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ESTIMATES OF EIGENVALUES OF A CLAMPED PROBLEM
TAO0 ZHENG

Abstract

In this paper, for the eigenvalue problem of a clamped plate problem on complex
projective space with holomorphic sectional curvature ¢(> 0) and n(> 3)-dimensional
noncompact simply connected complete Riemannian manifold with sectional curvature
Sec satisfying —a? < Sec < —b?, where a > b >0 are constants, we obtain universal
eigenvalue inequalities. Moreover, we deduce the estimates of the upper bounds of
eigenvalues.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold and Q < M be
a bounded domain with smooth boundary (possible empty) in M. A Dirichlet
eigenvalue problem of the biharmonic operator or a clamped plate problem,
which describes the characteristic vibrations of a clamped plate is given by

A’u=Tu, inQ,
(L.1) 0
u= a_ 0, on 0Q,
ov
where A? is the biharmonic operator on M and v denotes the outward normal
derivative on 0Q. We will denote eigenvalues and the corresponding real eigen-
functions by {I';};2, and {u;},, respectively. The eigenvalues I'; satisfy

O<Ii<sIh<Iz<-- Joo,

where each I'; has finite multiplicity which is repeated according to its multi-
plicity.
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For the universal inequalities for eigenvalues of the clamped plate problem
in a bounded domain in R” in 1956, Payne, Polya and Weinberger [15, 16]
proved

8(m+2
nZk

M-
-
bl
Il
o

(1.2) Dot — Tk <

In 1984, Hile and Yeh [12] obtained

k 1"41/2 n2ic3/2 k -1/2
1.3 d k=12 ....
(1.3) DI e vl s DL IR B

In 1990, Hook [13], Chen and Qian [3] independently proved

2
(1.4) n+2 (ZFM_ ><Zr1/z> k=1,2,....

In [8], Cheng and Yang have given an affirmative answer for a problem on
universal inequalities for eigenvalues, proposed by Ashbaugh [2]; that is, they
have proved

|k 8(n+ 129 1/2
(15) Tipr =7 r,g< ) (Zr Tt — ) . k=1,2,....
i=1

For domains in a unit sphere, Wang and Xia [21] gave a universal inequality for
the clamped plate problem (1.1). They proved

k k 2 2
8 n—|—2 n
) 2 Thi - ( Z P _r)(rl/z T4 +4) <r‘/2 +4>

i=1 =1

For an n-dimensional complete manifold M, Cheng, Ichikawa and Mametsuka
[6] obtained

k

n+2 K 2 n’ 2
1.7 T — 1) (r H
(17) D (Te g kil — ( +5ra s1g12p| |

i=1 i=1

2
X <Fl.1/2+n— sup|H|2>.
4 o

For the real hyperbolic space H"(—1), Cheng and Yang [11] proved that

k 2 k 12 (n—1)> 12 (n—1)
Z(Dm—ﬂ) S24;(rk+l_ri) L= N\

i=1
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and Wang and Xia [22] proved

k k 1/2
(1.9) Z(rkJrl -1 {Z (Thg1 — 41"1/2 (n— 1)2>}

i=1 i=1

X 1/2
X{Zrkﬂ (61} — <1>2>}

i=1

which implies (1.8).

In this paper, motivated by [7, 20], for the eigenvalue problem of a clamped
plate problem on complex projective space with holomorphic sectional curvature
¢ >0 and n(> 3)-dimensional noncompact simply connected complete Rieman-
nian manifold with sectional curvature Sec satisfying —a®> < Sec < —b?, where
a>b >0 are constants, we obtain the eigenvalue inequalities in the form of
(1.9).

THEOREM 1.1. Let M = CP"(c¢) be n-dimensional complex projective space
with holomorphic sectional curvature ¢ > 0 and Q < M be a bounded domain with
smooth boundary. Then for the eigenvalues T';’s of a clamped plate problem (1.1),
we have

k 1/2
(1.10) i(rkﬂ -T)’ < %{i(rkﬂ — )20} + en(n + 1))}

i=1

Remark 1.1. If ¢ =4, C. Xia [23] obtained an eigenvalue inequality for a
clamped plate problem.

