
S. SAKAGUCHI
KODAI MATH. J.
37 (2014), 680–701

INTERACTION BETWEEN FAST DIFFUSION AND

GEOMETRY OF DOMAIN*

Shigeru Sakaguchi

Abstract

Let W be a domain in RN , where Nb 2 and qW is not necessarily bounded. We

consider two fast di¤usion equations qtu ¼ divðj‘ujp�2‘uÞ and qtu ¼ Dum, where 1 <

p < 2 and 0 < m < 1. Let u ¼ uðx; tÞ be the solution of either the initial-boundary

value problem over W, where the initial value equals zero and the boundary value is

a positive continuous function, or the Cauchy problem where the initial datum equals

a nonnegative continuous function multiplied by the characteristic function of the set

RNnW. Choose an open ball B in W whose closure intersects qW only at one point, and

let a >
ðN þ 1Þð2� pÞ

2p
or a >

ðN þ 1Þð1�mÞ
4

. Then, we derive asymptotic estimates

for the integral of ua over B for short times in terms of principal curvatures of qW

at the point, which tells us about the interaction between fast di¤usion and geometry of

domain.

1. Introduction

Let W be a domain in RN , where Nb 2 and qW is not necessarily bounded.
We consider two fast di¤usion equations of the forms qtu ¼ divðj‘ujp�2‘uÞ and
qtu ¼ Dum, where 1 < p < 2 and 0 < m < 1. Let f A C0ðqWÞ be a function
satisfying

0 < c1 a f ðxÞa c2 ðx A qWÞð1:1Þ

for two positive constants c1 and c2, and let g A C0ðRNÞ be a function satisfying

0a gðxÞa c3 ðx A RNÞð1:2Þ
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for a positive constant c3. Consider the bounded solution u ¼ uðx; tÞ of either
the initial-boundary value problem:

qtu ¼ divðj‘ujp�2‘uÞ in W� ð0;yÞ;ð1:3Þ
u ¼ f on qW� ð0;yÞ;ð1:4Þ
u ¼ 0 on W� f0g;ð1:5Þ

or the Cauchy problem:

qtu ¼ divðj‘ujp�2‘uÞ in RN � ð0;yÞ and u ¼ gXW c on RN � f0g;ð1:6Þ
where XW c is the characteristic function of the set Wc ¼ RNnW. The first
theorem tells us about the interaction between fast di¤usion and geometry of
domain for qtu ¼ divðj‘ujp�2‘uÞ.

Theorem 1.1. Let u be the solution of either problem (1.3)–(1.5) or problem

(1.6). Let a >
ðN þ 1Þð2� pÞ

2p
and x0 A W. Assume that the open ball BRðx0Þ

centered at x0 and with radius R > 0 is contained in W and such that
BRðx0ÞV qW ¼ fy0g for some y0 A qW and qWVBdðy0Þ is of class C 2 for some
d > 0. Suppose that gðy0Þ > 0 for problem (1.6). Then we have:

lim
t!0þ

t�ðNþ1Þ=2p
ð
BRðx0Þ

ðuðx; tÞÞa dx ¼ c
YN�1

j¼1

1

R
� kjðy0Þ

� �( )�1=2

:ð1:7Þ

Here, k1ðy0Þ; . . . ; kN�1ðy0Þ denote the principal curvatures of qW at y0 with
respect to the inward normal direction to qW and c is a positive constant

depending only on p, a, N, and either f ðy0Þ or gðy0Þ. When kjðy0Þ ¼
1

R
for some

j A f1; . . . ;N � 1g, the formula (1.7) holds by setting the right-hand side to y

(notice that kjðy0Þa
1

R
for every j A f1; . . . ;N � 1g).

Concerning qtu ¼ Dum with 0 < m < 1, let u ¼ uðx; tÞ be the bounded
nonnegative solution of either the initial-boundary value problem:

qtu ¼ Dum in W� ð0;yÞ;ð1:8Þ
u ¼ f on qW� ð0;yÞ;ð1:9Þ
u ¼ 0 on W� f0g;ð1:10Þ

or the Cauchy problem:

qtu ¼ Dum in RN � ð0;yÞ and u ¼ gXW c on RN � f0g:ð1:11Þ
The second theorem tells us about the interaction between fast di¤usion and
geometry of domain for qtu ¼ Dum.
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Theorem 1.2. Let u be the solution of either problem (1.8)–(1.10) or

problem (1.11). Let a >
ðN þ 1Þð1�mÞ

4
and x0 A W. Assume that the open ball

BRðx0Þ centered at x0 and with radius R > 0 is contained in W and such that

BRðx0ÞV qW ¼ fy0g for some y0 A qW and qWVBdðy0Þ is of class C 2 for some
d > 0. Suppose that gðy0Þ > 0 for problem (1.11). Then we have:

lim
t!0þ

t�ðNþ1Þ=4
ð
BRðx0Þ

ðuðx; tÞÞa dx ¼ c
YN�1

j¼1

1

R
� kjðy0Þ

� �( )�1=2

:ð1:12Þ

Here, k1ðy0Þ; . . . ; kN�1ðy0Þ denote the principal curvatures of qW at y0 with
respect to the inward normal direction to qW and c is a positive constant

depending only on m, a, N, and either f ðy0Þ or gðy0Þ. When kjðy0Þ ¼
1

R
for some

j A f1; . . . ;N � 1g, the formula (1.12) holds by setting the right-hand side to y.

When p > 2, m > 1, a ¼ 1, and f 1 g1 1, the same formulas (1.7) and
(1.12) were obtained for problems (1.3)–(1.5) and (1.8)–(1.10) in [MS1]. With
the aid of the techniques employed in [MS3], one can easily see that the
formulas (1.7) and (1.12) also hold true for problems (1.6) and (1.11). More-
over, in [MS3], the nonlinear di¤usion equation of the form qtu ¼ DfðuÞ where
d1 a f 0ðsÞa d2 ðs A RÞ for some positive constants d1 and d2 was also dealt with.
By a little more observation, we see that any a > 0 is OK for these cases.

In Theorems 1.1 and 1.2, if p is close to 1 or if Nb 4 and m is close

to 0, then a ¼ 1 can not be chosen. Indeed, when a ¼ ðN þ 1Þð2� pÞ
2p

or

a ¼ ðN þ 1Þð1�mÞ
4

, c ¼ y.

