk2mþ1 þ kf1ðtÞk2mþ2Þ dtaC;

c0=2aHðx; tÞa 2C0; c0=2a aeðx; tÞa 2C0 for 0a taT ; x A Rn;

8>>>><>>>>:ð4:13Þ

where the constant C and the time T will be defined later. Here and in what
follows, positive constants depending on g, h, m, c0, M0 are denoted by the same
symbol C0 and positive constants depending also on C are denoted by C1.

Let a be a multi-index such that 1a jajam. Applying the di¤erential

operator qa ¼ q

qx

� �a
to the equations in (4.9) and writing za :¼ qah, c0;a :¼ qaf0,

and c1;a :¼ qaf1, we obtain

�4‘ � ðH‘c0;a
t Þ þ 4eDðHDc0;aÞ � 4‘ � ðHðu � ‘Þ‘c0;aÞ þ ‘ � ðHae‘zaÞ ¼ G a

0 ;

� 4

5
‘ � ðH 5‘c1;a

t Þ þ 4

5
eDðH 5Dc1;aÞ � 4

5
‘ � ðH 5ðu � ‘Þ‘c1;aÞ

� ‘ � ðH 3ae‘zaÞ ¼ G a
1 ;

9aezat � 9e‘ � ðae‘zaÞ þ 9aeu � ‘za � ‘ � ðHae‘c0;aÞ þ ‘ � ðH 3a e‘c1;aÞ ¼ G a
2 ;

8>>>>><>>>>>:
where

G a
0 :¼ qa ~GG0 þ ‘ � f4eð‘HÞDqaf0 þ 4½qa;H�‘ðf0

t � eDf0Þ
þ 4½qa;Hðu � ‘Þ�‘f0 � ½qa;Hae�‘hg;

G a
1 :¼ qa ~GG1 þ ‘ � f4eH 4ð‘HÞDqaf1 þ 4

5
½qa;H 5�‘ðf1

t � eDf1Þ

þ 4

5
½qa;H 5ðu � ‘Þ�‘f1 � ½qa;H 3ae�‘hg;

G a
2 :¼ aefqaG2 � 9½qa; u � ‘�hþ ½qa;H�Df0 � ½qa;H 3�Df1g

� 9e‘ae � ‘qah� ‘ðHaeÞ � ‘qaf0 þ ‘ðH 3aeÞ � ‘qaf1:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:14Þ

The corresponding energy function E aðtÞ and the dissipation function F aðtÞ are
defined by

E aðtÞ :¼ 9ðaeza; zaÞ þ 4ðH‘c0;a;‘c0;aÞ þ 4

5
ðH 5‘c1;a;‘c1;aÞ;

F aðtÞ :¼ 9ðae‘za;‘zaÞ þ 4ðHDc0;a;Dc0;aÞ þ 4

5
ðH 5Dc1;a;Dc1;aÞ;

8><>:
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which are equivalent to kzaðtÞk2 þ k‘caðtÞk2 and k‘zaðtÞk2 þ kDcaðtÞk2, respec-
tively, with ca ¼ ðc0;a;c1;aÞ. In fact, we easily see that

d

dt
E aðtÞ þ eF aðtÞ ¼ ð2G a

2 þ 9ðae
t þ ‘ � ðaeuÞÞza; zaÞ

þ ð2G a
0 ;c

0;aÞ þ ð4ðHt þ ‘ � ðHuÞÞ‘c0;a;‘c0;aÞ

þ ð2G a
1 ;c

1;aÞ þ 4H 4Ht þ
4

5
‘ � ðH 5uÞ

� �
‘c1;a;‘c1;a

� �
aC0ðjae

t jy þ jHtjy þ j‘ � ðaeuÞjy þ j‘ � ðHuÞjy
þ j‘ � ðH 5uÞjyÞE aðtÞ þ 2kG a

2 k kz
ak þ 2kðG a

0 ;G
a
1 Þk�1kc

ak1:

By (3.18) and (3.20) we have kðG0;G1Þkm�1 þ kG2km aC1, which together with
(4.3) and Lemma 3.2 implies that kft � eDfkm þ kht � eDhkm�1 aC1. Particu-

larly, we get
Ð T

0 ðkftk
2
m þ khtk

2
m�1Þ dtaC1ð1þ TÞ, where f ¼ ðf0; f1Þ. It follows

from (4.6) that

ðf1
t � eDf1Þt ¼ ð�L�1

1 qt þ L�1
1 ½qt;L1�L�1

1 Þ F2 �
2

3
H 3DF1 þH 2‘b � ‘F1

� �
;

so that by Lemma 3.2 we obtain
Ð T

0 kðf1
t � eDf1Þtk

2
m�1 dtaC1. Therefore, by

(4.5) we obtain
Ð T

0 kae
t k

2
m�1 dtaC1. By the Sobolev imbedding theorem we get

d

dt
E aðtÞ þ e

2
F aðtÞaC1ð1þ kae

t ðtÞkm�1 þ khtðtÞkm�1Þ. Integrating this with re-

spect to t yields that E aðtÞ þ e

2

Ð t

0 F
aðtÞ dtaC0 þ C1ðtþ

ffiffi
t

p
Þ. For the lowest

order terms, it is easy to see that khkm�1 þ k‘f0km�1 þ kf1km aC0 þ C1ðtþ
ffiffi
t

p
Þ.

