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PROBLEM WITH A GRADIENT TERM UNDER VARIOUS

BOUNDARY CONDITIONS
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Abstract

This paper deals with the blow-up phenomena of the solution u of a nonlinear

parabolic problem with a gradient nonlinearity and time dependent coe‰cients. By

using techniques based on Sobolev type and di¤erential inequalities, we derive explicit

lower bounds for the blow-up time, if blow-up occurs, when di¤erent boundary

conditions are taken into account.

1. Introduction

In recent years there has been considerable attention paid to the question of
blow-up to solutions of nonlinear parabolic problems, whose source term depends
on the gradient of the solution. We cite the book [11] (chapter IV) and the
references therein.

In this paper we discuss the following problem

ut ¼ Duþ k1ðtÞup � k2ðtÞj‘ujq; x A W; t A ð0; t?Þ;
a1un þ a2u ¼ 0; x A qW; t A ð0; t?Þ;
u ¼ u0ðxÞb 0; x A W;

8<
:ð1:1Þ

where W is a bounded domain in RN , Nb 2, whose boundary qW is su‰ciently
smooth. The coe‰cients k1ðtÞ and k2ðtÞ, associated respectively to the source
term and the dissipative gradient term, are positive and regular functions in
½0; t?Þ, t? being the blow-up time, p > 1; q > 1, a1 and a2 are nonnegative
constants, and u0ðxÞ is a nonnegative function in W satisfying the compatibility
conditions on qW. Moreover un represents the normal derivative of u with
respect the exterior unit vector n ¼ ðn1; . . . ; nNÞ to qW. It follows by the
maximum principle that in the interval of existence uðx; tÞb 0: We remark
that the gradient term in (1.1) has a damping e¤ect, working against blow-up.
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We will focus our study on lower bounds for blow-up time of problem (1.1),
which are of a great interest in several practical cases (see, for example, [10] and
[11]), since an explicit value of t? cannot be generally determined. More precisely,
as we are interested in solutions blowing up at finite time t?, we will assume in
the problem (1.1) p > q, since for pa q it is well known that the solution will not
blow up in finite time (see [11]).

We also have to underline that only in the case k1ðtÞ ¼ k2ðtÞ ¼ 1, a1 ¼ 0 and
a2 ¼ 1 in (1.1), a lower bound for blow-up time was obtained by Payne and Song
in [9]. In the same way, [1]–[8] provide good references about upper and lower
bounds of blow-up time for solutions of various parabolic problems.

In Section 2 we consider problem (1.1) under Dirichlet boundary conditions
(a1 ¼ 0 and a2 ¼ 1) and in order to obtain an explicit lower bound for t? we
derive a first order di¤erential inequality by using the Talenti-Sobolev inequality
(see [4] and [12]) which is valid for a nonnegative function that vanishes on qW
and for a bounded domain WHR3:

Lower bounds under Neumann and Robin boundary conditions on qW are
also derived in Sections 3 and 4, if the spatial domain WHR3 is star-shaped,
convex in two orthogonal directions and the origin inside, assumption due to the
use of a Sobolev type inequality (see [7] and [8]).

Throughout the paper we will assume p > q > 2: Moreover the blow-up
time of the solution u is considered in Lnð p�1Þ-norm (n > 2).

2. Lower bound under Dirichlet boundary condition

In this section we choose as parameters of problem (1.1) a1 ¼ 0 and a2 ¼ 1,
i.e. we consider the homogeneous Dirichlet condition u ¼ 0 on qW� ð0; t?Þ. In
order to derive a lower bound of t?, let us introduce the auxiliary function

CðtÞ ¼ k1ðtÞ
ð
W

unðp�1Þ dx; n > 2;ð2:1Þ

with Cð0Þ > 0; if we set s ¼ p� 1, by di¤erentiation, we lead to

C 0ðtÞ ¼ k 0
1

ð
W

uns dxþ k1ns

ð
W

uns�1Du dxð2:2Þ

þ nsk2
1

ð
W

usðnþ1Þ dx� nsk1k2

ð
W

uns�1j‘ujq dx:

Due to the divergence theorem and the boundary condition, from the identity

uns�2j‘uj2 ¼ 4

ðnsÞ2
j‘uns=2j2;ð2:3Þ

we obtain ð
W

uns�1Du dx ¼ �4
ns� 1

ðnsÞ2
ð
W

j‘uns=2j2 dx:ð2:4Þ

533parabolic problem with a gradient term



Next, arguing as in (2.3) and using inequality (2.10) in [6], we achieveð
W

uns�1j‘ujq dxb 2
ffiffiffiffiffi
l1

p

nsþ q� 1

� �qð
W

unsþq�1 dx;ð2:5Þ

l1 being the first positive eigenvalue of the fixed membrane problem

Dwþ lw ¼ 0; x A W;

w ¼ 0; x A qW;

w > 0; x A W:

8><
>:

Let us assume k1 such that
k 0
1ðtÞ

k1ðtÞ
a b, with bb 0; replacing (2.1), (2.4) and (2.5)

into (2.2) and setting us ¼ V we obtain

C 0ðtÞa bC� 4
ns� 1

ns
k1

ð
W

j‘V n=2j2 dxð2:6Þ

þ nsk2
1

ð
W

V nþ1 dx� nsk2k1m

ð
W

V nþa dx;

where m ¼ 2
ffiffiffiffiffi
l1

p

nsþ q� 1

� �q
and a ¼ q� 1

s
< 1 (recall p > q). With the aim of

reducing (2.6) to a di¤erential inequality containing only powers of C in its right
hand side, let us analyze the term

Ð
W V nþ1 dx. Since n > 2, Hölder inequality

returns ð
W

V nþ1 dxa

ð
W

V nþa dx

� �1=p ð
W

V ð3=2Þn dx

� �1=q
;ð2:7Þ

where
1

p
¼ n� 2

n� 2a
and

1

q
¼ 2ð1� aÞ

n� 2a
; moreover due to the same inequality we

obtain ð
W

V ð3=2Þn dxa

ð
W

V n dx

� �3=4 ð
W

V 3n dx

� �1=4
:ð2:8Þ

As u ¼ 0 on qW, the Talenti-Sobolev inequality providesð
W

V 3n dx

� �1=4
aG3=2

ð
W

j‘V n=2j2 dx
� �3=4

;ð2:9Þ

G ¼ 2

p

� �2=3
3�1=2 being the best Sobolev constant. Therefore, by replacing (2.9)

and (2.8) into (2.7) we can writeð
W

V nþ1 dxaG3=2q 1

mp�1

ð
W

V nþa dx

� �1=p
ð2:10Þ

� m

ð
W

V n dx

� �3=4 ð
W

j‘V n=2j2 dx
� �3=4" #1=q

;
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where we have introduced a time dependent and positive function m, to be
successively chosen. Therefore, using

arb1�r
a raþ ð1� rÞb;ð2:11Þ

valid for a; b > 0 and 0 < r < 1, we haveð
W

V n dx

� �3" #1=4 ð
W

j‘V n=2j2 dx
� �3=4

a
1

4n3

ð
W

V n dx

� �3
þ 3

4
n

ð
W

j‘V n=2j2 dx;

where also n is a positive and time dependent function to be computed; (2.10) is
so reduced toð

W

V nþ1 dxaG3=2q 1

~mm

ð
W

V nþa dx

� �1=p
~mmð2:12Þ

� 1

4n3

ð
W

V n dx

� �3
þ 3

4
n

ð
W

j‘V n=2j2 dx
" #1=q

;

being ~mm ¼ mp�1: Now, arranging (2.12) by means of (2.11), we haveð
W

V nþ1 dxaG3=2q

"
1

p
m1�p

ð
W

V nþa dxþ 1

q

 
m

4n3

ð
W

V n dx

� �3
ð2:13Þ

þ 3

4
nm

ð
W

j‘V n=2j2 dx
!#

:

Consequently, by replacing (2.13) into (2.6), we can write

C 0ðtÞa bCþ d1ðtÞ
ð
W

j‘V n=2j2 dxþ d2ðtÞ
ð
W

V nþa dxþ d3ðtÞC3;

with

d1ðtÞ ¼ k1
3

4
G3=2qns

1

q
nmk1 � 4

ns� 1

ns

� �
;

d2ðtÞ ¼ nsk1 G3=2qk1
1

p
m1�p � k2m

� �
;

d3ðtÞ ¼ nsk�1
1 G3=2q m

4qn3
:

8>>>>>>><
>>>>>>>:

ð2:14Þ

Choosing in (2.14) firstly m to make d2 ¼ 0 and successively n to make the
coe‰cient d1 ¼ 0, we conclude

C 0ðtÞa bCþ d3ðtÞC3:ð2:15Þ

Since we have assumed CðtÞ blowing up at time t?, CðtÞ can be non decreasing,
so that CðtÞbCð0Þ with t A ½0; t?Þ, or non increasing (possibly with some kind
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of oscillations), in which case there exists a time t1 where Cðt1Þ ¼ Cð0Þ. As a
consequence, CðtÞbCð0Þ; t A ½t1; t?Þ. It implies that

CðtÞaCð0Þ�2CðtÞ3; t A ½t1; t?Þ;ð2:16Þ

so that (2.15) and (2.16) produce the desired di¤erential inequality

C 0ðtÞaDðtÞCðtÞ3; t A ½t1; t?Þ;ð2:17Þ
with

DðtÞ ¼ bCð0Þ�2 þ d3ðtÞ:ð2:18Þ

Integrating (2.17) between t1 and t?, the inequality

1

2Cð0Þ2
a

ð t ?
t1

DðtÞ dta
ð t ?
0

DðtÞ dt;ð2:19Þ

provides a lower bound for t?.
Therefore, we have proven the following

Theorem 2.1. Let W be a bounded domain in R3; assume
k 0
1ðtÞ

k1ðtÞ
a b,

bb 0: If u is a classical solution of problem (1.1), with u ¼ 0 on qW, blowing
up in Lnðp�1Þ-norm (n > 2), then a lower bound of the blow-up time t? is given by
(2.19).

3. Lower bound under Neumann boundary condition

In this section we will study problem (1.1) under homogeneous Neumann
boundary conditions, un ¼ 0 on qW� ð0; t?Þ, corresponding to a1 ¼ 1 and a2 ¼ 0.

As in the previous section, starting from equation (2.2), if we suppose
k 0
1ðtÞ

k1ðtÞ
a b,

bb 0, thanks to the divergence theorem and the boundary condition, we lead to

C 0ðtÞa bC� 4
ns� 1

ns
k1

ð
W

j‘V n=2j2 dxð3:1Þ

þ nsk2
1

ð
W

V nþ1 dx� nsk2k1m

ð
W

V nþa dx;

where V ¼ us, s ¼ p� 1, m ¼
2
ffiffiffiffiffi
m2

p

nsþ q� 1

� �q
, m2 being the first positive eigenvalue

of the free membrane problem

Dwþ mw ¼ 0; x A W;

wn ¼ 0; x A qW;

w > 0; x A W:

8><
>:
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As far as the term
Ð
W V nþ1 dx is concerned, by using Hölder inequality and (2.11)

we obtain, since n > 2,ð
W

V nþ1 dxa
1

p

1

gp�1

ð
W

V nþa dxþ 1

q
g

ð
W

V ð3=2Þn dx;ð3:2Þ

g being a positive and time dependent function to be chosen, and where p and q
are defined in (2.7). Now, by supposing W a bounded domain of R3 with the
origin inside, star-shaped and convex in two orthogonal directions, the following
Sobolev type inequality (see Lemma A.2 of [8])ð

W

vð3=2Þn dxa
3

2r0

ð
W

vn dxþ n

2
1þ d

r0

� �ð
W

vn�1j‘vj dx
� �3=2

;ð3:3Þ

valid for any nonnegative C1-function vðxÞ defined in W, with nb 1 and

r0 ¼ min
qW

ðx � nÞ > 0 and d ¼ max
W

jxj;ð3:4Þ

holds. By choosing v ¼ V in (3.3) and by applying

ðaþ bÞ3=2 a
ffiffiffi
2

p
ða3=2 þ b3=2Þ;ð3:5Þ

valid for a; b > 0, we obtain:

ð
W

V ð3=2Þn dxa
ffiffiffi
2

p
(

3

2r0

ð
W

V n dx

� �3=2
ð3:6Þ

þ n

2
1þ d

r0

� �ð
W

V n�1j‘V j dx
� �3=2)

:

On the other hand, being V n�1j‘V j ¼ 2

n
V n=2j‘V n=2j, Hölder inequality produces

ð
W

V n�1j‘V j dx
� �3=2

a
2

n

� �3=2 ð
W

V n dx

� �3=4 ð
W

j‘V n=2j2 dx
� �3=4( )

ð3:7Þ

¼ 2

n

� �3=2 ð
W

V n dx

� �3" #1=4 ð
W

j‘V n=2j2 dx
� �3=4

a
2

n

� �3=2 1

4z3

ð
W

V n dx

� �3
þ 3

4
z

ð
W

j‘V n=2j2 dx
" #

;

z being another positive and time dependent function to be determined.
Ultimately, (3.2), (3.6) and (3.7) into (3.1) return
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C 0ðtÞa bCþ n1ðtÞC3=2 þ n2ðtÞC3ð3:8Þ

þ n3ðtÞ
ð
W

j‘V n=2j2 dxþ n4ðtÞ
ð
W

V nþa dx;

where

n1ðtÞ ¼ nsg
ffiffiffiffiffiffiffi
2k1

p 3

2r0

� �3=2
1

q
;

n2ðtÞ ¼
nsg

ffiffiffi
2

p

4k1z
3

1þ d

r0

� �3=2
1

q
;

n3ðtÞ ¼
3
ffiffiffi
2

p

4
nsk1gz 1þ d

r0

� �3=2
1

q
� 4

ns� 1

ns

" #
k1;

n4ðtÞ ¼ nsk1
g1�p

p
k1 �mk2

� �
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð3:9Þ

If in (3.9) g is taken such that n4 ¼ 0 and successively z such that n3 ¼ 0, relation
(3.8) is reduced to

C 0ðtÞa bCþ n1ðtÞC3=2 þ n2ðtÞC3:ð3:10Þ
Since we have assumed CðtÞ blowing up at time t?, then reasoning as in Section 2
there exists a time t1 A ½0; t?Þ such that CðtÞbCð0Þ, t A ½t1; t?Þ: It implies that

CðtÞaCð0Þ�2CðtÞ3; t A ½t1; t?Þ;
C3=2ðtÞaCð0Þ�3=2CðtÞ3; t A ½t1; t?Þ;

(
ð3:11Þ

so that (3.10) and (3.11) produce the desired di¤erential inequality

C 0ðtÞaNðtÞCðtÞ3; t A ½t1; t?Þ;ð3:12Þ
with

NðtÞ ¼ Cð0Þ�3=2ðn1ðtÞ þ bCð0Þ�1=2Þ þ n2ðtÞ:ð3:13Þ

Integration (3.12) between t1 and t?, the following inequality

1

2Cð0Þ2
a

ð t ?
t1

NðtÞ dta
ð t ?
0

NðtÞ dt;ð3:14Þ

provides a lower bound for t?.
These results are summarized in the following

Theorem 3.1. Let W be a bounded domain in R3, with the origin inside,

star-shaped and convex in two orthogonal directions; assume
k 0
1ðtÞ

k1ðtÞ
a b, bb 0: If

u is a classical solution of problem (1.1), with un ¼ 0 on qW, blowing up in Lnðp�1Þ-
norm (n > 2), then a lower bound of the blow up time t? is given by (3.14).
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4. Lower bound under Robin boundary condition

In this section we will study problem (1.1) under Robin boundary conditions,
un ¼ �a2u on qW� ð0; t?Þ, corresponding to a1 ¼ 1 and a2 > 0. First we prove
an inequality to be used in deriving a lower bound for t?.