COROLLARY 1.2. Under the same assumption of Theorem 1.1, for the
eigenvalues T;'s of a clamped plate problem (1.1), we have

(1)
k
(111 > (Ter —

i=1

1 k
< _ZZ (Tirr — TR + en(n + 1) 2+ DT + en(n +1));

(112) T < Sk + \/Sk+1 Tri1,
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where
1 & 1 & 12 12
Ski1 %;me;(zn +en(n+1))20n+ I +en(n+1))
and

1 1 &
Ten =7 T3+ =2 > L2+ anln+ 1) 200+ DEY? + anln + 1))
i=1 i=1

(3) For any positive real number e,

202 (n 4+ 1)*(n® + 4n + 4 + 4e)
l6e(n+1+¢)

- <1 . 4(’”7;*'”> 2+
n

(1.13) Tt + &

Ant(n+ 1) (0 + 4n + 4 + 4e)
x| I'y + .
16e(n+1+¢)

THEOREM 1.3. Let M = CP"™"(c) be (n + m)-dimensional complex projective
space with holomorphic sectional curvature ¢ >0 and Q < M be a bounded com-
plex submanifold.  Then for the eigenvalues of a clamped plate problem (1.1),
we have

k

k 1/2
(1.14) > (Tjr = T) {Zrm_ 2F1/2+cn(+1))}

i=1

i 1/2
X{Z Ty — )7 (2(n +1)Fi1/2+cn(n+1))} .

i=1

COROLLARY 1.4. Under the same assumption as Theorem 1.3, for the eigen-
values T';’s of a clamped plate problem (1.1), we have

(1)
k

(1.15) Z(rkﬂ ~ T’

i=1

1 k
< —ZZ Tiet — TR + en(n+1) 20 + DIV + en(n + 1))

(1.16) it < Skvt + /S — T,
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1 & 1 &
Skt =7 T —kz @r'? 4+ en(n+ 1)+ DT + en(n + 1))
and
Ti1 = kZl"z—i— Zl" Zl"l/z—i—cn( +1)2n+ 1T} 24 en(n+1));

3)

202(n 4 1) (n2 + 4n + 4 + 4¢)
loe(n+1+¢)

< (1 L M) s i)/

(1.17) | P -‘rc

n2

2,2 20,2
" l_,l+cn(n+1) (n* 4+ 4n + 4 + 4¢) ’
loe(n+1+¢)

where ¢ is any positive real number.

Remark 1.2. Let Q be bounded domain with smooth boundary in Eucli-
dean space. Then, for the eigenvalue problem (1.1), Agmon [1] and Pleijel [17]
proved the following Weyl’s asymptotic formula

4
(1.18) [y ~ 167”41(4/" k — oo,
(e, vol Q)"

where ), is the volume of the unit ball in R”. The Weyl’s asymptotic formula
(1.18) also holds in general Riemannian manifolds. In the case of n-dimensional
complex manifold, since the real dimension is 2n, the Weyl’s asymptotic formula
(1.18) can be rewritten as

167*

1.19 Iy ~
( ) g (w2, VOl Q

)2/nk2/n’ k — oo

Therefore, we can conjecture that there exists a constant C, o depending only on
the dimension n and Q such that

(1.20) Tii1 < Cu ok Ty

THEOREM 1.5. Let M be n(> 3)-dimensional noncompact simply connected
complete Riemannian manifold with sectional curvature Sec satisfying —a*> < Sec <
—b?, where a > b >0 are constants. Assume that Q = M is a bounded domain
with smooth boundary. For the eigenvalue problem (1.1), we have
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(1.21) Z(rkﬂ —-T;)?

k 5 5 5\ Y172
n—1 a-—b
{4 (Tt =T (3/2—( L )}
i=1
x plr_ (=1, @b .
x <6 rk+1— <1 b2—|— >} .
{ — 6 6

Remark 1.3. If a =b =1, that is, M is the hyperbolic space, the inequality
(1.21) is the one of Wang and Xia [22] (see (1.9)).

