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CONSERVATION OF THE MASS FOR SOLUTIONS TO

A CLASS OF SINGULAR PARABOLIC EQUATIONS

Ahmad Z. Fino, Fatma Gamze Düzgün and Vincenzo Vespri*

Abstract

In this paper we deal with the Cauchy problem associated to a class of quasilinear

singular parabolic equations with Ly coe‰cients, whose prototypes are the p-Laplacian

2N

N þ 1
< p < 2

� �
and the Porous medium equation

N � 2

N

� �
þ
< m < 1

� �
. In this

range of the parameters p and m, we are in the so called fast di¤usion case. We prove

that the initial mass is preserved for all the times.

1. Introduction

Let us consider the following homogeneous quasilinear parabolic equation

ut ¼ div Aðx; t; u;DuÞ; ðx; tÞ A RN � ½0;þyÞ;
uð0; xÞ ¼ m

�
ð1:1Þ

where m is a nonnegative Radon measure with finite mass and compact support
and the functions A :¼ ðA1; . . . ;ANÞ are assumed to be only measurable in
ðx; tÞ A RN � ½0;þyÞ, continuous with respect to u and Du for almost all ðx; tÞ.
For p-Laplacian type equation we let A satisfy the following structure conditions:

Aðx; t; u; hÞ � hb c0jhjp;
jAðx; t; u; hÞja c1jhjp�1;

�
ð1:2Þ

for almost all ðx; tÞ A RN � ½0;þyÞ and ðu; hÞ A R� RN with

2N

N þ 1
< p < 2ð1:3Þ

519

2010 Mathematics Subject Classification. Primary 35K67; Secondary 35K92, 35K20.

Key words and phrases. Singular Parabolic Equations, Cauchy problem, Conservation of the L1

norm.

*Member of GNAMPA (INdAM).

Received December 17, 2013.



(supercritical range of the fast di¤usion case) and c0, c1 are given positive con-
stants. Moreover, we assume that there exists L > 0 such that

ðAðx; t; u; h1Þ � Aðx; t; u; h2ÞÞ � ðh1 � h2Þb 0;

jAðx; t; u1; hÞ � Aðx; t; u2; hÞjaLju1 � u2jð1þ jhjp�1Þ;

�
ð1:4Þ

for almost all ðx; tÞ A RN � ½0;þyÞ and all u; ui A R and h; hi A RN , i ¼ 1; 2.
For Porous medium type equation we follow the notation of [6] chapter 7,
section 5. Let

ut ¼ div Aðx; t; u;Dðjujm�1
uÞÞ; ðx; tÞ A RN � ½0;þyÞ;ð1:5Þ

where A is required to satisfy the following conditions

Aðx; t; u; hÞ � hb c 00jhj
2;

jAðx; t; u; hÞja c 01jhj;

(
ð1:6Þ

for almost all ðx; tÞ A RN � ½0;þyÞ and ðu; hÞ A R� RN with

N � 2

N

� �
þ
< m < 1:ð1:7Þ

We assume the following monotonicity and Lipschitz conditions

ðAðx; t; u; h1Þ � Aðx; t; u; h2ÞÞ � ðh1 � h2Þb 0;

jAðx; t; u1; hÞ � Aðx; t; u2; hÞjaL 0j ju1jm�1
u1 � ju2jm�1

u2jð1þ jhjÞ;

�
ð1:8Þ

that are su‰cient to have a comparison principle and to preserve the positivity of
solutions.

Actually, we remark that hypotheses (1.4) and (1.8) not only imply a
comparison principle for weak solution of (1.1), but also guarantee the existence
of the solution. See, for instance, [10] and [14]). We recall that in [14] it is
proved the existence of the weak solutions of (1.1) with a Dirac mass instead of
a generic Radon measure as here and, in that specific case, sharp pointwise
estimates from above and from below are proved.

The aim of this paper is to prove that under these assumptions the mass is
preserved. This result is known for the prototype equations with initial data a
Dirac mass (where the explicit solutions are known) but, as far we know, not for
general equations.