Lemma 4.1. Let W be a bounded star-shaped domain of RN , Nb 2, with
the origin inside. If x1 is the first positive eigenvalue of the free membrane
problem

Dwþ xw ¼ 0; x A W;

wn þ a2w ¼ 0; x A qW; a2 > 0;

w > 0; x A W;

8><
>:ð4:1Þ

and the geometry of W is chosen such that

x1
a2

b
N þ d

r0
;ð4:2Þ

then ð
W

j‘wj2 dxbA

ð
W

w2 dx;ð4:3Þ

valid for any nonnegative C1-function wðxÞ solving (4.1), with d and r0 defined in

(3.4) and A ¼ r0x1 � a2ðN þ dÞ
r0 þ a2d

.

Proof. We have for the variational definition of x1

x1

ð
W

w2 dxa

ð
W

j‘wj2 dxþ a2

ð
qW

w2 dS:ð4:4Þ

Regards the second term in (4.4), the following Sobolev type inequality (see
Lemma A.1 of [8]) is considered:

ð
qW

un dSa
N

r0

ð
W

un dxþ nd

r0

ð
W

un�1j‘uj dx;ð4:5Þ

with d and r0 given in (3.4). By using (4.5), with u ¼ w and n ¼ 2, we obtain

ð
qW

w2 dSa
N

r0

ð
W

w2 dxþ 2d

r0

ð
W

wj‘wj dxð4:6Þ

a
N

r0

ð
W

w2 dxþ d

r0

ð
W

w2 dxþ d

r0

ð
W

j‘wj2 dx;
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where in the last step both Schwarz and Young inequalities have been applied.
Now, by replacing (4.6) into (4.4) we can write

x1

ð
W

w2 dxa a2
N þ d

r0

ð
W

w2 dxþ 1þ a2d

r0

� �ð
W

j‘wj2 dx;

since a2 > 0 and (4.2) is verified, (4.3) is proven.

In order to estimate a lower bound for t?, we di¤erentiate CðtÞ defined in (2.1),
obtaining one more time (2.2). Let us set s ¼ p� 1; by the identity (2.3), the
divergence theorem and the boundary conditionð

W

uns�1Du dx ¼ �a2

ð
qW

uns dS � ðns� 1Þ
ð
W

uns�2j‘uj2 dxð4:7Þ

a�4
ns� 1

ðnsÞ2
ð
W

j‘uns=2j2 dx;

where in the last step we have dropped the term �a2
Ð
qW uns dS and set, as before,

V ¼ us. On the other hand, using Hölder and (2.11) inequalities, we achieve as
before ð

W

V nþ1 dxa
1

p
d

ð
W

V nþa dxþ 1

q

1

d1=ðp�1Þ

ð
W

V ð3=2Þn dx;ð4:8Þ

d being a positive and time dependent function to be chosen, and where p and q
are defined in (2.7). If W is a bounded domain of R3 with the origin inside, star-
shaped and convex in two orthogonal directions, relations (3.5), (3.6) and (3.7)
returnð

W

V ð3=2Þn dxa
ffiffiffi
2

p 3

2r0

� �3=2 ð
W

V n dx

� �3=2
þ

ffiffiffi
2

p

4s3
1þ d

r0

� �3=2 ð
W

V n dx

� �3

þ 3
ffiffiffi
2

p

4
s 1þ d

r0

� �3=2ð
W

j‘V n=2j2 dx;

s being another positive and time dependent function to be computed, and with
r0 and d as in (3.4). By replacing this inequality into (4.8), we can write

