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Abstract

We correct a result in ‘‘Extremal disks and extremal surfaces of genus three’’,

Kodai Math. J. 28, no. 1 (2005), 111–130. In the paper we have shown that there

exist 16 compact Riemann surfaces of genus three up to conformal equivalence in which

two extremal disks are isometrically embedded. However we have three more of them

up to conformal equivalence. In the present paper we give these three surfaces and

show that they are hyperelliptic. We also determine the groups of automorphisms of

them.

1. Introduction

A compact Riemann surface S of genus gb 2 is equipped with the metric
induced by the hyperbolic metric ds ¼ 2jdzj=ð1� jzj2Þ of the unit disk D ¼
fz A C; jzj < 1g. Let DðrÞ be a disk of hyperbolic radius r > 0 isometrically
embedded in S. By Bavard [1] we know that the radius r satisfies the inequality

cosh ra
1

2 sin bg
;ð1Þ

where bg ¼ p=ð12g� 6Þ. Let Rg be the radius which satisfies the equality in (1),
that is, Rg ¼ cosh�1ð1=ð2 sin bgÞÞ. Then S is called an extremal surface if it
admits a disk DðRgÞ (called an extremal disk). In the previous paper ([3]), we
have shown that there exist 16 extremal surfaces of genus three up to conformal
equivalence. However there are three more of them. The author found them
in a study of non-orientable extremal surfaces of genus 6.

We have obtained all extremal surfaces of genus three in [3]. There are
1726 extremal surfaces up to conformal equivalence; 927 extremal surfaces up to
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conformal or anti-conformal equivalence, which are described by side-pairing
patterns of the hyperbolic regular 30-gon. We denote by Pj ð j ¼ 1; 2; . . . ; 927Þ
the regular 30-gon with a side-pairing pattern appeared in [2] and by P 0

j the
mirror image of Pj (P

0
j is omitted if it gives the same side-pairings as those of Pj).

We denote by Sj (resp. S
0
j ) the surface obtained from Pj (resp. P

0
j ) by identifying

each pair of sides. Then the set of the 1726 extremal surfaces consists of Sj

and S 0
j . In [3] surfaces S382, S631, and S 0

631 were considered to admit a unique
extremal disk, but it is false. In what follows, we write b :¼ b3 and R :¼ R3 for
simplicity of notation.

Theorem 1.1. The surfaces S382, S631, and S 0
631 are hyperelliptic ones admitt-

ing exactly two extremal disks. The centers of extremal disks embedded in each
surface are described as in Table 1, where p denotes the natural projection from D
onto the surface. For each surface the group of automorphisms is isomorphic to
Z2, the cyclic group of order two.

Consequently, part of Theorem 8 in [3] is corrected as follows:
1. Extremal surfaces with two extremal disks: there are 19 surfaces (14

surfaces up to conformal or anti-conformal equivalence).
2. (2) Surfaces only with the trivial automorphism: there are 1605 surfaces

(857 surfaces up to conformal or anti-conformal equivalence).

2. Preliminaries

We shall describe our methods and the notation used in [3]. An extremal
surface S of genus three is represented by a Fuchsian group of which funda-
mental region is a regular 30-gon P in the unit disk D. Then S is obtained by
identifying each pair of sides suitably. We may assume that P lies in the
unit disk D such that the vertices vn of P satisfy arg vn ¼ ð2n� 1Þp=30, n ¼
1; 2; . . . ; 30. We denote by Cn the side of P with vertices vn and vnþ1 ([3, Figure
1]) and by wn the middle point of Cn. We denote by Kn the hyperbolic pentagon
with vertices wn�1, vn, vnþ1, wnþ1, and the origin. Here subscripts are taken as
modulo 30.

S The centers of extremal disks Aut S

S382 pð0Þ, p
2 sin 4b

tanh R
i

� �
Z2

S631, S 0
631 pð0Þ, p

2 sin 4b

tanh R
i

� �
Z2

Table 1. Three extremal surfaces
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If pðzÞ ðz A PÞ is the center of an extremal disk in S, then z is on the
following curves Ln or Mn provided that z A Kn for some n:

Ln ¼ Ln;m : z� tanh R

2 cosðn�mÞb e
iðnþmÞb

����
����¼ tanh R

2jcosðn�mÞbj
ðm2 nþ 15 ðmod 30ÞÞ;

Mn ¼ Mn;m : z ¼ e2inb

tanh R
� teiðnþmþ15Þb ðt A RÞ;

where m is determined by n according as Cn is paired with Cm. Drawing Ln

and Mn in Kn for every n, we select points z of the intersection ðLn UMnÞV
ðLnþ1 UMnþ1Þ in Kn VKnþ1 which satisfy a certain distance condition, namely, the
hyperbolic distance between z and Ak; lðzÞ must be one of the restricted values for
every side-pairing mappings Ak; l : Ck ! Cl of P ([3, Lemma 1]). To verify that
pðzÞ is the center of an extremal disk, it is su‰cient to construct a Möbius
transformation g which is compatible with the side-pairing mappings of P and
gð0Þ ¼ z (we note that pð0Þ is the center of an extremal disk).