Let us recall the fundamental solutions of the prototype equations.
First, let us consider the p-Laplacian equation. It is known that for some

positive constant Cp (see, for instance, chapter 11, section 4 of [15] and [16]) the
function

Bp ¼ t�N=l Cp þ gp
jxj
t1=l

� �p=ðp�1Þ
" #�ðp�1Þ=ð2�pÞ

ð1:9Þ

with

gp ¼
1

l

� �1=ðp�1Þ 2� p

p
and l ¼ Nðp� 2Þ þ pð1:10Þ
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is the solution of the following Cauchy problem in RN � ðt > 0Þ

ut ¼ divðjDujp�2
DuÞ;

uðx; 0Þ ¼ dð0Þ:

(

Analogously, for the Porous Medium equation it is known that for some positive
constant Cm (see, for instance, chapter 2, section 1 of [15] and [16]), the function

Bm ¼ t�N=k Cm þ gm
jxj
t1=k

� �2" #�1=ð1�mÞ

ð1:11Þ

with

gm ¼ 1

k

� �
1�m

2
and k ¼ Nðm� 1Þ þ 2

is the solution of the following Cauchy problem in RN � ðt > 0Þ
ut ¼ DðumÞ;
uðx; 0Þ ¼ dð0Þ:

�

Let us now introduce the usual definition of a weak solution. A locally bounded,
non-negative function uðx; tÞ is a solution of (1.1) in RN � Rþ, if

u A CðRþ;L2ðRNÞÞVLpðRþ;W 1;pðRNÞÞ;

and for every subinterval ½t1; t2�HRþ

ð
RN

uf dx

����
t2

t1

þ
ð t2
t1

ð
RN

ð�uft þ Aðx; t; u;DuÞ �DfÞ dxdt ¼ 0;

for all test functions f A W 1;2ðRþ;L2ðRNÞÞVLpðRþ;W 1;pðRNÞÞ.
We use this definition of solution, because ut may have a modest degree of

regularity and in general has meaning only in the sense of distributions (see, for
instance, [5] and [6]).

Notice that the explicit fundamental solutions have less regularity than what
we required in the previous definition. In general, when the initial datum is a
measure, the gradient of the solution belongs only to the Marcinkiewicz space

of order
Nðp� 1Þ
N � 1

. However, the gradient of the solution raised to the power

ðp� 1Þ belongs to the Marcinkiewicz space of order
N

N � 1
and therefore, to L1.

Hence, a distributional solution is well defined. For a more refined theory, see
[1] and [2] for the definition of entropy solutions, and see [4] and [12] for the
definition of renormalized solutions.

Keeping this in mind and following the approach of [9] and [13], we define
the notion of weak solution of (1.1) in the case of an initial datum measure.

A non-negative function uðx; tÞ is a weak solution of (1.1) if the following
assumptions are satisfied
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� u A CðRþ;L1ðRNÞÞ,
� for any s > 0, uðx; tÞ is a weak solution of (1.1) in RN � ½s;þyÞ
� for any f A CyðRNÞ and with compact support, we have

lim
t!0

ð
RN

uðx; tÞfðxÞ dx ¼
ð
RN

fðxÞ dm:

We are now able to state our main Theorem concerning p-Laplacian type
equations:

Theorem 1.1 ( p-Laplacian type). Let u be a nonnegative solution of

ut ¼ div Aðx; t; u;DuÞ; ðx; tÞ A RN � ½0;þyÞ;
uðx; 0Þ ¼ m; x A RN ;

�
ð1:12Þ

with A satisfying (1.2), (1.4), p in the supercritical range (1.3) and m a nonnegative
Radon measure with finite mass and with compact support. Then for any t > 0ð

RN

uðx; tÞ dx ¼
ð
RN

dm:ð1:13Þ

Let us consider Porous medium type equation. Analogously to p-Laplacian type
equation, we can introduce the definitions of weak solution. For the sake of
readability of the paper, we omit these definitions and we refer the reader to [6],
[13], [14] and [16] for all the necessary details.

Theorem 1.2 (Porous medium type). Let u be a nonnegative solution of

ut ¼ div Aðx; t; u;DumÞ; ðx; tÞ A RN � ½0;þyÞ;
uðx; 0Þ ¼ m; x A RN ;

�
ð1:14Þ

with A satisfying (1.6), (1.8), m in the supercritical range (1.7) and m a nonnegative
Radon measure with finite mass and with compact support. Then for any t > 0ð

RN

uðx; tÞ dx ¼
ð
RN

dm:ð1:15Þ

The existence of weak solutions to such kind of equations is guaranteed by
Theorem 1.3 proved in [14].