The main ingredients of the proofs of the formulas (1.7) and (1.12) consist of
two steps. One is the reduction to the case where qW is bounded and of class
C2, and where both f and g are constant, with the aid of the comparison
principle. The other is the construction of appropriate super- and subsolutions
to the problems near qW in a short time. In fact, in [MS1], such barriers were
constructed in a set Wr � ð0; t�; with

Wr ¼ fx A W : distðx; qWÞ < rg;ð1:13Þ

where r and t were chosen su‰ciently small. When p > 2 or m > 1, the
property of finite speed of propagation of disturbances from rest yields that
both the solution u and the barriers equal zero on Gr � ð0; t�; where

Gr ¼ fx A W : distðx; qWÞ ¼ rg:ð1:14Þ

This property does not occur when 1 < p < 2 or 0 < m < 1, because of the
property of infinite speed of propagation of disturbances from rest. Also in
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[MS3], the equation qtu ¼ DfðuÞ has the property of infinite speed of propaga-
tion of disturbances from rest. To compare the solution with the barriers on
Gr � ð0; t�, in [MS3], the result of Atkinson and Peletier [AP] concerning the
asymptotic behavior of one-dimensional similarity solutions and the following
short time behavior of u obtained by [MS2] play a key role:

lim
t!0þ

�4tFðuÞ ¼ distðx; qWÞ2 uniformly on every compact subset of W;ð1:15Þ

where the function F is defined by

FðsÞ ¼
ð s

1

f 0ðxÞ
x

dx for s > 0:ð1:16Þ

However, when 1 < p < 2 or 0 < m < 1, the short time behavior of u is not
controlled by the distance function in such a way. To overcome this di‰culty
in the proofs of Theorems 1.1 and 1.2, we use the fact that the short time
behavior of the solution u is described by the boundary blow-up solutions given
in [M, BM]. The results of the present paper in the case where f 1 g1 1 were
announced in [S].

The present paper is organized as follows. Section 2 is devoted to some
preliminaries; the definitions of bounded solutions are mentioned, the regularity
results for the solutions are quoted from the references, and we refer to the
references for the comparison principles. Throughout the following four sections
the comparison principles, which are mentioned in Section 2, play a key role. In
Section 3, it is shown that the short time behavior of the solutions is described
by the boundary blow-up solutions given in [M, BM] in the case where qW is
bounded and of class C2 and where both f and g are positive constants. In
Section 4, the problems are reduced to the case where qW is bounded and of
class C 2 and where both f and g are positive constants. Sections 5 and 6 are
devoted to the construction of super- and subsolutions near the boundary qW for
short times in the p-Laplace case and in the porous medium type case, respec-
tively. In Section 7 we prove Theorems 1.1 and 1.2.

2. Prelimiaries: bounded solutions, regularity and comparison principles

Let us first consider the equation qtu ¼ divðj‘ujp�2‘uÞ with 1 < p < 2. By
a bounded solution u of problem (1.3)–(1.5) we mean that u A C0ðW� ð0;yÞÞV
L

p
locð0;y;W 1;p

loc ðWÞÞVLyðW� ð0;yÞÞ satisfies (1.3) in the weak sense and uð�; tÞ
! 0 in L1

locðWÞ as t ! 0þ, and by a bounded solution u of problem (1.6) we mean
that u A Clocð0;y;L2

locðRNÞÞVL
p
locð0;y;W 1;p

loc ðR
NÞÞVLyðRN � ð0;yÞÞ satisfies

the di¤erential equation in the weak sense and uð�; tÞ ! gð�ÞXW cð�Þ in L1
locðRNÞ

as t ! 0þ.
It is known that such bounded solutions u together with ‘u are locally

Hölder continuous, and both boundary and initial regularity of such solutions
are known. See [DiB, DiBGV, L]. Moreover, it is shown in [BIV, Corollary 2.1,
p. 2159] that such solutions are local strong ones, more precisely qtu A L2

loc.
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The comparison principle for such strong solutions is obtained by Kurta
[K1, K2] for both the initial-boundary value problem and the Cauchy problem.
Furthermore, note that one can easily prove Kurta’s comparison principle also
for bounded weak solutions by taking his testing function modulo a Steklov time
averaging process. See [DiB, DiBGV] for the process, and see also [DiBGV,
Corollary 1.1, p. 189] for the comparison principle for weak solutions of the
initial-boundary value problem over bounded domains.

Let us next consider the porous medium type equation qtu ¼ Dum with
0 < m < 1. By a bounded nonnegative solution u of problem (1.8)–(1.10) we
mean that u A C0ðW� ð0;yÞÞVLyðW� ð0;yÞÞ is nonnegative and satisfies (1.8)
in the weak sense and uð�; tÞ ! 0 in L1

locðWÞ as t ! 0þ, and by a bounded non-
negative solution u of problem (1.11) we mean that u A Clocð0;y;L2

locðRNÞÞV
LyðRN � ð0;yÞÞ is nonnegative and satisfies the di¤erential equation in the
weak sense and uð�; tÞ ! gð�ÞXW cð�Þ in L1

locðRNÞ as t ! 0þ.
It is known that such bounded solutions u are locally Hölder continuous,

and both boundary and initial regularity of such solutions are known. See
[DiB, DiBGV].

The comparison principle for such solutions of both the initial-boundary
value problem and the Cauchy problem can be easily proved by modifying
the proofs of [MS3, Theorem A.1, pp. 253–257] and [BKP, Proposition A,
pp. 1006–1008], with the aid of an idea of Dahlberg and Kenig [DaK, Lemma
2.3, pp. 271–273] which circumvents the singularity coming from um with
0 < m < 1 at u ¼ 0. See also [DiBGV, Corollary 5.1, p. 201] for the comparison
principle for weak solutions of the initial-boundary value problem over bounded
domains.

3. Initial behavior and boundary blow-up solutions

Let W be a domain in RN where qW is bounded and of class C2. Then it is
known that there exists a unique solution v A W

1;p
loc ðWÞ of

divðj‘vjp�2‘vÞ ¼ 1

2� p
v and v > 0 in W;ð3:1Þ

vðxÞ ! y as x ! qW;ð3:2Þ
vðxÞ ! 0 as jxj ! y provided W is unbounded:ð3:3Þ

Here, v belongs to C 1ðWÞ and ‘v is locally Hölder continuous in W, and
moreover

vðxÞ
dðxÞ�p=ð2�pÞ ! cðpÞ as dðxÞ ! 0 uniformly in W;ð3:4Þ

where

dðxÞ ¼ distðx; qWÞ for x A W and cðpÞ ¼ 2� p

p

2� p

2pðp� 1Þ

� ��1=ð2�pÞ
:ð3:5Þ
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The case where W is bounded was proved in [M, Theorem 6.4 and Corollary 4.5,
p. 245 and p. 231] and the case where W is unbounded, that is, W is an exterior
domain, the existence of v can be obtained with the aid of the argument in
[BM, 1.6, p. 12], and the uniqueness also follows by virtue of (3.3).