3. Three surfaces

In this section we shall prove Theorem 1.1. For a vertex vnþ1 of the regular
30-gon, pðvnþ1Þ can be a candidate for the center of an extremal disk, namely,
vnþ1 can be in the intersection of Ln UMn and Lnþ1 UMnþ1. We see that there
are 4 cases for vnþ1 to be in the intersection. For example, we depict figures
when n ¼ 15 (Figures 1 and 2).

The author missed the pair of M15;26 and M16;5, precisely the pair of Mn;nþ11

and Mnþ1;nþ20 for every n, in the previous paper, so that S382, S631, and S 0
631 were

dropped from the set of surfaces with two extremal disks.
Since P 0

631 is the mirror image of P631, we discuss only S382 and S631. The
points obtained from our methods are v8, v18, v28, and the origin, where the first
three are equivalent points. We put z ¼ v8, which is equal to ð2i sin 4bÞ=tanh R,
and put gðzÞ ¼ ðz� zÞ=ð1� zzÞ. Then the compatibility of g with the side-pairing
mappings of P382 and P631 are described as follows.

Figure 1. The intersection of K15 and K16
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P382:

gA1;25 ¼ A27;8A25;1A8;27g; gA2;9 ¼ A9;2g;

gA3;26 ¼ A27;8A9;2g; gA4;30 ¼ A27;8A10;24g;

gA5;21 ¼ A27;8A22;29A10;24g; gA6;13 ¼ A13;6g;

gA7;18 ¼ A18;7g; gA8;27 ¼ A27;8g;

gA10;24 ¼ A27;8A4;30g; gA11;15 ¼ A18;7A5;21g;

gA12;19 ¼ A18;7A6;13g; gA14;20 ¼ A18;7A11;15A6;13g;

gA16;23 ¼ A18;7A23;16A7;18g; gA17;28 ¼ A27;8A7;18g;

gA22;29 ¼ A27;8A16;23A7;18g:

P631:

gA1;15 ¼ A3;6A15;1A9;12g; gA2;19 ¼ A18;7A9;12g;

gA3;6 ¼ A9;12g; gA4;10 ¼ A10;4g;

gA5;11 ¼ A11;5g; gA7;18 ¼ A18;7g;

gA8;27 ¼ A27;8g; gA9;12 ¼ A3;6g;

gA13;26 ¼ A18;7A28;17A6;3g; gA14;20 ¼ A18;7A1;15A6;3g;

gA16;23 ¼ A18;7A23;16A7;18g; gA17;28 ¼ A27;8A7;18g;

gA21;25 ¼ A27;8A15;1A7;18g; gA22;29 ¼ A27;8A16;23A7;18g;

gA24;30 ¼ A27;8A30;24A8;27g:

Therefore pðzÞ is the center of an extremal disk.
The hyperellipticity of the surface is proved by the existence of the hy-

perelliptic involution. The automorphism induced from g is the hyperelliptic

Figure 2. 4 pairs of curves in K15 VK16 which touch the vertex v16

478 gou nakamura



involution of each surface because it is an involution with 8ð¼ 2gþ 2Þ fixed
points. Every fixed point (the Weierstrass point) is derived from a fixed point of
Bg, where B denotes an element of the Fuchsian group generated by every side-
pairing mappings. Table 2 shows the fixed points of Bg, which are given by
approximate values. Figure 3 shows the side-pairing patterns, the pre-images of
the centers of extremal disks, the pre-images of the Weierstrass points, and the
curves Ln and Mn (dotted ones intersect only with the boundary of the polygon).
Since an automorphism fixes or interchanges the centers of extremal disks, it is
verified that the group of automorphisms of each surface is generated only by the

Figure 3. Left: Side-pairing patterns, Right: The centers of extremal disks (�) and the Weierstrass

points ð�Þ
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hyperelliptic involution. In fact, for the case of S382, if F A Aut S382 fixes pð0Þ,
then we can take a lift f : D ! D of F as a rotation around the origin for some
angle 2nb ðn A ZÞ. Since a non-trivial rotation does not induce an automorphism
(e.g., pðv5Þ, pðv22Þ, and pðv30Þ are the same point in S382, but pð f ðv5ÞÞ, pð f ðv22ÞÞ,
and pð f ðv30ÞÞ are not), F must be the identity. If F interchanges the two centers
of extremal disks, then the composition TF �1 with the hyperelliptic involution T
is the identity. Thus F ¼ T . Hence Aut S382 ¼ hTi. The similar proof works
for the case of S631.

Acknowledgments. The author wishes to express his thanks to the referee
for the helpful suggestions to the first submitted version of this paper.
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B Fixed points of Bg in P382 B Fixed points of Bg in P631

id 0:5349i id 0:5349i

A6; 13 �0:6057þ 0:3497i A5; 11 �0:4841þ 0:6249i

A7; 18 �0:4632� 0:2674i A7; 18 �0:4632� 0:2674i

A8; 27 0:4632� 0:2674i A8; 27 0:4632� 0:2674i

A9; 2 0:6057þ 0:3497i A10; 4 0:4841þ 0:6249i

A11; 15A6; 13 �0:7833þ 0:1067i A1; 15A6; 3 �0:7833þ 0:1067i

A16; 23A7; 18 �0:6994i A16; 23A7; 18 �0:6994i

A25; 1A8; 27 0:7833þ 0:1067i A30; 24A8; 27 0:2992� 0:7317i

Table 2. Weierstrass points
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