COROLLARY 1.6. Under the same assumption as in Theorem 1.5, for the
eigenvalues T';'s of a clamped plate problem (1.1), we have

(1.22) ZF - <z4ZF -y} (”_1)2b2+“2_b2
. - k+1 k+1 4 4

—1)? a* — b?
2 =D, .
X( i 6 "t %

Remark 1.4. The inequality (1.22) is better than the one in [4]. If a=
b =1, the inequality (1.22) is the one of Cheng and Yang [11] (see (1.8)).

2. Preliminaries

Let M be n-dimensional Hermitian manifold and /4 be its Hermitian
metric. Then the real part of / is a Riemannian metric g on M and (M,g)
is a 2n-dimensional Riemannian manifold. Assume that z= (z!,...,z") =

(x!' 4+ v/ =1x"1 . x" 4+ +/—1x?") is the local coordinate system on M. we
have (see [14])

2n
g= Z gaﬁdXOC@dXﬁ,
o, f=1

h= Zh,fdz"(@d?
i,j=1
= Z(gi,j +V=1gi ;) dz' ®dz/

ij=1

= Zgﬂdx ® dx” f—z gij +V— g,,H])dZ/\dzl

o, =1
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Let (9) and (h¥) be the inverse matrixes of (94p) and (h;;), respectively, that is,

2n n
Zgwg})ﬁ _ 50([}’ thh][} _
=1 p=l1

Then we have hV = gV — /—1g""J.

If the Hermitian manifold (M%) is Kaélerian, the Hermitian connection is
the same as Riemannian connection. Therefore, the Laplacian and gradient of
Riemannian metric can be rewritten as follows.

Vf,he C*(M,C), we have

2n 2n " 6f
-5 {Ei)
o= y=
—22(2}11” 0zp

xOf

0 " of
Fen(Erd)s

NS
o, f=1
. h]l a f
0zioz)’

i,j:l

2n
. Of Oh
= %:%g ﬁ@x’ oxP

5 Oh o oh O

= azl az/ ozt 0zJ

where f,.p is the covariant derivative of f, with respective to Levi-Civita
connection, Vf is the gradient of f and the - is the Riemannian inner product.
In particular,

2n rd
7 o of o of o of
2 _Vf.Vf = o 2N Wil L NT i L
|Vf|[} Vf Vf %ﬂZ:lg Ox® ax/)’ l'jzzl aZl azj IJZ:I azl aZ/

3. A useful lemma
We need the following lemma to prove our results.
Lemma 3.1. Let T'; be the i-th eigenvalue of the above clamped plate eigen-

value problem (1.1) and u; be the orthonormal eigenvalue corresponding to T';, that
is, u; satisfies
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Azu,- = Fiui, in Q,
Ju;
(3.1) u,:a—i’}:o, on 0Q,
Jquity =0y, for any i, j.
Then for any complex value function ge C*(Q,C)N C?(0Q,C), we have

2 2
Z L1 — J \Vg|*u?

i=1

k
Tt — T _ 1
< ;%L}(WQ - Vui|> + Re(u:AgVg - Vuy) +Zui2|Ag|2>

k
+ 3 (Ths1 =T
i=1

x j (u2|AgP + 4(Vg - Vu? + Re(uAg(Va - Vu))) — 2ulVg|*Auy)
Q

and

K
3) Y (T — J Vg|*u?

i=1

< iuj (wmf—lj 2 Re(Vg-V(Ag))—lj |Ag|2u%)
P B Q 2)a 4Ja

k
P (et - J (—u2|Ag)? +4|Vg - Vi
= Q

— 2u? Re(Vg - V(Ag)) — 2u;|Vg|*Au;).
where B is any positive constant.