Also, it is known by [BM, Theorem 2.7, pp. 18–19] that there exists a unique
solution w A C2ðWÞ of

Dwm ¼ 1

1�m
w and w > 0 in W;ð3:6Þ

wðxÞ ! y as x ! qW;ð3:7Þ
wðxÞ ! 0 as jxj ! y provided W is unbounded:ð3:8Þ

Note that in [BM] the function wðxÞm is dealt with instead of wðxÞ. Moreover,

wðxÞ
dðxÞ�2=ð1�mÞ ! cðmÞ as dðxÞ ! 0 uniformly in W;ð3:9Þ

where

cðmÞ ¼ 2mð1þmÞ
1�m

� �1=ð1�mÞ
:ð3:10Þ

See [BM, Theorem 2.3, p. 17] or [M, Corollary 4.5, p. 231] for (3.9).

Proposition 3.1. Assume that qW is bounded and of class C2. Let u be the
solution of either problem (1.3)–(1.5) or problem (1.6) where both f and g are
positive constants. Then

t�1=ð2�pÞuðx; tÞ ! vðxÞ as t ! 0þ uniformly on compact sets in W;ð3:11Þ
and moreover

uðx; tÞa t1=ð2�pÞvðxÞ in W� ð0;yÞ;ð3:12Þ

where v is the solution of problem (3.1)–(3.3).

Proof. Define the function V ¼ Vðx; tÞ for ðx; tÞ A W� ð0;yÞ by

Vðx; tÞ ¼ t1=ð2�pÞvðxÞ:
Then V solves

V > 0 and qtV ¼ divðj‘V jp�2‘VÞ in W� ð0;yÞ;ð3:13Þ
V ¼ y on qW� ð0;yÞ:ð3:14Þ

Therefore it follows from the comparison principle that

uaV in W� ð0;yÞ;
which gives (3.12).
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Since qW is bounded and of class C2, there exists a number e0 > 0 such that,
for each e A ð0; e0�, the set We defined by

We ¼ fx A RN : distðx;WÞ < egð3:15Þ

is also a domain with bounded C2 boundary qWe. To distinguish the notation
We from the complement Wc ¼ RNnW, hereafter we never use the letter ‘‘c’’ for
this definition (3.15). For each e A ð0; e0Þ, consider the boundary blow-up solu-
tion ve A C 1ðWeÞ of

divðj‘vejp�2‘veÞ ¼
1

2� p
ve and ve > 0 in We;ð3:16Þ

veðxÞ ! y as x ! qWe;ð3:17Þ
veðxÞ ! 0 as jxj ! y provided We is unbounded:ð3:18Þ

In view of the argument in [M, Proof of Theorem 4.4, pp. 239–240], we observe
that distðx; qWeÞ ¼ distðx; qWÞ þ e for x A W and there exists r > 0 independent
of e such that We satisfies the uniform interior and exterior ball condition with
radius r for all e A ð0; e0�, and we see that

ve ! v as e ! 0þ uniformly on compact sets in W:ð3:19Þ

Define the function Ve ¼ Veðx; tÞ for ðx; tÞ A We � ð0;yÞ by

Veðx; tÞ ¼ t1=ð2�pÞveðxÞ:

Then, for each e A ð0; e0�, Ve solves

Ve > 0 and qtVe ¼ divðj‘Vejp�2‘VeÞ in We � ð0;yÞ;ð3:20Þ
Ve ¼ y on qWe � ð0;yÞ;ð3:21Þ

Ve ¼ 0 in We=2:ð3:22Þ

Hence, for each e A ð0; e0�, there exists te > 0 such that

Ve a u
on qW� ð0; te� if u solves problem ð1:3Þ�ð1:5Þ;
on qWe=2 � ð0; te� if u solves problem ð1:6Þ;

�

since both f and g are positive constants and both qW and qWe=2 are compact
sets in We. Thus, we have from the comparison principle

Ve a u in W� ð0; te�;

which together with (3.12) concludes that

veðxÞa t�1=ð2�pÞuðx; tÞa vðxÞ for every ðx; tÞ A W� ð0; te�:

Therefore (3.11) follows from (3.19). r
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Proposition 3.2. Assume that qW is bounded and of class C2. Let u be the
solution of either problem (1.8)–(1.10) or problem (1.11) where both f and g are
positive constants. Then

t�1=ð1�mÞuðx; tÞ ! wðxÞ as t ! 0þ uniformly on compact sets in W;ð3:23Þ
and moreover

uðx; tÞa t1=ð1�mÞwðxÞ in W� ð0;yÞ;ð3:24Þ

where w is the solution of problem (3.6)–(3.8).

Proof. This follows from the same argument as in the proof of Proposition
3.1. r

4. Reduction to the case where qW is bounded and of class C2 and
where both f and g are positive constants

Let us first consider the solution u of problem (1.3)–(1.5). Let a >
ðN þ 1Þð2� pÞ

2p
, x0 A W, and assume that BRðx0Þ is contained in W and such

that BRðx0ÞV qW ¼ fy0g for some y0 A qW and qWVBdðy0Þ is of class C2 for
some d > 0. We find a bounded C2 domain W� satisfying

BRðx0ÞHW� HW; BRðx0ÞV qW� ¼ fy0g; and

Bd=2ðy0ÞV qWH qW� V qWHBdðy0ÞV qW:

Let ûu ¼ ûuðx; tÞ be the bounded solution of the initial-boundary value problem:

qtûu ¼ divðj‘ûujp�2‘ûuÞ in W� � ð0;yÞ;ð4:1Þ
ûu ¼ max f on qW� � ð0;yÞ;ð4:2Þ
ûu ¼ 0 on W� � f0g:ð4:3Þ

