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Abstract

In this paper, we shall give a lower diameter bound for compact domain manifolds

of shrinking Ricci-harmonic solitons. Our result may be regarded as a generalization

to Ricci-harmonic geometry of the recent works by Fernández-López and Garcı́a-Rı́o

(Q. J. Math. 61, 319–327, 2010), Futaki and Sano (Asian J. Math. 17, 17–32, 2013), and

Futaki et al. (Ann. Global Anal. Geom. 44, 105–114, 2013).

1. Introduction

Recently, various geometric flows have been studied extensively. In this
paper, we shall deal with a generalization of the Ricci flow.

1.1. The Bernhard List’s flow. Let ðM; gðtÞÞ be a family of m-dimensional
Riemannian manifolds with Riemannian metrics gðtÞ evolving by the following
coupled system:

q

qt
gðtÞ ¼ �2 RicgðtÞ þ 2a dfðtÞn dfðtÞ;

q

qt
fðtÞ ¼ DgðtÞfðtÞ;

8>>><
>>>:

ð1:1Þ

where RicgðtÞ denotes the Ricci tensor with respect to the evolving metric gðtÞ,
ad 0 is a non-negative constant, fðtÞ : ðM; gðtÞÞ ! R is a family of smooth
functions on M, and DgðtÞ :¼ gijðtÞ‘iðtÞ‘jðtÞ denotes the Laplace-Beltrami oper-
ator with respect to gðtÞ. The flow (1.1) is called a Bernhard List’s flow and
was introduced by List [15, 16]. The short time existence is proved. A typical
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example would be the Ricci flow [12] playing an important role in the Perelman’s
work [20], in which case fðtÞ : ðM; gðtÞÞ ! R is a constant function. The
motivation to study the Bernhard List’s flow stems from its connection to
general relativity. The stationary points of the flow correspond to the static
Einstein vacuum equations [15, 16].

1.2. The Ricci-harmonic flow. After List introduced the Bernhard List’s
flow, a new geometric flow was introduced. Let ðM; gðtÞÞ be a family of m-
dimensional Riemannian manifolds with Riemannian metrics gðtÞ evolving by the
following coupled system:

q

qt
gðtÞ ¼ �2 RicgðtÞ þ 2aðtÞ‘fðtÞn‘fðtÞ;

q

qt
fðtÞ ¼ tgðtÞfðtÞ;

8>>><
>>>:

ð1:2Þ

where aðtÞd 0 is a non-negative time-dependent constant, fðtÞ : ðM; gðtÞÞ !
ðN; hÞ is a family of smooth maps between ðM; gðtÞÞ and a fixed Riemannian
manifold ðN; hÞ of dimension n, ‘fðtÞn‘fðtÞ :¼ fðtÞ�h is the pull-back of the
metric h via fðtÞ, and tgðtÞfðtÞ :¼ trace ‘ dfðtÞ denotes the tension field of
fðtÞ with respect to gðtÞ. The flow (1.2) is called a Ricci-harmonic flow and
was introduced by Müller [17, 19]. The short time existence is proved. The
Bernhard List’s flow (1.1) is an example of the Ricci-harmonic flow, in which
case ðN; hÞ ¼ ðR; dr2Þ. More examples can be found in [17, 19]. By denoting
SðtÞ :¼ RicgðtÞ � a dfðtÞn dfðtÞ and SðtÞ :¼ RicgðtÞ � aðtÞ‘fðtÞn‘fðtÞ in (1.1)
and (1.2) respectively, the first equations in (1.1) and (1.2) are written as

q

qt
gðtÞ ¼ �2SðtÞ:ð1:3Þ

As with the Ricci flow, under (1.1) and (1.2), some di¤erential Harnack inequal-
ities for several heat-type equations are obtained, respectively [1, 3, 5, 23, 24].
Note that the papers [4, 9, 10, 11, 13] study these Harnack inequalities under
more general settings, namely, under the flow (1.3) for smooth symmetric two-
tensors SðtÞ with some technical assumptions on evolving tensor quantities
associated to SðtÞ.

1.3. The Ricci-harmonic soliton. Let ðM; gÞ and ðN; hÞ be two static
Riemannian manifolds of dimension m and n, respectively and let f : ðM; gÞ
! ðN; hÞ be a smooth map between the domain manifold ðM; gÞ and the target
manifold ðN; hÞ, f : M ! R a C2-class function on M, and l A R a real number.

Definition 1.4 (Williams [21]). The 4-tuple ððM; gÞ; ðN; hÞ; f; lÞ is called
harmonic-Einstein if it satisfies the following coupled system:

Ricg � a‘fn‘f ¼ lg;

tgf ¼ 0;

�
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where Ricg denotes the Ricci tensor with respect to the metric g, a A R is a
constant, ‘fn‘f :¼ f�h is the pull-back of the metric h via f, and tgf :¼
trace ‘ df denotes the tension field of f with respect to g.