Proof. Define
Clij = guiuj = uaj,-,
JQ

1
b,’j = (Vg . Vui + E%Ag) uj = —bj,',
JQ

ci = | uj(A(uiAg) +2A(Vg - Vw;) + 2Vg - V(Au;) + AgAu;).
Q



Then from

(3.4)

(I -
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the Stokes’ theorem, we have
Fi)a; = Q(g”iAzuj — g’ u;)
= | (A(gui)Au; — A(gu;)Au;)
Q

(u:Ag +2Vg - Vu;)Au; —
Q

“a

= C,'j.

uj(A(uiAg) + 2A(Vg - Vu;) + AgAu; + 2V (Ay;) - Vg)

From (3.4), the Stokes’ theorem and the Paseval Identity, we have

(3.5)

From (3.5),

(3.6)

(Ths1 —

(A(gu;)uiAg + 2A(gu;)Vg - Vu;
0

i

aqu
j=1

~,

o0

> (T -

—

I))lay|*.

~,

we have

Z|Cly|
|a1/| +Z l_‘kJrl -

0

< 2T

|a11‘

%
{O W

k
Z L1 —

|a,]\

(u?|Ag|* + 4(|Vg - Vu;|* + Re(u:Ag(Vg - Vi)
Q

(—u?|Ag|* + 4|Vg - Vu;|* — 2 Re(u?Vg - V(Ag))

(u?|Ag|* + 4(|Vg - Vu;|* + Re(u;Ag(Vg -

J gui(A(u;Ag) + 2A(Vg - Vu;) + AgAu; + 2V(Aw;) - Vg)
Q

— 2Au; div(gu;Vg) + gu;AgAu;)

— 2u,~|Vg|2Au,~)

— 2u;{Vg|*Au;)

Vu;))) — 2u,~|Vg\2Au,-)

257
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- J (—u?|Ag|* +4|Vg - Vus|* — 2 Re(u?Vg - V(Ag)) — 2u;|Vg|* Au;)
Q

+ (Cry1 — |au|

k
j=1

J

From the definitions of b;’s and a;’s and the Paseval Identity, we have

1
(3.7) J \Vg|*u? —2J gu,(Vg-Vu,-—i—EuiAg)

0
=2 aby.
=1

From (3.5), (3.6), (3.7) and the Cauchy-Schwarz inequality, we have

(38) (Tew —T )j Vgl 2u?

o0

= —2(Tks1 — Fi)z Za_ijby 2(Tyy1 — Ty )2 Z @b
/=1 j=k+1

k 0
< _Z(Fk-H - 1—[)2 Z l/bl/ + (rk-H I; )3ﬂi Z ‘a5/|2

= k11
| PRI i b |2
i
Bi j=kt1

k
= 2(Tks1 — Zalj i — (Thky1 — Fi)3ﬁiz ‘aii‘z
=

T — T 2
R

J=1

|y
+ +ﬂ Z|bu| + (Tt =T Bi(Tepy = T Z|az/|

<2 —T z =T ol
J=1
F
k+1 Z|bl]|
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I =
+ +1/)7 Z |b1/‘ + (D1 — Z |a,J|
i j=1

M»

+ (Tt = T2 (Tt — j)|“ij|2

1

M* T

k
= —2(Tgs _r,»)z @b+ (Tyy — Z (T; — T))ay|*

1

Fk+1 Z by 2

~.
Il

1—* e}
+ k+1ﬁ Z |b,]‘ + (Tpy1 — Z (I —1I) |a,,|
i j=1
k
= —2(1"k+1 — Zaljb,j + rk+1 — Z |a,]|

F j Iy I; 1
k+1ﬂ Z|b1]‘ + l+;; J ‘Vg Vu; + = “lAg

2

(Do — n)zﬁ,j (u2|Agl + 4(|Vg - Va?
Q

+ Re(u;Ag(VF - Vuy))) — 2u;|Vg|*Au;)

k k
= —2(Fk+1 - F,’)z Za_”b” + (rk-H Z |a11|

J=1

| R 2
et 2 gy,
/gi Z i

J=1

Cip — T 1 !
+LJ (Vg~Vu,~|2——J u} Re(V@V(Ag))——J |A9|2”i2)
B Q 2o 4
(T — F,-)zﬁ,-J (—u|Ag| + 4|Vg - Vi,
Q