Then by the comparison principle we have

ua ûu in W� � ð0;yÞ:ð4:4Þ

Take a small e > 0 arbitrarily. Choose a function f̂fe A C2ðqW�Þ satisfying

f̂feðy0Þ ¼ f ðy0Þ þ
e

2
; f̂fe ¼ max f þ e

2
on WV qW�; andð4:5Þ

f̂fe b f on qWV qW�:

Let v̂ve A C 1ðW�Þ solve

0 ¼ divðj‘v̂vejp�2‘v̂veÞ in W�;ð4:6Þ

v̂ve ¼ f̂fe on qW�:ð4:7Þ
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Then by the comparison principle we have

ua v̂ve in W� � ð0;yÞ:ð4:8Þ

Moreover, we can find a small number de A ð0; d=9Þ and two C 2 domains Wþ; e

and W�; e having bounded C2 boundaries with the following properties: both Wþ; e

and RNnW�; e are bounded; R
NnW�; e HB3deðy0Þ; BRðx0ÞHWþ; e HW� HWHW�; e;

BRðx0ÞV qWþ; e ¼ BRðx0ÞV qW�; e ¼ fy0g; qWþ; e V qW� HB2deðy0ÞV qW;

Bdeðy0ÞV qWH qWG; e V qWHB2deðy0ÞV qWðH qW� V qWÞ;
f ðy0Þ � ea f on B4deðy0ÞV qW and v̂ve a f ðy0Þ þ e on B4deðy0ÞVW�:ð4:9Þ

Let u e
G ¼ ue

Gðx; tÞ be the two bounded solutions of the initial-boundary value
problems:

qtu
e
G ¼ divðj‘ue

Gj
p�2‘ue

GÞ in WG; e � ð0;yÞ;ð4:10Þ

u e
G ¼ f ðy0ÞG e on qWG; e � ð0;yÞ;ð4:11Þ

u e
G ¼ 0 on WG; e � f0g:ð4:12Þ

Here we obtain

Proposition 4.1. Let u be the solution of problem (1.3)–(1.5). For every
small e > 0 there exists te > 0 satisfying

ue
� a ua ue

þ in BRðx0Þ � ð0; te�;

where ue
G are the solutions of problems (4.10)–(4.12).

Proof. By combining (4.8) and the second inequality of (4.9) with (4.11),
we see that

ua ue
þ on ðqWþ; e VB4deðy0ÞÞ � ð0;yÞ:ð4:13Þ

Since qWþ; enB4deðy0Þ is a compact set contained in W�, by applying Proposition
3.1 to the bounded C2 domain W� and the solution ûu of problem (4.1)–(4.3), we
have from the corresponding estimate (3.12) and (4.4) that there exists t1; e > 0
satisfying

ua u e
þ on ðqWþ; enB4deðy0ÞÞ � ð0; t1; e�:ð4:14Þ

Hence with the aid of (4.13) and (4.14) we have from the comparison principle
that

ua u e
þ in Wþ; e � ð0; t1; e�:ð4:15Þ

On the other hand, the first inequality of (4.9) gives

ue
� a u on ðqWVB4deðy0ÞÞ � ð0;yÞ:ð4:16Þ
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Since qW�; e HB3deðy0Þ, by applying Proposition 3.1 to the domain W�; e with
bounded C2 boundary and the solution ue

� of problem (4.10)–(4.12), we have
from the corresponding estimate (3.12) and (1.1) that there exists t2; e > 0
satisfying

u e
� a u on ðqWnB4deðy0ÞÞ � ð0; t2; e�:ð4:17Þ

Therefore with the aid of (4.16) and (4.17) we have from the comparison principle
that

ue
� a u in W� ð0; t2; e�:ð4:18Þ

In conclusion, (4.15) and (4.18) complete the proof if we set te ¼ minft1; e; t2; eg.
r

Let us next consider the solution u of problem (1.6). Take a small e > 0

arbitrarily. Since gðy0Þ > 0 and g A C 0ðRNÞ, there exists a small number de A
ð0; d=9Þ such that

gðy0Þ �
1

2
ea ga gðy0Þ þ

1

2
e in B4deðy0Þ:ð4:19Þ

Moreover we find a small number ge A ð0; deÞ and two C2 domains Wþ; e and W�; e

having bounded C2 boundaries with the following properties: both Wþ; e and

RNnW�; e are bounded; RNnW�; e HB3deðy0Þ; BRðx0ÞHWþ; e HWHW�; e; BRðx0ÞV
qWþ; e ¼ BRðx0ÞV qW�; e ¼ fy0g; Bdeðy0ÞV qWH qWG; e V qWHB2deðy0ÞV qW;

ðWþ; eÞge V ðRNnWÞHB4deðy0Þ;ð4:20Þ

where ðWþ; eÞge is the domain defined by (3.15), that is,

ðWþ; eÞge ¼ fx A RN : distðx;Wþ; eÞ < geg:

Let ue
G ¼ ue

Gðx; tÞ be the two bounded solutions of the Cauchy problems

(1.6) where the initial data gXW c is replaced by ðgðy0ÞG eÞXðWG; eÞ c , respectively.
Hence we have

Proposition 4.2. Let u be the solution of problem (1.6). For every small
e > 0 there exists te > 0 satisfying

ue
� a ua ue

þ in BRðx0Þ � ð0; te�;

where u e
G are the solutions of problems (1.6) where the initial data gXW c is replaced

by ðgðy0ÞG eÞXðWG; eÞ c , respectively.

Proof. In view of (4.19) and the fact that RNnW�; e HB3deðy0Þ, we notice
that

ðgðy0Þ � eÞXðW�; eÞ c a gXW c in RN :
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Hence it follows from the comparison principle that

ue
� a u in RN � ð0;yÞ:ð4:21Þ

On the other hand, (4.19) and (4.20) yield that

gXW c a gðy0Þ þ
1

2
e < gðy0Þ þ e ¼ ðgðy0Þ þ eÞXðWþ; eÞ c in ðWþ; eÞgenWþ; e:

Therefore by the initial behavior of the solutions there exists te > 0 such that

ua ue
þ on qðWþ; eÞge=2 � ð0; te�;

which together with the comparison principle yields that

ua u e
þ in ðWþ; eÞge=2 � ð0; te�:ð4:22Þ

Thus, combining (4.21) with (4.22) completes the proof. r

Finally, Propositions 4.1 and 4.2 yieldð
BRðx0Þ

ðu e
�ðx; tÞÞ

a
dxa

ð
BRðx0Þ

ðuðx; tÞÞa dx

a

ð
BRðx0Þ

ðu e
þðx; tÞÞ

a
dx for every t A ð0; te�:

These two inequalities show that the proofs of Theorem 1.1 for the equation
qtu ¼ divðj‘ujp�2‘uÞ are reduced to the case where qW is bounded and of class
C2 and where f and g are positive constants, since we later know that the
positive constants c in formula (1.7) are continuous with respect to positive
constants f and g, respectively. Also, the proofs for the equation qtu ¼ Dum

follow from the same arguments as in those for the equation qtu ¼ divðj‘ujp�2‘uÞ.