To summarize, we have obtained the estimates

khðtÞk2m þ k‘f0ðtÞk2m þ kf1ðtÞk2mþ1

þ e

ð t

0

ðkhðtÞk2mþ1 þ k‘f0ðtÞk2mþ1 þ kf1ðtÞk2mþ2Þ dtaC0 þ C1ðtþ
ffiffi
t

p
Þ;

jHðx; tÞ �Hðx; 0Þj þ jaeðx; tÞ � aeðx; 0ÞjaC1ðtþ
ffiffi
t

p
Þ for x A Rn:

8>>><>>>:
Now, we define the constant C by C ¼ 2C0, and then the time T su‰ciently
small so that C1ðT þ

ffiffiffiffi
T

p
Þf 1. Then, we see that (4.13) holds. The proof is

complete. r

Once we obtain this kind of uniform estimates, we can pass to the limit
e ! þ0 in the regularized problem (4.1)–(4.2) and obtain the following
lemma.

Lemma 4.4. Let g, h, c0, M0 be positive constants and m an integer such that

m >
n

2
þ 1. There exists a time T > 0 such that if the initial data ðh0; f0

0 ; f
1
0Þ and
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b satisfy the conditions in (1.10), then the initial value problem (3.21)–(3.22) has a
unique solution ðh; f0; f1Þ satisfying

h;‘f0 A Cð½0;T �;HmÞ; f1 A Cð½0;T �;Hmþ1Þ:

5. Proof of the main theorem

Now, we are going to show that the solution to the transformed problem
(3.21)–(3.22) is the solution of the model system (1.1) and (1.3) if the initial data
satisfy the necessary condition (1.6). Let ðh; f0; f1Þ be the solution of (3.21)–
(3.22) obtained in Lemma 4.4 and define functions R1, R2, R3 by the left-hand
sides of the equations in (1.1) (equivalently (3.2)), that is,

R1 :¼ ht � L11f
0 � L12f

1;

R2 :¼ H 2ht � L�
12f

0 � L22f
1;

R3 :¼ f0
t þH 2f1

t þ F1:

8><>:ð5:1Þ

It is su‰cient to show that ðR1;R2;R3Þ1 0. We also define a function R4

by

R4 :¼ H 2ðL11f
0 þ L12f

1Þ � ðL�
12f

0 þ L22f
1Þ:ð5:2Þ

Then, the necessary condition (1.6) is equivalent to R4 1 0. It is easy to see
that

R4 ¼ �H 2R1 þ R2:ð5:3Þ

We will drive partial di¤erential equations for R1, R2, R3, R4 by using the fact
that ðh; f0; f1Þ is the solution of the transformed equations (3.21). To this end,
we follow essentially the calculation in the derivation of (3.21). Di¤erentiating
(5.2) with respect to t and using the first equation in (5.1) to eliminate ht we
obtain

ðH 2L11 � L�
12Þf

0
t � ðL22 �H 2L12Þf1

t ¼ F2 þ R4t þ F3R1;ð5:4Þ

which corresponds to (3.5). It follows from the third equation in (5.1) that f1
t ¼

�H�2ðf0
t þ F1 � R3Þ and f0

t ¼ �H 2f1
t � F1 þ R3. Plugging these into (5.4) we

obtain

L0f
0
t þ ðH�2L22 � L12ÞðH�2F1Þ
¼ H�2F2 þ ðH�2L22 � L12ÞðH�2R3Þ þH�2ðR4t þ F3R1Þ;

L1f
1
t þ ðH 2L11 � L�

12ÞF1 ¼ �F2 þ ðH 2L11 � L�
12ÞR3 � ðR4t þ F3R1Þ;

8><>:ð5:5Þ

which corresponds to (3.10). It follows from the first equation in (5.1) and (5.2)
that

9ht þ 9u � ‘h�HDf0 þH 3Df1 ¼ G2 þ 9R1 þ 15H�2R4;ð5:6Þ

488 yuuta murakami and tatsuo iguchi



which corresponds to (3.19). By using the fact that ðh; f0; f1Þ is the solution
of the transformed equations (3.21) and the identities in (5.5) and (5.6), we
obtain

ðH�2L22 � L12ÞðH�2R3Þ þH�2ðR4t þ F3R1Þ ¼ 0;

ðH 2L11 � L�
12ÞR3 � ðR4t þ F3R1Þ ¼ 0;

9R1 þ 15H�2R4 ¼ 0:

8<:ð5:7Þ

It follows from the first two equations that L0R3 ¼ 0, which implies that R3 ¼ 0
due to the invertibility of L0. Thus, by the first two equations again, we obtain
R4t þ F3R1 ¼ 0, which together with the third equation yields that

d

dt
R4 ¼

5

3
H�2F3R4;

that is, R4 satisfies this linear homogeneous ordinary di¤erential equation in t.
Therefore, by the uniqueness of the solution to this simple equation we see that
R4jt¼0 ¼ 0 implies R4 ¼ 0 for all t. This means that the manifold defined by the
relation (1.6) in a phase space of ðh; f0; f1Þ is invariant under the time evolution
by the transformed equations (3.21). Now, by the third equation in (5.7) and
(5.3) we obtain R1 ¼ R2 ¼ 0. Therefore, we have shown that ðh; f0; f1Þ is the
solution of the model system (1.1) and (1.3).

Finally, we will show the conservation of the energy.

Lemma 5.1. Let ðh; f0; f1Þ be a smooth solution of the model system (1.1)
(equivalently (3.2)). Then, the energy function EðtÞ defined by (1.7) is a conserved
quantity.

Proof. In view of the definition (1.7) and the identity (3.23) we see that

d

dt
EðtÞ ¼ ðL11f

0 þ L12f
1; f0

t Þ þ ðL�
12f

0 þ L22f
1; f1

t Þ þ ðF1; htÞ ¼ 0;

where we used that fact that L11 and L22 are symmetric in L2ðRnÞ. r
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