ð
W

V nþ1 dxa
1

p
d

ð
W

V nþa dxþ 1

q

1

d1=ðp�1Þ

ffiffiffi
2

p 3

2r0

� �3=2 ð
W

V n dx

� �3=2
ð4:9Þ

þ 1

q

1

d1=ðp�1Þ

ffiffiffi
2

p

4s3
1þ d

r0

� �3=2 ð
W

V n dx

� �3

þ 1

q

1

d1=ðp�1Þ
3
ffiffiffi
2

p

4
s 1þ d

r0

� �3=2ð
W

j‘V n=2j2 dx:
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With reference to the term
Ð
W uns�1j‘ujq dx, let us apply (4.3) of Lemma 4.1 with

w ¼ uðnsþq�1Þ=2; by setting z ¼ nsþ q� 1, we obtain

A

ð
W

uz dxa

ð
W

j‘uz=2j2 dx:ð4:10Þ

On the other hand, j‘uz=2j2 ¼ q

2

� �2
uðq�2Þðz=qÞj‘uz=qj2, so that, using Hölder

inequality for q > 2,ð
W

j‘uz=2j2 dxa q

2

� �2 ð
W

uz dx

� �ðq�2Þ=q ð
W

j‘uz=qjq dx
� �2=q

:ð4:11Þ

Therefore, (4.10) and (4.11) allow us to write

A

ð
W

uz dxa
q

2

� �2 ð
W

uz dx

� �ðq�2Þ=q ð
W

j‘uz=qjq dx
� �2=q

;

i.e.,

Aq=2 2

q

� �qð
W

uz dxa

ð
W

j‘uz=qjq dx:ð4:12Þ

Now, arguing as in (2.3) and applying (4.12), we lead toð
W

uns�1j‘ujq dx ¼ q

z

� �qð
W

j‘uz=qjq dxb q

z

� �q
Aq=2 2

q

� �qð
W

uz dxð4:13Þ

¼ ~mm

ð
W

uz dx ¼ ~mm

ð
W

V nþa dx;

with ~mm ¼ 2

z

� �q
Aq=2 and a ¼ q� 1

s
. If k1 is such that

k 0
1ðtÞ

k1ðtÞ
a b, with bb 0,

using (4.7), (4.9) and (4.13) into (2.2) we obtain

C 0
a bCþ r1ðtÞC3=2 þ r2ðtÞC3 þ r3ðtÞ

ð
W

V nþa dxþ r4ðtÞ
ð
W

j‘V n=2j2 dx;ð4:14Þ

where

r1ðtÞ ¼
ffiffiffiffiffiffiffi
2k1

p 3

2r0

� �3=2
ns

1

qd1=ðp�1Þ ;

r2ðtÞ ¼
ns

ffiffiffi
2

p

4k1qs3

1

d1=ðp�1Þ 1þ d

r0

� �3=2
;

r3ðtÞ ¼
dk1

p
� k2 ~mm

� �
nsk1;

r4ðtÞ ¼
3
ffiffiffi
2

p

4q

1

d1=ðp�1Þ s 1þ d

r0

� �3=2
k1 � 4

ns� 1

ðnsÞ2

" #
nsk1:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4:15Þ
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If in (4.15) d is taken such that r3 ¼ 0 and successively s such that r4 ¼ 0, (4.14)
is reduced to

C 0ðtÞa bCþ r1ðtÞC3=2 þ r2ðtÞC3:ð4:16Þ

Following the same steps used in the previous sections for the Dirichlet and
Neumann problems, we obtain the desired di¤erential inequality

C 0ðtÞaRðtÞCðtÞ3; t A ½t1; t?Þ;ð4:17Þ
with

RðtÞ ¼ Cð0Þ�3=2ðr1ðtÞ þ bCð0Þ�1=2Þ þ r2ðtÞ:ð4:18Þ

Integrating (4.17) between t1 and t?, the following inequality

1

2Cð0Þ2
a

ð t ?
t1

RðtÞ dta
ð t ?
0

RðtÞ dt;ð4:19Þ

provides a lower bound for t?.
Therefore the following theorem is proven:

Theorem 4.1. Let W be a bounded domain in R3, with the origin inside,

star-shaped and convex in two orthogonal directions; assume
k 0
1ðtÞ

k1ðtÞ
a b, bb 0. If

u is a classical solution of problem (1.1), with un þ a2u ¼ 0 on qW and p > q > 2,
blowing up in Lnðp�1Þ-norm (n > 2), then a lower bound of the blow up time t? is
given by (4.19).
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