5. Super- and subsolutions near the boundary for short times:
the p-Laplace case

By virtue of section 4, we can assume that qW is bounded and of class C2

and f 1 g1 b for some positive constant b > 0.
Let us first consider the solution u of problem (1.3)–(1.5). Namely, we

consider the bounded solution u ¼ uðx; tÞ of the initial-boundary value problem:

qtu ¼ divðj‘ujp�2‘uÞ in W� ð0;yÞ;
u ¼ b on qW� ð0;yÞ;
u ¼ 0 on W� f0g:

For xb 0, define j ¼ jðxÞ by

jðxÞ ¼ b � 2� p

2pðp� 1Þ

� ��1=ð2�pÞð x

0

ðh2 þ lÞ�1=ð2�pÞ
dh;ð5:1Þ
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where l > 0 is determined uniquely by the equation jðyÞ ¼ 0. Then j ¼ jðxÞ
satisfies

ðp� 1Þjj 0jp�2j 00 þ 1

p
j 0x ¼ 0 for x > 0;ð5:2Þ

jð0Þ ¼ b; j 0 < 0 in ½0;yÞ; and jðyÞ ¼ 0:ð5:3Þ

l’Hospital’s rule gives

lim
x!y

jðxÞ
x�p=ð2�pÞ ¼ cðpÞ;ð5:4Þ

where cðpÞ is the constant given by (3.5). Note that, if we set hðs; tÞ ¼ jðt�1=psÞ
for sb 0 and t > 0, then h satisfies the one-dimensional problem:

qth ¼ qsðjqshjp�2qshÞ in ð0;yÞ2; h ¼ b on f0g � ð0;yÞ; and

h ¼ 0 on ð0;yÞ � f0g:

For small e > 0, define jG ¼ jGðxÞ ðx > 0Þ by

jGðxÞ ¼ bG e� 2� p

2pðp� 1Þ

� ��1=ð2�pÞ
ð5:5Þ

�
ð x

0

h2 H 2pe

ð h

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
dsþ lG

� ��1=ð2�pÞ
dh;

where each lG > 0 is determined uniquely by the equation jGðyÞ ¼ 0: Notice
that

jG ! j as e ! 0þ uniformly on ½0;yÞ;ð5:6Þ
lG ! l as e ! 0þ;ð5:7Þ

where l is given in (5.1). Then jG ¼ jGðxÞ satisfies

ðp� 1Þjj 0
Gj

p�2
j 00
Gþ 1

p
j 0
G½xH pe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

q
� ¼ 0 for x > 0;ð5:8Þ

jGð0Þ ¼ bG e; j 0
G < 0 in ½0;yÞ; and jGðyÞ ¼ 0:ð5:9Þ

l’Hospital’s rule gives

lim
x!y

jGðxÞ
x�p=ð2�pÞ ¼ cðpÞð1H peÞ�1=ð2�pÞ:ð5:10Þ

Since qW is bounded and of class C2, there exists r0 > 0 such that the distance

function d ¼ dðxÞ of x A W to the boundary qW is C 2-smooth on Wr0 , where Wr0
is defined by (1.13) with r ¼ r0.
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By setting

wGðx; tÞ ¼ jGðt�1=pdðxÞÞ for ðx; tÞ A W� ð0;yÞ;ð5:11Þ
we obtain

Proposition 5.1. Let u be the solution of problem (1.3)–(1.5) where qW is
bounded and of class C2 and f 1 b for some positive constant b > 0. For every
small e > 0 there exist re A ð0; r0Þ and te > 0 satisfying

w� a uawþ in Wre � ð0; te�;ð5:12Þ
where wG are given by (5.11) and Wre is defined by (1.13) with r ¼ re.

Proof. Take a small e > 0. For x A Wr0 and t > 0, a straightforward com-
putation gives

qtwG� divðj‘wGjp�2‘wGÞ ¼ �t�1j 0
G½Ge

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

q
þ t1=pjj 0

Gj
p�2Dd�;

where x ¼ t�1=pdðxÞ and

jj 0
Gj

p�2 ¼ ð�j 0
GÞ

p�2 ¼ 2� p

2pðp� 1Þ

� �
x2 H 2pe

ð x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
dsþ lG

� �
:

Therefore, by using (5.7) and observing that

t1=px2 a jxjdðxÞ and t1=p
ð x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
ds

����
����a t1=pðjxj þ x2Þ;

we notice that there exist r1; e A ð0; r0Þ and t1; e > 0 satisfying

ðG1ÞðqtwG� divðj‘wGjp�2‘wGÞÞ > 0 in Wr1; e � ð0; t1; e�;ð5:13Þ
where wG are given by (5.11) and Wr1; e is defined by (1.13) with r ¼ r1; e.

By (3.4), there exists re A ð0; r1; eÞ satisfying

cðpÞ 1þ pe

4

� ��1=ð2�pÞ
dðxÞ�p=ð2�pÞ

a vðxÞa cðpÞ 1� pe

4

� ��1=ð2�pÞ
dðxÞ�p=ð2�pÞ for x A Wre :

Hence by (3.11) of Proposition 3.1 there exists t2; e A ð0; t1; e� such that for
ðx; tÞ A Gre � ð0; t2; e�

cðpÞ 1þ pe

2

� ��1=ð2�pÞ
ðreÞ

�p=ð2�pÞ
a t�1=ð2�pÞuðx; tÞð5:14Þ

a cðpÞ 1� pe

2

� ��1=ð2�pÞ
ðreÞ

�p=ð2�pÞ;

where Gre is defined by (1.14) with r ¼ re.
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Moreover, by (5.10), there exists te A ð0; t2; e� such that for ðx; tÞ A Gre � ð0; te�

t�1=ð2�pÞðreÞ
p=ð2�pÞ

wþðx; tÞb cðpÞ 1� pe

2

� ��1=ð2�pÞ
;

t�1=ð2�pÞðreÞ
p=ð2�pÞ

w�ðx; tÞa cðpÞ 1þ pe

2

� ��1=ð2�pÞ
:

Thus combining these inequalities with (5.14) yields that

w� a uawþ on Gre � ð0; te�:ð5:15Þ

Observe that

w� ¼ b � e < b ¼ u < b þ e ¼ wþ on qW� ð0; te�;ð5:16Þ
w� ¼ u ¼ wþ ¼ 0 on Wre � f0g:ð5:17Þ

Therefore, by combining these with (5.15) and (5.13), we get the conclusion (5.12)
from the comparison principle. r

Let us next consider the solution u of problem (1.6). Namely, we consider
the bounded solution u ¼ uðx; tÞ of the Cauchy problem:

qtu ¼ divðj‘ujp�2‘uÞ in RN � ð0;yÞ and u ¼ bXW c on RN � f0g;

where XW c is the characteristic function of the set Wc ¼ RNnW. For x A R, de-
fine c ¼ cðxÞ by

cðxÞ ¼ b � 2� p

2pðp� 1Þ

� ��1=ð2�pÞð x

�y
ðh2 þ lÞ�1=ð2�pÞ

dh;ð5:18Þ

where l > 0 is determined uniquely by the equation cðyÞ ¼ 0. Then c ¼ cðxÞ
satisfies

ðp� 1Þjc 0jp�2c 00 þ 1

p
c 0x ¼ 0 for x A R;ð5:19Þ

cð�yÞ ¼ b; c 0 < 0 in R; and cðyÞ ¼ 0:ð5:20Þ

l’Hospital’s rule gives

lim
x!y

cðxÞ
x�p=ð2�pÞ ¼ cðpÞ;ð5:21Þ

where cðpÞ is the constant given by (3.5). Note that, if we set hðs; tÞ ¼ cðt�1=psÞ
for s A R and t > 0, then h satisfies the one-dimensional problem:

qth ¼ qsðjqshjp�2qshÞ in R� ð0;yÞ and h ¼ bXð�y;0� on R� f0g:
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For small e > 0, define cG ¼ cGðxÞ ðx A RÞ by

cGðxÞ ¼ bG e� 2� p

2pðp� 1Þ

� ��1=ð2�pÞ
ð5:22Þ

�
ð x

�y
h2 H 2pe

ð h

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
dsþ lG

� ��1=ð2�pÞ
dh;

where each lG > 0 is determined uniquely by the equation cGðyÞ ¼ 0: Notice
that

cG ! c as e ! 0þ uniformly on R;ð5:23Þ
lG ! l as e ! 0þ;ð5:24Þ

where l is given in (5.18). Then cG ¼ cGðxÞ satisfies

ðp� 1Þjc 0
Gj

p�2c 00
Gþ 1

p
c 0
G½xH pe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

q
� ¼ 0 for x A R;ð5:25Þ

cGð�yÞ ¼ bG e; c 0
G < 0 in R; and cGðyÞ ¼ 0:ð5:26Þ

l’Hospital’s rule gives

lim
x!y

cGðxÞ
x�p=ð2�pÞ ¼ cðpÞð1H peÞ�1=ð2�pÞ:ð5:27Þ

As in [MS3], let us introduce the signed distance function d � ¼ d �ðxÞ of x A RN

to the boundary qW defined by

d �ðxÞ ¼ distðx; qWÞ if x A W;

�distðx; qWÞ if x B W:

�

For every r > 0, let Nr be a compact neighborhood of qW in RN defined by

Nr ¼ fx A RN : �ra d �ðxÞa rg:ð5:28Þ
If qW is bounded and of class C 2, there exists a number r0 > 0 such that d �ðxÞ is
C2-smooth on Nr0 . For simplicity we have used the same letter r0 > 0 as in the
previous case for problem (1.3)–(1.5).

By setting

wGðx; tÞ ¼ cGðt�1=pd �ðxÞÞ for ðx; tÞ A RN � ð0;yÞ;ð5:29Þ
we obtain

Proposition 5.2. Let u be the solution of problem (1.6) where qW is bounded
and of class C2 and g1 b for some positive constant b > 0. For every small e > 0
there exist re A ð0; r0Þ and te > 0 satisfying

w� a uawþ in Nre � ð0; te�;ð5:30Þ
where wG are given by (5.29) and Nre is defined by (5.28) with r ¼ re.
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Proof. The proof is similar to that of Proposition 5.1. The ingredients
(5.7), (5.10), and (5.16) are replaced by (5.24), (5.27), and the corresponding
inequalities on fx A RN : d �ðxÞ ¼ �reg � ð0; te�, respectively. r

6. Super- and subsolutions near the boundary for short times: the porous
medium type case

By virtue of section 4, we can assume that qW is bounded and of class C2

and f 1 g1 b for some positive constant b > 0.
Concerning qtu ¼ Dum with 0 < m < 1, the same constructions of super-

and subsolutions as in [MS3] work. Let u ¼ uðx; tÞ be the bounded solution of
problem (1.8)–(1.10) where f 1 b. Namely, we consider the bounded solution
u ¼ uðx; tÞ of the initial-boundary value problem:

qtu ¼ Dum in W� ð0;yÞ;
u ¼ b on qW� ð0;yÞ;
u ¼ 0 on W� f0g:

Let us set fðsÞ ¼ sm for sb 0. We use a result from Atkinson and Peletier [AP]:
for every g > 0, there exists a unique C 2 solution fg ¼ fgðxÞ of the problem:

ðf 0ð fgÞ f 0
g Þ

0 þ 1

2
x f 0

g ¼ 0 in ½0;yÞ;ð6:1Þ

fgð0Þ ¼ g; fgðyÞ ¼ 0;ð6:2Þ
f 0
g < 0 in ½0;yÞ:ð6:3Þ

Moreover, [AP, Theorem 5 and its example 3, p. 388 and p. 390] gives

lim
x!y

fgðxÞ
x�2=ð1�mÞ ¼ cðmÞ;ð6:4Þ

where cðmÞ is the constant given by (3.10). This behavior comes from the
structure of the equation qtu ¼ Dum with 0 < m < 1, and it is di¤erent from that
of the equation of the form qtu ¼ DfðuÞ with d1 a f 0ðsÞa d2 ðs A RÞ for two
positive constants d1, d2, which is treated in [MS3, (3.15), p. 243]. Note that, if
we put hðs; tÞ ¼ fgðt�1=2sÞ for sb 0 and t > 0, then h satisfies the one-dimensional
problem:

qth ¼ q2s fðhÞ in ð0;yÞ2; h ¼ g on f0g � ð0;yÞ; and

h ¼ 0 on ð0;yÞ � f0g:

Let 0 < e < 1
4 . Then, as in [MS3, Proof of Lemma 3.1, pp. 242–244], by con-

tinuity we can find a su‰ciently small 0 < he f e and two C2 functions fG ¼ fGðxÞ
for xb 0 satisfying:
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fGðxÞ ¼ fbGeð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1H 2he

p
xÞ if xb he;

f 0
G < 0 in ½0;yÞ;

f� < fb < fþ in ½0;yÞ;

ðf 0ð fGÞ f 0
GÞ

0 þ 1

2
x f 0

G ¼ hGðxÞ f 0
G in ½0;yÞ;

where hG ¼ hGðxÞ are defined by

hGðxÞ ¼
Ghex if xb he;

Gh2e if xa he:

�
ð6:5Þ

(Here, in order to use the functions hG also for problem (1.11) later, we defined
hGðxÞ for all x A R.) The above construction of fG directly implies that

fG ! fb as e ! 0þ uniformly on ½0;yÞ:ð6:6Þ
Moreover, by (6.4) we have

lim
x!y

fGðxÞ
x�2=ð1�mÞ ¼ cðmÞð1H 2heÞ

�1=ð1�mÞ:ð6:7Þ

By setting

wGðx; tÞ ¼ fGðt�1=2dðxÞÞ for ðx; tÞ A W� ð0;yÞ;ð6:8Þ
we obtain

Proposition 6.1. Let u be the solution of problem (1.8)–(1.10) where qW is
bounded and of class C2 and f 1 b for some positive constant b > 0. For every
small e > 0 there exist re A ð0; r0Þ and te > 0 satisfying

w� a uawþ in Wre � ð0; te�;ð6:9Þ
where wG are given by (6.8) and Wre is defined by (1.13) with r ¼ re.

Proof. Take a small e > 0. For x A Wr0 and t > 0, a straightforward com-
putation gives

qtwG� DðwGÞm ¼ �t�1f 0
G½hGðxÞ þ t1=2mð fGÞ�ð1�mÞDd�;

where x ¼ t�1=2dðxÞ. In view of (6.7), we observe that there exists a constant
Ce > 0 satisfying

t1=2mð fGÞ�ð1�mÞ
a

t1=2Cex
2 ¼ CexdðxÞ if xb he;

t1=2mð fGð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1H 2he

p
heÞÞ

�ð1�mÞ
a t1=2Ceh

2
e if xa he:

(

Therefore, with the aid of the definition (6.5) of hGðxÞ, we notice that there exist
r1; e A ð0; r0Þ and t1; e > 0 satisfying

ðG1ÞðqtwG� DðwGÞmÞ > 0 in Wr1; e � ð0; t1; e�;ð6:10Þ
where wG are given by (6.8) and Wr1; e is defined by (1.13) with r ¼ r1; e.
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By (3.9), there exists re A ð0; r1; eÞ satisfying

cðmÞ 1þ he
2

� ��1=ð1�mÞ
dðxÞ�2=ð1�mÞ

awðxÞa cðmÞ 1� he
2

� ��1=ð1�mÞ
dðxÞ�2=ð1�mÞ for x A Wre :

Hence by (3.23) of Proposition 3.2 there exists t2; e A ð0; t1; e� such that for
ðx; tÞ A Gre � ð0; t2; e�

cðmÞð1þ heÞ
�1=ð1�mÞðreÞ

�2=ð1�mÞ
a t�1=ð1�mÞuðx; tÞð6:11Þ

a cðmÞð1� heÞ
�1=ð1�mÞðreÞ

�2=ð1�mÞ;

where Gre is defined by (1.14) with r ¼ re.
Moreover, by (6.7), there exists te A ð0; t2; e� such that for ðx; tÞ A Gre � ð0; te�

t�1=ð1�mÞðreÞ
2=ð1�mÞ

wþðx; tÞb cðmÞð1� heÞ
�1=ð1�mÞ;

t�1=ð1�mÞðreÞ
2=ð1�mÞ

w�ðx; tÞa cðmÞð1þ heÞ
�1=ð1�mÞ:

Thus combining these inequalities with (6.11) yields that

w� a uawþ on Gre � ð0; te�:ð6:12Þ
Observe that

w� < b ¼ u < wþ on qW� ð0; te�;ð6:13Þ
w� ¼ u ¼ wþ ¼ 0 on Wre � f0g:ð6:14Þ

Therefore, by combining these with (6.12) and (6.10), we get the conclusion (6.9)
from the comparison principle. r

Let us next consider the solution u of problem (1.11). Namely, we consider
the bounded solution u ¼ uðx; tÞ of the Cauchy problem:

qtu ¼ Dum in RN � ð0;yÞ and u ¼ bXW c on RN � f0g;

where XW c is the characteristic function of the set Wc ¼ RNnW. Let us set
fðsÞ ¼ sm for sb 0. We use a result from [MS3]: for every g > 0, there exists a
unique C2 solution fg ¼ fgðxÞ of the problem:

ðf 0ð fgÞ f 0
g Þ

0 þ 1

2
x f 0

g ¼ 0 in R;ð6:15Þ

fgð�yÞ ¼ g; fgðyÞ ¼ 0;ð6:16Þ
f 0
g < 0 in R:ð6:17Þ
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Moreover, [AP, Theorem 5 and its example 3, p. 388 and p. 390] also gives (6.4).
Note that, if we put hðs; tÞ ¼ fgðt�1=2sÞ for s A R and t > 0, then h satisfies the
one-dimensional problem:

qth ¼ q2s fðhÞ in R� ð0;yÞ and h ¼ gXð�y;0� on R� f0g:

Let 0 < e < 1
4 . By the same proof as in [MS3, Proof of (3.35), pp. 251–252], we

find a su‰ciently small 0 < he f e and two C2 functions fG ¼ fGðxÞ for x A R
satisfying:

fGðxÞ ¼ fbGeð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1H 2he

p
xÞ if xb he;ð6:18Þ

f 0
G < 0 in R;ð6:19Þ

f�ð�yÞ < b ¼ fbð�yÞ < fþð�yÞ and f� < fb < fþ in R;ð6:20Þ

ðf 0ð fGÞ f 0
GÞ

0 þ 1

2
x f 0

G ¼ hGðxÞ f 0
G in R;ð6:21Þ

and

fG ! fb as e ! 0þ uniformly on R:ð6:22Þ

Moreover, by (6.4) we also have (6.7).
By setting

wGðx; tÞ ¼ fGðt�1=2d �ðxÞÞ for ðx; tÞ A RN � ð0;yÞ;ð6:23Þ

we obtain

Proposition 6.2. Let u be the solution of problem (1.11) where qW is
bounded and of class C2 and g1 b for some positive constant b > 0. For every
small e > 0 there exist re A ð0; r0Þ and te > 0 satisfying

w� a uawþ in Wre � ð0; te�;ð6:24Þ

where wG are given by (6.23) and Wre is defined by (1.13) with r ¼ re.

Proof. The proof is similar to that of Proposition 6.1. The ingredient (6.13)
is replaced by the corresponding inequalities on fx A RN : d �ðxÞ ¼ �reg � ð0; te�.

r

7. Proofs of Theorems 1.1 and 1.2

By virtue of section 4, we can assume that qW is bounded and of class C2

and f 1 g1 b for some positive constant b > 0. We will use a geometric lemma
from [MS1] adjusted to our situation.
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Lemma 7.1 ([MS1, Lemma 2.1, p. 376]). Let kjðy0Þ <
1

R
for every j ¼

1; . . . ;N � 1: Then we have:

lim
s!0þ

s�ðN�1Þ=2HN�1ðGs VBRðx0ÞÞ ¼ 2ðN�1Þ=2oN�1

YN�1

j¼1

1

R
� kjðy0Þ

� �( )�1=2

;

where HN�1 is the standard ðN � 1Þ-dimensional Hausdor¤ measure, and oN�1 is
the volume of the unit ball in RN�1.

Let us first prove Theorem 1.1 for the solution u of problem (1.3)–(1.5)

by using Proposition 5.1. Take a small e > 0: Let a >
ðN þ 1Þð2� pÞ

2p
. Then

Proposition 5.1 yields that for every t A ð0; te�ð
BRðx0ÞVWre

ðw�ðx; tÞÞa dxa
ð
BRðx0ÞVWre

ðuðx; tÞÞa dxð7:1Þ

a

ð
BRðx0ÞVWre

ðwþðx; tÞÞa dx:

For ðx; tÞ A ðWnWreÞ � ð0;yÞ, by (3.12) of Proposition 3.1, we have

t�ðNþ1Þ=2pðuðx; tÞÞa a t�ðNþ1Þ=2pþa=ð2�pÞðvðxÞÞa:ð7:2Þ
Therefore, since BRðx0ÞnWre is a compact set contained in W and �N þ 1

2p
þ

a

2� p
> 0, we see that

t�ðNþ1Þ=2p
ð
BRðx0ÞnWre

ðuðx; tÞÞa dx ! 0 as t ! 0þ:ð7:3Þ

With the aid of the co-area formula, we haveð
BRðx0ÞVWre

ðwGðx; tÞÞa dx

¼ tðNþ1Þ=2p
ð ret

�1=2

0

ðjGðxÞÞ
axðN�1Þ=2ðt1=pxÞ�ðN�1Þ=2HN�1ðBRðx0ÞVGt1=pxÞ dx:

Thus, when kjðy0Þ <
1

R
for every j ¼ 1; . . . ;N � 1; by Lebesgue’s dominated

convergence theorem and Lemma 7.1, we get

lim
t!0þ

t�ðNþ1Þ=2p
ð
BRðx0ÞVWre

ðwGÞa dx

¼ 2ðN�1Þ=2 oN�1

YN�1

j¼1

1

R
� kjðy0Þ

� �( )�1=2ðy
0

ðjGðxÞÞ
axðN�1Þ=2 dx:
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Here (5.10) together with the inequality � pa

2� p
þN � 1

2
< �1 guarantees that the

right-hand side of this formula is finite. Moreover, by Lebesgue’s dominated
convergence theorem and (5.6), we see that

lim
e!0

ðy
0

ðjGðxÞÞ
axðN�1Þ=2 dx ¼

ðy
0

ðjðxÞÞaxðN�1Þ=2 dx:

Therefore, since e > 0 is arbitrarily small, it follows from (7.1) and (7.3) that (1.7)
holds true, where we set

c ¼ 2ðN�1Þ=2oN�1

ðy
0

ðjðxÞÞaxðN�1Þ=2 dx:

It remains to consider the case where kjðy0Þ ¼
1

R
for some j A

f1; . . . ;N � 1g. Choose a sequence of balls fBRk
ðxkÞgyk¼1 satisfying:

Rk < R; y0 A qBRk
ðxkÞ; and BRk

ðxkÞHBRðx0Þ for every kb 1; and

lim
k!y

Rk ¼ R:

Since kjðy0Þa
1

R
<

1

Rk

for every j ¼ 1; . . . ;N � 1 and every kb 1, we can apply

the previous case to each BRk
ðxkÞ to see that for every kb 1

lim inf
t!0þ

t�ðNþ1Þ=2p
ð
BRðx0Þ

ðuðx; tÞÞa dxb lim inf
t!0þ

t�ðNþ1Þ=2p
ð
BRk

ðxkÞ
ðuðx; tÞÞa dx

¼ c
YN�1

j¼1

1

Rk

� kjðy0Þ
� �( )�1=2

:

Hence, letting k ! y yields that

lim inf
t!0þ

t�ðNþ1Þ=2p
ð
BRðx0Þ

ðuðx; tÞÞa dx ¼ y;

which completes the proof for problem (1.3)–(1.5).
The proof of Theorem 1.1 for problem (1.6) runs similarly with the aid of

Proposition 5.2. Also, the proof of Theorem 1.2 runs similarly with the aid
of Propositions 6.1 and 6.2. Of course, for problems (1.8)–(1.10) and (1.11),

we use Proposition 3.2 and the assumption that a >
ðN þ 1Þð1�mÞ

4
instead of

Proposition 3.1 and the assumption that a >
ðN þ 1Þð2� pÞ

2p
.
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