Definition 1.5 (Müller [17, 19]). The 5-tuple ððM; gÞ; ðN; hÞ; f; f ; lÞ is
called a Ricci-harmonic soliton if it satisfies the following coupled system:

Ricg � a‘fn‘fþHess f ¼ lg;

tgf ¼ h‘f;‘f i;

�
ð1:6Þ

where ad 0 is a non-negative constant and Hess f denotes the Hessian of f .
We say that the soliton ððM; gÞ; ðN; hÞ; f; f ; lÞ is shrinking, steady, and expanding
described as l > 0, l ¼ 0, and l < 0, respectively. If f is constant in (1.6), then
the soliton is harmonic-Einstein. In such a case, we say that the soliton is trivial.

The soliton (1.6) above is a self-similar solution for the coupled system (1.2).
Note that if ðN; hÞ ¼ ðR; dr2Þ and f : ðM; gÞ ! ðR; dr2Þ is a constant function
in (1.6), then the soliton is exactly a gradient Ricci soliton. Since the Ricci-
harmonic flow is a generalization of the Ricci flow, a natural question to ask is
whether fundamental theorems as in the Ricci flow also hold for the Ricci-
harmonic flow. In this direction, corresponding theories have been established,
such as, the extension theorem [2], the no breathers theorem, the non-collapsing
theorem [17, 19], the monotonicity formula [14, 18], and the volume growth
estimate [22]. As with the Ricci soliton, any non-trivial Ricci-harmonic soliton
ððM; gÞ; ðN; hÞ; f; f ; lÞ with a compact domain manifold M is shrinking [21].

In this paper, we give a lower diameter bound for compact domain manifolds
of shrinking Ricci-harmonic solitons. Our main result is the following:

Theorem 1.7. Let ððM; gÞ; ðN; hÞ; f; f ; lÞ be a non-trivial shrinking Ricci-
harmonic soliton satisfying (1.6). Suppose that the domain manifold M is compact.
Then the diameter of the domain manifold ðM; gÞ has the universal lower bound

diamðM; gÞd 2ð
ffiffiffi
2

p
� 1Þpffiffiffi
l

p :ð1:8Þ

Corollary 1.9. Let ððM; gÞ; ðN; hÞ; f; f ; lÞ be a shrinking Ricci-harmonic
soliton satisfying (1.6). Suppose that the domain manifold M is compact. If the
diameter of the domain manifold ðM; gÞ satisfies

diamðM; gÞ < 2ð
ffiffiffi
2

p
� 1Þpffiffiffi
l

p ;

then the soliton must be harmonic-Einstein.

Remark 1.10. In Theorem 1.7 above, if ðN; hÞ ¼ ðR; dr2Þ and f : ðM; gÞ !
ðR; dr2Þ is a constant function, then the soliton ððM; gÞ; ðN; hÞ; f; f ; lÞ appears as
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a compact shrinking gradient Ricci soliton and (1.8) recovers the lower diameter
bound for compact shrinking Ricci solitons given by Futaki et al. [8].

Acknowledgements. I would like to thank Professors Toshiki Mabuchi and
Kimio Miyajima for their encouragements. I also thank Professor Masashi Ishida
for his comments.

2. Proof of Theorem 1.7

The proof of Theorem 1.7 is almost the same as [7, 8]. By replacing the
Ricci tensor Ricg with the symmetric two-tensor Ricg � a‘fn‘f in the argu-
ment of [7, 8], we can give a proof of Theorem 1.7 quite parallelly as the case
of compact shrinking Ricci solitons.

Proof. The Witten-Laplacian Df acting on C2-class functions on ðM; gÞ is
defined by

Df :¼ D� ‘f � ‘;

where D ¼ gij‘i‘j denotes the Laplace-Beltrami operator with respect to the
metric g. We first show that 2l is an eigenvalue of the Witten-Laplacian Df .
By taking the trace of the first equation in (1.6), we have

R� aj‘fj2 þ Df ¼ nl;ð2:1Þ

where R :¼ gijRij denotes the scalar curvature on ðM; gÞ. On the other hand, by
taking a covariant derivative of the first equation in (1.6), we obtain

‘kRij � a‘kð‘if‘jfÞ þ ‘k‘i‘j f ¼ 0:

By subtracting the same equation with indices i and k interchanged, we have

‘kRij � ‘iRkj � að‘if‘k‘jf� ‘kf‘i‘jfÞ þ Rkijp‘p f ¼ 0:

Tracing just above with gkj yields

‘jRij � ‘iR� a ‘iftgf� 1

2
‘ij‘fj2

� �
þ Rip‘p f ¼ 0:

By using the contracted second Bianchi identity ‘jRij ¼ 1
2‘iR and plugging in

both equations of (1.6) for Rip and for tgf, we obtain

� 1

2
‘iðR� aj‘fj2 þ j‘f j2 � 2lf Þ ¼ 0:

Hence, there exists a real constant K A R such that

R� aj‘fj2 þ j‘f j2 � 2lf ¼ K :ð2:2Þ
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By combining two equalities (2.1) and (2.2), we have

Df f ¼ Df � j‘f j2 ¼ �2lf þ K 0;ð2:3Þ
where K 0 :¼ nl� K . By adding some constant on f , we may normalize f such
that ð

M

fe�f d volg ¼ 0:

Throughout the present paper, we make this normalization. By the normaliza-
tion and (2.3), we see that K 0 in (2.3) must be zero. Hence, we obtain

Df f þ 2lf ¼ 0:ð2:4Þ
Next, by the first equation in (1.6), we see that

Ricg þHess f ¼ lgþ a‘fn‘fd lg:ð2:5Þ
We use the following theorem to obtain (1.8).