— 2u} Re(Vg - V(Ag)) — 2ui|Vg|*Auy)

where f; is any positive constant.
Since

(39) a; = dji, blj = _bjia

from the Cauchy-Schwarz inequality, we have
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(3.10) —zz (Tks1 — D) 2agby = 22 (Tisr — T)(T; — Ty)agby
i,j=1

5 2 2

Z T — — I3)"Bilayl

Ly =1, 2
+ZT’|b,-,| :
ij=1 i

From (3.10), (3.8) and the Stokes’ theorem, we have

k

B11) Y (T —Ty)? J Vgl*u;
i=1
KT - T
< Z/HTJ <|Vg.Vui|2+Re(u,-Ang Vul)+ u; Agl)
i= i Q
k

+ Y (T —T0)%B;

i=1

X J (ui2|Ag|2 +4(|Vg - Vu,'|2 + Re(u;Ag(Vg - Vuy))) — 2ui\Vg|2Aui)
Q

k
+ Z Trp1 = T)(Tieyr = )(F = Fj)ﬁi|aij|2
i,j=1

_ z":rm ~T;
i=1 ﬁi
» 1 2 _ 1 29
X Vg - Vui|” — 5| u; Re(Vg-V(Ag)) — 5| |Agl7y;
Q 2 Q 4 Q

4+ (T — r»%] (—u?|Agl* + 4Vg - Vi)
Q

— 2u; Re(V3 - V(Ag)) — 2u|Vg|*Au).

k

+ 3 (T = T)(Tagr = T)(T = T))Bilag|*.
ij=1
Taking f, =---=f, = in (3.11), we have (3.2) and (3.3). O

Remark 3.1. (3.2) for f e C*(Q,R) can be found in [22], and the proof
there is different from ours.
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4. FEigenvalue problems on CP"(c)

Proof of Theorem 1.1. Let Z=(Z° Z' ... Z") be a homogeneous coor-
dinate system of CP"(c) (Z? € C). Then the Fubini-Study metric is

4 D VAlR Spo dZPdZP — 30 Z7 Az Yy ZF dzﬁ
¢ OYIMVAIDE
Defining f,5, for p,q=0,1,...n, by

41)  h=

ZrZ4
42 iy r——
( ) qu Zrn:O VAVAR
we have
P.9=0

For any fixed point P e Q, since any two points in CP"(¢) are holomorphic
isometric, without loss of generality, we can assume that at P,

(4.4) z'#0, Z'=...=Z7"=0.

We know that
A zZ"
1 _ _
(z =502 = 0)

is a local holomorphic coordinate system of CP”(c) in a neighborhood U of
PeQ. Then in U we have

(4.5) Z(P)=---=z"(P) =0,
for p,g=0,1,...,n,

zrzq
L+300 |Zr|27

where z” = 1 and the Fubini-Study metric can be rewritten as & = h dz' ® dz/,
where

4 5,“ Zj;
(4.7) = ( Y 2 2 2) :
T+ 12717 A+ 225 12)

The inverse matrix of (/) is

(4.8) 5=§<1+Z|z|> i+ ziz])

(4.6) Jog =
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that is,

Zh’Ph -=Jy

From (2.2) and (4.8), at the point P, we have

c 0
-~ = = =1,...
2530 P=0a=1...n
(4.9) Vig=4c¢ 0
Eﬁ? q_Oap_la"'7n7
0, otherwises,
—m,p—q—O
(4.10) Afpg =1 Opy, 1< p,g<n,
0, otherwises
and
au,
(4.11) Vi = CZ ,

From (4.9), (4.10) and (4.11), at the point P, we have

n
> Val® = en,

p,q=0

Z AfiVfog =0

p,q=0

> 1AGlP = Pnln+ 1),

P.9=0

n
c
> [V Vaul” =5 [V

P,9=0

(4.12)