The proofs in this paper are based on L1-L1 estimates and Ly-L1 estimates.
We recall that the L1-L1 estimates are not only a kind of integral Harnack
estimates, but they also give a sharp quantitative estimate on the speed of the
propagation of the solution.

We will prove only Theorem 1.1, i.e. we will consider only the p-Laplacian
type case. We will refer the reader to the recent monograph [6], in order to see
how to extend these results to the case of Porous medium type equation.
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Note that below the critical values, i.e. for 1 < pa
2N

N þ 1
and 0 < ma

N � 2

N

� �
þ
, the extinction of the solution occurs, so we don’t have conservation

of the mass.
In the supercritical range, i.e.

2N

N þ 1
< p < 2 and

N � 2

N

� �
þ
< m < 1 the

initial datum needs to have a finite mass, otherwise the solution becomes þy at
any positive time (for these results, see for instance [15]).

In the degenerate case, i.e. p > 2 and m > 1 there is the finite propagation of
the support, so the mass is clearly conserved.

As for the uniqueness of the solutions to (1.12) and (1.14), we recall that this
issue was considered for the p-Laplacian equation in [9] for p > 2 and for the
Porous medium equation in [8] in the case N ¼ 1 and in [13] for any N and in
a more general setting. The extension of the uniqueness result to our case seems
to be not trivial at all, also because the uniqueness would depend on the choice
of the definition of solution (renormalized, entropy, distributional).

The paper is organized in this way: in §2, we collect some known results to
be used in the proofs of our results.

In §3, estimates from above are derived for the solutions of problems (1.12)
and (1.14) Then we apply these estimates to deduce Theorem 1.1 and Theorem
1.2.

We stress that throughout the paper with g we will denote constants
depending only upon the data, i.e. for equation (1.12) depending only upon
N, p, c0, c1 and for equation (1.14) upon N, m, c 00, c 01.

2. Preliminaries

Let BrðxÞ denote as usual the euclidean ball in RN with center at x and
radius r, and set Brð0Þ ¼ Br.

We use the following results along the paper:

Theorem 2.1 (Local L1 form of the Harnack inequality, [7]). Let

u A ClocðRþ;L2
locðRNÞÞVL

p
locðR

þ;W 1;p
loc ðR

NÞÞ
be a non-negative local weak solution of (1.1)–(1.2) in RN � ½0;þyÞ and 1 < p < 2.
There exists a constant g depending only upon the data, such that for all cylinders
B2rðyÞ � ½s; t�HRN � ½0;þyÞ,

sup
satat

ð
BrðyÞ

uðx; tÞ dxa g inf
satat

ð
B2rðyÞ

uðx; tÞ dxþ g
t� s

rl

� �1=ð2�pÞ
;

where l ¼ Nðp� 2Þ þ p.

Theorem 2.2 (L1-Ly estimates, [7]). Let

u A ClocðRþ;L2
locðRNÞÞVL

p
locðR

þ;W 1;p
loc ðR

NÞÞ
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be a non-negative local weak solution of (1.1)–(1.2) in RN � ½0;þyÞ and assume
(1.3) holds. There exists a constant g1 depending only upon the data such that for
all cylinders B2rðyÞ � ½s� ðt� sÞ; sþ ðt� sÞ�HRN � ½0;þyÞ,

sup
BrðyÞ�½s; t�

uðx; tÞa g1

ðt� sÞN=l
inf

2s�tatat

ð
B2rðyÞ

uðx; tÞ dx
 !p=l

ð2:1Þ

þ g1
t� s

rp

� �1=ð2�pÞ
:

Note that this Theorem claims that if a solution is in L1 at a certain time t0, it is
in Ly for any time s > t0. Note that if a function v is the solution of (1.12) and
it can be approximated by regular problems, by (2.1) one easily derives that

v A Cð½s;yÞ;L2ðRNÞÞVLpððs;yÞ;W 1;pðRNÞÞ for any s > 0.
The results of this section hold for Porous medium type equations (see

Appendix B of the monograph [6]).

3. The case of compact support

The aim of this section is to get an estimate from above for the solution of
the problem (1.12) assuming (1.2), (1.3) and (1.4) that there exists R > 0 such that
the support of m is contained in BR.