Theorem 2.6 (Futaki-Li-Li [8]). Let ðM; gÞ be a compact Riemannian mani-
fold and f : M ! R a C2-class function on M. Suppose that

Ricg þHess f d lg

for some real constant l A R. Then the first non-zero eigenvalue l1 of the Witten-
Laplacian Df has the lower bound

l1 d sup
s A ð0;1Þ

4sð1� sÞ p
2

d 2
þ sl

� �
;ð2:7Þ

where d :¼ diamðM; gÞ denotes the diameter of ðM; gÞ.

The inequality (2.5) shows that Theorem 2.6 above works for the compact
domain manifold M of the Ricci-harmonic soliton ððM; gÞ; ðN; hÞ; f; f ; lÞ.
Hence, the first non-zero eigenvalue l1 of the Witten-Laplacian Df has the lower
bound (2.7). Recall from (2.4) that 2l is an eigenvalue of the Witten-Laplacian
Df . Hence, by (2.4) and (2.7), for any 0 < s < 1, we have

2ld 4sð1� sÞ p
2

d 2
þ sl;

which yields

ld
4sð1� sÞ
2� s

� p
2

d 2
:

An elementary calculation shows that

4sð1� sÞ
2� s

c 4ð
ffiffiffi
2

p
� 1Þ2;
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where the equality is attained for s ¼ 2�
ffiffiffi
2

p
A ð0; 1Þ. Hence we have

ld 4ð
ffiffiffi
2

p
� 1Þ2 p

2

d 2
;

equivalently (1.8). The proof of Theorem 1.7 is completed. r

3. Concluding Remarks

For any Ricci-harmonic soliton ððM; gÞ; ðN; hÞ; f; f ; lÞ satisfying (1.6), we
denote by S :¼ R� aj‘fj2 the trace of the symmetric two-tensor Ricg � a‘fn‘f.
We put

c :¼ inf
x AM

fRicgðv; vÞ � a‘fn‘fðv; vÞ : v A TxM; jvj ¼ 1g;

C :¼ sup
x AM

fRicgðv; vÞ � a‘fn‘fðv; vÞ : v A TxM; jvj ¼ 1g:

Fernández-López and Garcı́a-Rı́o [6] gave some lower diameter bounds for
compact shrinking gradient Ricci solitons depending on the scalar and Ricci
curvatures as well as on the range of the potential function. In Section 2, by
replacing the Ricci tensor Ricg with the symmetric two-tensor Ricg � a‘fn‘f in
the argument of [7, 8], we gave a lower diameter bound for compact domain
manifolds of shrinking Ricci-harmonic solitons. By using this way, we easily see
that the same lower diameter bounds as in [6] also hold for compact domain
manifolds of shrinking Ricci-harmonic solitons:

Theorem 3.1. Let ððM; gÞ; ðN; hÞ; f; f ; lÞ be a shrinking Ricci-harmonic
soliton satisfying (1.6). Suppose that the domain manifold M is compact. Then
the diameter of the domain manifold ðM; gÞ has the lower bound

diamðM; gÞdmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð fmax � fminÞ

l� c

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð fmax � fminÞ

C � l

r
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð fmax � fminÞ

C � c

r( )
:

Corollary 3.2. Let ððM; gÞ; ðN; hÞ; f; f ; lÞ be a shrinking Ricci-harmonic
soliton satisfying (1.6). Suppose that the domain manifold M is compact. Then
the diameter of the domain manifold ðM; gÞ has the lower bound

diamðM; gÞdmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax �ml

lðl� cÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax �ml

lðC � lÞ

s
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax �ml

lðC � cÞ

s( )
:

Corollary 3.3. Let ððM; gÞ; ðN; hÞ; f; f ; lÞ be a shrinking Ricci-harmonic
soliton satisfying (1.6). Suppose that the domain manifold M is compact and
Ricg � a‘fn‘f > 0. Then the diameter of the domain manifold ðM; gÞ has the
lower bound

diamðM; gÞdmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax � Smin

lðl� cÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax � Smin

lðC � lÞ

s
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax � Smin

lðC � cÞ

s( )
:

307shrinking ricci-harmonic solitons



References
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Zürich, 2009, available at http://e-collection.library.ethz.ch/view/eth:41938.

[18] R. Müller, Monotone volume formulas for geometric flows, J. Reine Angew. Math. 643

(2010), 39–57.

[19] R. Müller, Ricci flow coupled with harmonic map flow, Ann. Sci. Éc. Norm. Supér. (4)
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