Since the point P is arbitrary, (4.12) holds on Q.
From the Cauchy-Schwarz inequality and the Stokes’ theorem, we have

(4.13) JQ \Vu;|* = ‘[Q(fui)Aui < (L u? JQ(Aui)2>l/2 = (JQ u,»(Azu,-)>l/2 =12

Taking g = f,5, p,¢=0,1,...n in (3.2) and making summation on p and ¢ from
0 to n, from (4.13), we have
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k

(4.14) e (Tt — ) <Zr"“ ( 1/2+lcn(n+1)>

i=1

+ﬂ2 Tt — 0)*Q2e(n+ 1T 1/2—|—C n(n+1)).
Taking
P 1/2
> (Tk1 = T0)*e(n+ D2 + 2nln + 1))
p=|"~ 1 :
DTkt = )<2F1/2+4c n(n +1)>
we have (1.10). O

We need the following lemma in [22].

Lemma 4.1. Let {a;}",, {bi};", and {c;}", be three sequences of non-
negative read numbers with {a;};", decreasing and {b;}!", and {c;}!", increasing.
Then we have

(415) <i a?b,) <i Cll‘C,'> < (i Cl?) (i a,-bici> .
i=1 i=1 i=1 i=1

Proof of Corollary 1.2. Taking
a; =Ty =T,
bi=2n+ I + en(n+1),
¢ = 2Fil/2 +cn(n+1),

from (1.10) and Lemma 4.1, we have (1.11). From (1.11), we can deduce (1.12).
From the Young’s inequality (e > 0), we have

4.16) 2T+ en(n+1)2(n+ DT} + en(n + 1))

1/2 + cznz(n + 1)2

202(n + 1)*(n + 2)?
4¢

202 (n 4+ 1)*(n® + 4n + 4 + 4e)
16e(n+1+¢)

=4(n+ DI+ 2en(n+ 1)(n+2)T;

S4(n+1)l",-+4sl",—+c +nt(n+1)?

:4(n+1+.s)<1",~+c
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From (1.11) and (4.16), we have

k

417) Y (Typ —T)°

i=1

16e(n+ 1 +¢)

1

n+1+8 k (r ( cznz(n+l)2(n2+4n+4+4e)>
ki1 — T i .
=1

From (4.17) and Corollary 2.1 in Cheng and Yang [9] (see also [10]), we can
deduce (1.13). O

5. Eigenvalue problems on the submanifold of CP""(c)

Proof of Theorem 1.3. Let 1: Q — CP"™(c) be the inclusion map and an
imbedding. Defining d,;, for p,¢g=0,1,...n+m, by

VAYA]
(5.1) dpg = Stz
Zr:O AV
we have
n+m _
(5.2) dpg = dyp, dpgdyg = 1.
P,q=0

For any fixed point P e Q, since any two points in CP"*"(c¢) are holomorphic
isometric, without loss of generality, we can assume that at P,

(5.3) z'+0, Z'=...=zM"m =,

1
(Zl _ Z Zn+m _ Zn+m>
_ZO N —ZO

is a local holomorphic coordinate system of CP"*"(¢) in a neighborhood U of
PeQ, and

(5.4) 1:QNU < U,
(G- N L0 1Y AL WY T LI ) R
where /;’s are holomorphic functions defined in QN U satisfying

Oh;
ozk | p

=0, i=1,...mk=1,...n

Then in U we have
(5.5) zl(P) =...=7""(P) =0,
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for p,g=0,1,...,n+m,
zPz4
dpg = TS
+Zr:] ‘Z |

where z° =1 and the Kihlerian metric on Q at the point P induced from the
Fubini-Study metric 2~ on CP"™(c) by 1 can be rewritten as

(5.6)

% i — 4 ~ i —
glp=("h)|p = g,j,-"P dz'|, @ dz/|p = E()tf/‘ dz'|p @ dz/|.
Therefore, the inverse matrix of (g;p) is

= c
(57) o7lp =500

that is,
n N
> g"g = 0y
r=1

From (5.6) and (5.7), at the point P, we have

g%, p=0,q=1...,n,
(58) Vg = %a—i_p, q=0,p=1,....n,
0, otherwises
and
—cn, p=¢gq=0,
(5.9) Ady; =< bpq, 1<p,q<n,
0, otherwises.