Fix a positive time T > 0 and x A RN such that jxj > 2R and jxjb T

g2

� �1=l
where g2 :¼

1

2g

� �2�p

and g is the constant defined in Theorem 2.1.

Lemma 3.1. Let u be a weak solution of (1.12) under (1.2)–(1.4). Let
T > 0. For all x with

jxj > T

g2

� �1=l
42R;ð3:1Þ

we have

uðx;TÞa g14
ð2p�1Þ=2ð2�pÞ T

jxjp
� �1=ð2�pÞ

:ð3:2Þ

Proof. Apply Theorem 2.2 with s ¼ T þ e

2
, t ¼ T ; r ¼ jxj

4
to get

uðx;TÞa sup
y ABrðxÞ

uðy;TÞa g12
N=lðT � eÞ�N=l inf

eataT

ð
B2rðxÞ

uðy; tÞ dy
 !p=l

ð3:3Þ

þ g12
�1=ð2�pÞ T � e

rp

� �1=ð2�pÞ
:
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Taking into account that the function m has the mass concentrated in the ball BR

and that by hypothesis (3.1) the balls B2rðxÞ and BR have empty intersection, we

get that lim
e!0

ð
B2rðxÞ

uðy; eÞ dy
 !p=l

¼ 0. Therefore letting e ! 0 we get (3.2).

Proof of Theorem 1.1. Fix R0 > 0. By equation (1.12)

d

dt

ð
BR0

uðx; tÞ dx ¼
ð
BR0

div Aðx; t; u;DuÞ dxð3:4Þ

¼
ð
qBR0

hAðs; t; u;DuÞ; ni ds

where n is the external normal vector and the last equality comes from Gauss’s
theorem.

Applying (1.2) to (3.4) we get

sup
0ataT

ð
BR0

uðx; tÞ dx�
ð
BR0

dm

�����
�����a c1

ð
qBR0

ðT
0

jDuðs; tÞjp�1
dtds

and hence

sup
0ataT

ð
BR0

uðx; tÞ dx�
ð
BR0

dm

�����
�����ð3:5Þ

a c1o
1=p
N R

ðN�1Þ=p
0 T 1=p

ð
qBR0

ðT
0

jDuðs; tÞjp dtds
 !ðp�1Þ=p

;

where oN is the surface area of unit sphere qBð0; 1Þ, i.e., oN ¼ NpN=2

G
N

2
þ 1

� � .

Let z A CyðRNÞ be a cuto¤ function such that 0a za 1, z ¼ 1 in

B2R0
nBR0=2, z ¼ 0 in BR0=4 and RNnB3R0

and j‘zja g3
1

R0
.

Assume that
R0

4
> R. If we multiply equation (1.12) by zpu and integrate it

in RN � ½0;T �, we getð
RN

ðT
0

utz
pu dsdx ¼

ð
RN

ðT
0

div Aðx; s; u;DuÞzpu dsdx:

Using integration by parts, we haveð
RN

zp
ðT
0

1

2

d

ds
ðu2Þ dsdx ¼ �

ð
RN

ðT
0

Aðx; s; u;DuÞDðzpuÞ dsdx:

Then we can write,
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1

2

ð
RN

zpu2ðx;TÞ dx� 1

2

ð
RN

zp lim
t!0

u2ðx; tÞ dx

¼ �
ð
RN

ðT
0

Aðx; s; u;DuÞzpDu dsdx

� p

ð
RN

ðT
0

Aðx; s; u;DuÞuzp�1Dz dsdx:

This is equivalent to the following if we consider the properties of z:ð
RN

ðT
0

Aðx; s; u;DuÞzpDu dsdx ¼ 1

2
lim
t!0

ð
RN

zpu2ðx; tÞ dx� 1

2

ð
RN

zpu2ðx;TÞ dx

� p

ð
B3R0

nB2R0

ðT
0

Aðx; s; u;DuÞuzp�1Dz dsdx

� p

ð
BR0=2

nBR0=4

ðT
0

Aðx; s; u;DuÞuzp�1Dz dsdx:

Now if we use (1.2), we obtain

c0

ð
RN

ðT
0

jDujpzp dsdxa 1

2
lim
t!0

ð
RN

zpu2ðx; tÞ dx

þ pc1

ð
B3R0

nB2R0

ðT
0

jDujp�1zp�1jujDz dsdx

þ pc1

ð
BR0=2

nBR0=4

ðT
0

jDujp�1
zp�1jujDz dsdx:

Applying Young inequality on the right hand side, we get

c0

ð
RN

ðT
0

jDujpzp dsdxa 1

2
lim
t!0

ð
RN

zpu2ðx; tÞ dx

þ c0

2

ð
B3R0

nB2R0

ðT
0

jDujpzp dsdx

þ 2c1ðp� 1Þ
c0

� �p�1ð
B3R0

nB2R0

ðT
0

jujpjDzjp dsdx

þ c0

2

ð
BR0=2

nBR0=4

ðT
0

jDujpzp dsdx

þ 2c1ðp� 1Þ
c0

� �p�1ð
BR0=2

nBR0=4

ðT
0

jujpjDzjp dsdx:
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Since j‘zja g3
1

R0
, we have

c0

ð
RN

ðT
0

jDujpzp dsdxa 1

2
lim
t!0

ð
RN

zpu2ðx; tÞ dxþ c0

2

ð
RN

ðT
0

jDujpzp dsdx

þ 2c1ðp� 1Þ
c0

� �p�1 g
p
3

R
p
0

�
ð
B3R0

nB2R0

ðT
0

jujp dsdxþ
ð
BR0=2

nBR0=4

ðT
0

jujp dsdx
" #

:

Then,

c0

2

ð
RN

ðT
0

jDujpzp dsdxa 1

2
lim
t!0

ð
RN

zpu2ðx; tÞ dx

þ 2c1ðp� 1Þ
c0

� �p�1 g
p
3

R
p
0

�
ð
B3R0

nB2R0

ðT
0

jujp dsdxþ
ð
BR0=2

nBR0=4

ðT
0

jujp dsdx
" #

:

Multiply both sides with
2

c0
,

ð
RN

ðT
0

jDujpzp dsdxa 1

c0
lim
t!0

ð
RN

zpu2ðx; tÞ dx

þ 2

c0

2c1ðp� 1Þ
c0

� �p�1 g
p
3

R
p
0

�
ð
B3R0

nB2R0

ðT
0

jujp dsdxþ
ð
BR0=2

nBR0=4

ðT
0

jujp dsdx
" #

:

Since
Ð
B2R0

nBR0=2

Ð T
0 jDujpzp dsdxa

Ð
RN

Ð T
0 jDujpzp dsdx and z ¼ 1 in B2R0

nBR0=2,

ð
B2R0

nBR0=2

ðT
0

jDujp dsdxa 1

c0
lim
t!0

ð
RN

u2ðx; tÞ dx

þ 2

c0

2c1ðp� 1Þ
c0

� �p�1 g
p
3

R
p
0

�
ð
B3R0

nB2R0

ðT
0

jujp dsdxþ
ð
BR0=2

nBR0=4

ðT
0

jujp dsdx
" #

:
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Let g4 :¼ max
2

c0
;
2

c0

2c1ðp� 1Þ
c0

� �p�1

g
p
3

 !
. Then we obtain,

ð
B2R0

nBR0=2

ðT
0

jDuðx; sÞjp dsdx

a
g4
2

lim
t!0

ð
RN

u2ðx; tÞ dx

þ g4
R

p
0

ð
B3R0

nB2R0

ðT
0

juðx; sÞjp dsdxþ
ð
BR0=2

nBR0=4

ðT
0

juðx; sÞjp dsdx
" #

:

If we assume that
R0

4
>

T

g2

� �1=l
42R we can apply Lemma 3.1 to get

ð
B2R0

nBR0=2

ðT
0

jDuðx; sÞjp dsdx

a
g5
R

p
0

ð
B3R0

nBR0=4

ðT
0

g
p
1 4

ð2p�1Þp=2ð2�pÞ s

jR0jp
� �p=ð2�pÞ

dsdx

" #

and hence, ð
B2R0

nBR0=2

ðT
0

jDuðx; sÞjp dsdxa g6T
2=ð2�pÞR

N�2p=ð2�pÞ
0 :ð3:6Þ

Therefore there exists ~RR A
R0

2
; 2R0

� �
such that

ð
qB ~RR

ðT
0

jDuðs; sÞjp dsdsa g6T
2=ð2�pÞR

N�1�2p=ð2�pÞ
0 :ð3:7Þ

Combining together (3.5) and (3.7), we have

sup
0ataT

ð
B ~RR

uðx; tÞ dx�
ð
B ~RR

dm

�����
�����a g7T

1=ð2�pÞR
N�1�2ðp�1Þ=ð2�pÞ
0ð3:8Þ

Therefore

sup
0ataT

ð
RN

uðx; tÞ dx�
ð
RN

dm

����
����

a g8 T 1=ð2�pÞR
N�1�2ðp�1Þ=ð2�pÞ
0 þ

ð
RNnBR0=2

ðT
0

t

jxjp
� �1=ð2�pÞ

dtdx

" #
:
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As N � 1� 2ðp� 1Þ
2� p

< 0, when R0 ! y, we have that for any 0 < t < Tð
RN

uðx; tÞ dx ¼
ð
RN

dm

and this implies Theorem 1.1 in the case of a measure m with compact support.

Remark. Note that to prove the conservation of the mass we did not used
condition (1.4). This condition is necessary only to have the existence of the
solutions.

Remark. The case of an initial datum in L1 not necessarily with compact
support.

Let us consider the case of u nonnegative solution of

ut ¼ div Aðx; t; u;DuÞ; ðx; tÞ A RN � ½0;þyÞ;
uðx; 0Þ ¼ f ; x A RN ;

�

with A satisfying (1.2), (1.4), and p in the supercritical range (1.3) and f A L1

(not necessarily with compact support). In order to apply the previous result, for
each n A N let us introduce the function InðxÞ equal to 1 if x A Bn and equal to 0
otherwise. Let fnðxÞ ¼ f ðxÞInðxÞ and define un as the solutions of

ðunÞt ¼ div Aðx; t; un;DunÞ; ðx; tÞ A RN � ½0;þyÞ;
unðx; 0Þ ¼ fn; x A RN ;

�

By assumptions (1.2) and (1.4), for each n A N there exists a unique solution.
Moreover by the comparison principle the sequence fungyn¼1 is an increasing
sequence that converges to a function uy. By classical regularity results (see, for
instance, [5]) un are equi-Hölder continuous. As the operator is monotone, we
can apply the Minty’s lemma (see [11]) to have that uy is the solution of

ðuyÞt ¼ div Aðx; t; uy;DuyÞ; ðx; tÞ A RN � ½0;þyÞ;
uyðx; 0Þ ¼ f ; x A RN ;

�

As un % uy we have that for each t > 0 and for each n A Nð
RN

uyðx; tÞ dxb
ð
RN

unðx; tÞ dx ¼
ð
RN

fnðxÞ dx

and letting n ! y we deduceð
RN

uyðx; tÞ dxb
ð
RN

f ðxÞ dx:
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To prove the reverse inequality, consider m A N. In Bm the function um con-
verges uniformly to uy. Thereforeð

RN

f ðxÞ dxb lim
n!y

ð
Bm

unðx; tÞ dx ¼
ð
Bm

uyðx; tÞ dx

and letting m ! y we deduceð
RN

uyðx; tÞ dxa
ð
RN

f ðxÞ dx:

Therefore also for uy holds the conservation of mass property.

Remark. Application of the results to Fokker-Planck equation.

Let us consider the following problem

wt ¼ divðAðx; t;w;DwÞ þ divðxwÞ; ðx; tÞ A RN � ðt > 0Þ;
wðx; 0Þ ¼ m; x A RN ;

�
ð3:9Þ

where the operator A satisfies conditions (1.2), (1.3) and (1.4) or (1.8). As proved
by Carrillo-Toscani [3] (see also [15] and references therein), equation (3.9) can be
transformed in equation (1.1) by the change of variables

wðx; tÞ ¼ aðtÞNuðaðtÞx; bðtÞÞ;

where aðtÞ ¼ et and bðtÞ ¼ 1

k
ðekt � 1Þ.

From the estimates on the p-Laplacian type equation (respectively the
Porous medium type equation) we can deduce that if m is a nonnegative Radon
measure with finite mass and with compact support, also equation (3.9) enjoys the
property of the conservation of the mass.

Remark. As already noticed in §2, these results can be proved for the Porous
medium case following the same arguments we applied for the p-Laplacian type
case.
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