From (5.8) and (5.9), we have

n—+m
2
g |Vd,y|~ = cn,
1,9=0
n+m o
> AdygVd,; =0,
p.9=0

(5.10)

n+m

> |Ady* = nln+1),
p,q=0

n—+m ) c )
> |Vdyg - Vui| =5 [Vail.
»,q=0
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Since the point P is arbitrary, (5.10) holds on Q. Similar to the process of
obtaining (3 2), we have

510 YT -1 | 1w

i=1

r
< Z k“ J (|Vg Vui|? + Re(u;AgVg - Vu;) + u,2|Ag|2>

k
+> (Tep — )%
i1

“ J (21Agl? +4(Vg - Viul® + Re(uAg(Vg - Vi) — 2u| Vg 2 Auy).

o]

Taking g = d,g, p,q=0,1,...n+m in (5.11) and making summation on p and ¢
from 0 to n+m, from (4.13) and (5.10), we have

k

(512) en> (Tper —T) <Zr"+‘ ( 1/2+icn(n+l)>

i=1

k
Z Tipt — 02 Qe(n+ DY + En(n + 1)),
Taking
k 1)2
> (Tk1 = T0)*e(n+ D2 + 2nn + 1))
p=|" 1 ,
> (T = r)<2r”z+4 n(n+ 1))
we have (1.14). U

Proof of Corollary 1.4. The proof of this corollary is similar to the one of
Corollary 1.2. n

6. Eigenvalue problems on complete noncompact Riemannian manifold

Proof of Theorem 1.5. For p ¢ Q fixed point, the distance function p(x) is
defined by p(x) = distance(x, p). From |Vp| =1 and Proposition 2.2 of [19], we
have

(6.1) Vp - V(Ap) = —[Hess p|* — Ric(Vp, Vp).
From the discussion in [5], we have
(6.2)  2|Hess p|> 4+ 2 Ric(Vp, Vp) — (Ap)* < —(n — 1)*b* + (a® — b?).
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From (4.13) and (6.2), we have
1 1
(63) [ (1w v =3[ o viam — | oz
Q Q Q
< J |Vay|? +%(f(n —1)%h 4 (a® - b?))
Q

1/2 (n—1)2b2+a2—b2

<I;
4 4

and

(6:4) J (=17 |Ap|* + 4|V - Vauy|* = 2uF (Vp - V(Ap)) — 2ui|Vp|* Auy)
Q
< 6J Vs> + J u?(2[Hess p|* + 2 Ric(Vp, Vp) — (Ap)?)
Q Q

<6<F~1/2—("_ 1)2b2+a2_b2>.

6 6

Taking g = p in (3.3), from (6.3) and (6.4), we have
k

) —1)° 2_p?
(6.5) Z(rkﬂ <Z ]H < r'2_ (n 2 ) p? 44 1 )

i=1
k - 1)? a* — b2
Coii — T2 T2 — (n 2 )
+ﬁ6;( k+1 1) ( i 6 b + 6

Taking

6

™=

Il
_

2
(rk-H I; ) (rl - 6 6

=
Il
™=
IS
o
|
S
o
N——

n—1)>
(Fk+l_r)<r,‘1/2—( 1 ) b2+ 1

we have (1.21). O

Proof of Corollary 1.6. Taking

aj =T =T,
—1)2 a’ — b2
p=ofr 1oy
( 6 "t ¢ )
2 2 g2
B 1/2 (n—l) 2 a—b
¢ = 4<F ) b” + 1 ,

from the Lemma 4.1 and (1.21), we have (1.22). O
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